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Abstract. Quantum state tomography (QST) is a crucial ingredient for almost all aspects of experimental
quantum information processing. As an analog of the “imaging” technique in quantum settings, QST is born
to be a data science problem, where machine learning techniques, noticeably neural networks, have been
applied extensively. We build and demonstrate an optical neural network (ONN) for photonic polarization qubit
QST. The ONN is equipped with built-in optical nonlinear activation functions based on electromagnetically
induced transparency. The experimental results show that our ONN can determine the phase parameter of
the qubit state accurately. As optics are highly desired for quantum interconnections, our ONN-QST may
contribute to the realization of optical quantum networks and inspire the ideas combining artificial optical

intelligence with quantum information studies.
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1 Introduction

Quantum state tomography (QST) is a standard process of re-
constructing quantum information of an unknown quantum state
through measurements of its copies. QST is used to verify state
preparation, examine state properties such as correlations, and
calibrate experimental systems. It is a crucial part of almost all
aspects of experimental quantum information processing, in-
cluding quantum computing, quantum metrology, and quantum
communication. '™

As an analog of the “imaging” technique in quantum settings,
QST is born to be a data science problem. Given limited copies
of an unknown state p, we can extract its information via QST.
QST is essentially an inverse problem, and such information
recovering tasks are well suited to machine learning. Quantum
learning theory indicates that ©(22" /£?) copies of p are neces-
sary and sufficient to learn p up to trace distance e.” Although
the tremendous resource requirement makes full-state QST
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impractical for large-scale systems, several weaker quantum
learning models (e.g., probably approximately correct learning,®
online learning,” and shadow tomography'*'") can exponentially
reduce the computational resource for learning some 2-outcome
measurement expectation values or “shadows.”

An artificial neural network (NN), a powerful algorithm in
machine learning to fit a specific function, has been widely used
for solving quantum information problems, such as quantum
optimal control,'*"* quantum maximum entropy estimation,"
and Hamiltonian reconstruction.”” NNs have also been widely
applied for QST applications, such as efficiently recovering
the information of local-Hamiltonian ground states from local
measurements,'® performing tomography on highly entangled
state with large system size," mitigating the state preparation
and measurement (SPAM) errors in experiments,'® and improv-
ing the state fidelity.""** Generative models with NNs can also
perform QST with dramatically lower costs.*'

In this work, we demonstrate QST with an optical NN
(ONN). Several optical implementations for realizing fully con-
nected NN hardware have been proposed and demonstrated
recently.”* Optical computing takes advantage of the bosonic
wave nature of light: superposition and interference give rise to
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Fig. 1 Schematic of ONN-based QST.

its intrinsic parallel computing ability. Meanwhile, light is the
fastest information carrier in nature. ONN is promising for
next-generation artificial intelligence hardware, which provides
high energy efficiency, low cross-talk, light-speed processing,
and massive parallelism. As compared with the electronic
version, ONNSs are ideal for dealing with visual signals and in-
formation that are naturally generated and coded in light, such as
image recognition and vehicular automation. However, most
ONN demonstrations are still restricted to linear computation
only due to the lack of suitable nonlinearity at a low light level
for a large amount of optical neurons.”" Without nonlinear
activation functions, ONN is always equivalent to a single-layer
structure that cannot be applied for “real” deep machine
learning. This problem had not been solved until most recently
optical nonlinearity based on electromagnetically induced
transparency (EIT),”** phase-change materials, and saturated
absorption®*? was implemented to realize artificial optical
neurons for ONNS.

Figure 1 illustrates a general scheme of ONN-QST. First, we
collect the training data set from a known quantum state {[y;)}
and the corresponding local measurements {M;}. Second, we
train NNs under supervised learning with some nonlinear acti-
vation functions in their hidden neurons to obtain the optimal
network parameters. Third, we take the trained network param-
eters to configure the ONN and perform some fine adjustments
to optimize the hardware performance. Last, we feed measure-
ment data sets to the trained ONN to reconstruct unknown
quantum states. To validate this scheme, in the following sec-
tions, we start with a general discussion of QST with the com-
puter-simulated NN and then describe our ONN experimental
approach.

2 NN for QST

We consider a general n-qubit space with Pauli operators (re-
moved the all identity terms) defined as

P={c® @ o eP.> i, #0}. )
k=1

where P = {6y =1,0, =X,0, =Y,03 =Z}. Every term in
P is specified by its index (iy,i,,---,i,). Measuring every
element in P performs a QST for any n-qubit quantum state
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p. For instance, when n = 1, we need to measure all three
Paulis X,Y,Z for QST. Clearly, the cardinality of P grows
exponentially with n. When p is a pure state, one may use
techniques to reduce the number of measurements for n > 1.
Compressed sensing is an efficient technique for recovering
low-rank quantum states from randomly sampled Pauli op-
erators.**
When p is a pure state, it can be written as

”
) = aildi), )
k=1

where {|¢;)} are the computational basis, and the amplitudes
ay € C are normalized [ie., > ¢ (a}, +ag;,) = 1, where
a;, € R and a;, € R are the real and imaginary parts of ay,
respectively].

The measurement expectation values P are ¢ = tr(p - P) =
(tr(pPy),tr(pPy), - - -, tr(pPys_1)). For a single-qubit pure state
al0) + B|1), its density matrix can be expressed as

p==(1+4+¢-0), 3)

N =

where o6={X,Y,Z} and
((X). (). (2).

In compressed sensing, one needs to randomly sample a set
p" ={P,,---,P,} of m Pauli operators from P, then use
¢=tr(p- P") = (tr(pPy),tr(pPs), - -, tr(pP,,)) to recover the
unknown state p, more precisely, the parameters of p. This can
be regarded as a regression problem to estimate the function
between ¢ and the parameters of p (e.g., ay, and ay ).

NNs are excellent tools for solving regression problems.
When using NNs for QST, the expectation values ¢ from ran-
dom-sampled P are inputs to the network, and state parameters
(ayr» ay;m) are the outputs. Compared with compressed sensing,
the NN for QST can be significantly faster when processing
many data points. Once the NN is well-trained, it can produce
reliable unseen results within an instance, while one needs to
solve a convex optimization problem for each data point when
applying compressed sensing. Note that both NN-QST and com-
pressed sensing use much fewer measurement settings than the
standard method. Without loss of generality, we use the simplest

¢ = (w(pX). r(pY), r(pZ)) =
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type of NNs in this paper—fully connected feed-forward NNs.
The neurons between the nearest layers are fully connected,
and the information only passes forward while training. The
supervised training process is to compare the ideal outputs
(@ry agim) with current NN outputs and update parameters
embedded in the NN to minimize their difference.

We numerically trained computer-based NNs nonlinear acti-
vation functions for 1-qubit, 2-qubit, and 3-qubit QST. For the
1-qubit system, the number of sampled operators m € [1,2,3];
for the 2-qubit system, the number of sampled operators m €
[6,8,10,12]; and for the 3-qubit system, m € [20,25, 30, 35,
40]. Plainly, m equals the number of input neurons, and n
decides the number of output neurons. For each m, three sets
of Pauli operators have been sampled and tested. Figure 2 plots
the average fidelities (green bars) of both cases as functions of
the number of randomly sampled Paulis. For the single-qubit
system, the fidelity reaches 99.99% with three Paulis [Fig. 2(a)].
For the 2-qubit system, the fidelity reaches 99.9% with 10
randomly sampled Paulis [Fig. 2(b)]. For the 3-qubit system,
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Fig. 2 The fidelities of NN predictions for different samples of
Pauli operators: the red triangles are the average fidelities for
UDA Pauli operator sets, which are very close to 1. A Pauli op-
erator set is said to be “UDA” if measuring these operators can
uniquely determine a pure state among all states. The green bars
are the average fidelities for random sampled Pauli operator sets.
The blue lines are the error bars for different samples. We train
NN to predict state wavefunctions from measurements for (a) 1
qubit, (b) 2 qubits, and (c) 3 qubits.
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a fidelity of higher than 99.9% requires more than 35 randomly
sampled Paulis [Fig. 2(c)]. Details of training can be found in
Sec. S1 in the Supplemental Materials.

Theoretically, a pure state p uniquely determined among all
states (UDA) for measuring a set of operators F means that there
is no other state, pure or mixed, that has the same expectation
values while measuring F.* In Ref. 36, the authors discovered
two sets of Pauli operators, P,_ypa and P3_ypp, that are UDA
for all 2-qubit and 3-qubit pure states, respectively (see Sec. S2
in the Supplemental Materials for the particular sets P,_ypa and
P;_ypa). Namely, they are special cases of Pauli operator sets
that the map between expectation values and the measured state
p is bijective. Similarly, we apply NNs for these two sets of
UDA operators and obtain the prediction fidelities of 99.9%
for the 2-qubit case and 99.3% for the 3-qubit case (red triangles
in Fig. 2).

We remark that our UDA scheme is not readily scalable for
larger systems. However, there exist protocols with better scal-
ability, e.g., compressed sensing,”> shadow tomography,'*"
where NNs can also be naturally used. In addition, our NN-
based scheme can be adapted to quantum tomography in the
optical system by taking physical constraints into account,
which we will discuss in the next section.

3 ONN-QST Experiment

In this first proof-of-principle experimental demonstration,
we implement the single-qubit space with light polarizations,
i.e., horizontal polarization |H) = |0) and vertical polarization
|[V) = |1). Instead of making a full QST, here we focus our
task to determine the phase parameter of a pure state |y) =
%(|H> + €?|V)). The experimental ONN-QST setup is dis-
played in Fig. 3. In conventional QST, an arbitrary polarization
state can be reconstructed by measuring the expectation values
of the three Pauli operators. Figure 3(a) illustrates such an op-
tical measurement setup. A laser beam passes through a polari-
zation beam splitter (PBS;) and becomes horizontally polarized
(|H)). The target state |y) = \%(|H} + ¢|V)) is prepared by
letting this horizontally polarized light pass through a half-wave
plate (HWP,) and a quarter-wave plate (QWP,). The expecta-
tion values (X), (Y), and (Z) are obtained by sending the light
polarization qubit state to the measurement units II, III, and IV
shown in Fig. 3(a). To determine (Z), we send the polarization
qubit directly to PBS, which projects |H) and |V) into two pho-
todetectors in the measurement unit III. The normalized differ-
ential output from these two photodetectors gives the value (Z).
The same setup can also be used to determine (X) or (¥) by
placing HWP, or QWP, before PBS, as shown in II or IV, re-
spectively (see Sec. S3 in the Supplemental Materials for
details).

We obtain a data set {M;} ={|¢;) : 1—(X);, 1—(Y);.1—(Z);}
by varying the phase 6 € [0,7/2] in the qubit state |y) =
% (|H) + €|V)) and use them to train our ONN in Fig. 3(b).
The ONN comprises an input layer of three neurons, a hidden
layer of 20 neurons, and a single-neuron output layer.”**
Figure 3(b) shows the optical layout of the ONN, and its
network structure diagram is displayed in Fig. 3(c). The
three coupling laser beams in the optical input layer are gener-
ated by a spatial light modulator (SLM,) in Fig. 3(b), lenses
L, and L, and an aperture, as shown in unit I of Fig. 3(b).
The SLM; is divided into three parts and each part is encoded
with the sine phase pattern mazsin[(2z/T,,;)j + (2/T )k,
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Fig. 3 Schematics of optical implementation of QST. (a) Optical layout of qubit QST, including
generation of polarization state (top panel), measurement of (Z), (X), and (Y) (bottom panel).
The fast axis of the HWP; is aligned with an angle z/4 — 0/2 to the horizontal direction. The fast
axis of the QWP is aligned with an angle z/4 to the horizontal direction. (b) Schematic of ONN.
() Input generation, (ll) linear operation of the first layer, (lll) nonlinear operation, and (IV) linear
operation of the second layer. Spatial light modulators: SLM; (HOLOEYE LETO), SLM,
(HOLOEYE PLUTO-2), and SLM3 (HOLOEYE GEAE-2). Camera: Hamamatsu C11440-22CU.
Lenses: Li-Lg. Atoms are trapped in a MOT. (c) The NN structure employed.

where m is the modulation depth, T,; and T, are the period of
modulation along x and y directions, and j and k are the pixel
number along the x and y directions. The sine phase encoded on
SLM; modulates the beams into separated beams at the focal
plane of lens L,. The aperture behaves as a filter to keep the
zero-order beam, whose intensity is determined by the modula-
tion depth m. Thus, the intensity of the three beams is changed
according to the input. The focal beams pass through lens L,
and are collimated and incident to the SLM,. These weighted
beams, as the input vector, are incident on SLM,, which dif-
fracts each beam into 20 directions with designed weights
(see Sec. S4 in the Supplemental Materials for the algorithm
to calculate the pattern encoded on SLM,). A Fourier lens L,
performs linear summation for the beams diffracted into the
same direction and forms 20 spots on its front focal plane.
Thus, the combination of SLM, and L, completes the first
linear operation W, and generates the input to the hidden layer.
We then image these 20 spots with lenses L5 and Lg to laser-
cooled ®°Rb atoms in a two-dimensional magneto-optical trap
(MOT),”® where these 20-spot coupling beam patterns spa-
tially modulate the transparency of the atomic medium through
EIT.** Another relatively weak collimated probe beam coun-
terpropagates through the MOT, and its spatial transmission is
nonlinearly controlled by the 20-spot coupling beam pattern.
Here the nonlinear optical activation functions are realized with
EIT in cold atoms. The equation of nonlinear activation func-
tions is as follows:
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Jout — f(I ) _ Iine_o Q24719113 “4)
p c p ’

where [ ‘,‘,‘ is the power of the input probe beam. Q. is the Rabi
frequency of the coupling beam, and Q2 is proportional to cou-
pling beam intensity /.. Here, y;3 = 2z x 3 MHz is fixed and
determined by the spontaneous emission of the excited state |3).
The ground-state dephasing rate y;, can be engineered by ap-
plying an external magnetic field. OD is the atomic optical depth
on the probe transition.

The image of the probe beam transmission pattern by lenses
L¢ and Lg becomes the output of the 20 hidden neurons. SLMj;
and Fourier lens Ly perform the second linear matrix operation
W,, and a camera records the output. The technical details of
our ONN are described in Refs. 28 and 29.

In this work, because we encode trained NN model and input
data into the power of beams, the ONN can only handle positive
values: input, output, linear matrix elements, and input/output
of nonlinear activation functions are all positive values.”®*
Meanwhile, the EIT optical nonlinear activation functions are
increasing and convex. The lack of negative values in the
NN limits its ability. Therefore the ONN is only able to perform
regression tasks on increasing and convex functions. To match
the ONN constraints, we perform a transform to the input var-
iable, e.g., (X) to 1 — (X), so that all input values to the ONN
nodes are positive. We add these conditions to NN to simulate
the ONN performance. The optimizer we use is Adam.*' We find
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Fig. 4 (a) Optical tomography of the qubit and (b) experimental ONN tomography result. The ONN
is training by (b1) optical tomography data and (b2) IBMQ tomography data. The black dashed
line is the theoretical value of the phase 6 according to the (X). The blue circles are the phase ¢
numerically predicted by the trained NN, and the red triangles are the experimentally measured
predictions of 6 according to (X). The yellow triangle is an example of the experimental ONN

predicted state.

that this specific ONN fails to describe the whole range of non-
monotonic functions. For the first proof-of-principle experimen-
tal demonstration, we will only apply the ONN for single-qubit
QST with phase 6 within [0, z/2]. It is surprising that such a
positive-valued ONN is still able to perform some types of QST.

To train the ONN, we prepared the training data set {M;}
from 23 phase values from a uniform distribution 6;~
U(0,7/2), corresponding to the optical polarization states
{p; =N(|¢;){(¢;|)}. Here, N is the noise channel in experi-
ments, and measures the Pauli expectation values (X), (Y), (Z).
In a similar way, we prepare a test set with 32 independent data
samples.

In addition to optical quantum states, we sample data from
the IBM quantum (IBMQ) computer ibmq_ourense,* and im-
plement the same ONN training for comparison. The quantum
circuit to prepare |y) = (|H) + ¢|V))/+/2 is the initial state
|H) going through a Hadamard gate and then going through
an RZ rotation gate. On ibmq_ourense, we uniformly sample
158 data points as the training set; 50 data points as the test
set. Experimental optical quantum state and IBMQ tomography
data are used to train two NNs. Details of training ONN can be
found in Sec. S5 in the Supplemental Materials.

Figure 4 shows the ONN state construction results using NN
models trained by the ONN-QST training set and the IBMQ
computer training set separately. The theoretical value is calcu-
lated from (X) directly. With the ONN system set up for the
training results, we sent a set of the input vectors to the system.
The examples of the real and imaginary parts of the density ma-
trix are shown in Fig. 4(a). The experimentally measured state
example is predicted by the ONN QST training model. The ex-
ample input vector for the ONN model is ((X),(Y),(Z)) =
(0.440,0.898,0) and the experimental ONN predicted state is

0.5 0.1852 —0.46457i
0= 1195 and p= (0.1852 +0.46457i 0.5 )
which is close to the theoretical value 8 = 1.1152 and NN pre-
dicted value @ = 1.1532. The state is also marked with a yellow
triangle in Fig. 4(bl). The experimental results are shown in
Fig. 4(b). The theoretical value, NN predicted value, and exper-
imental ONN predicted value agree with both optics data train-
ing [Fig. 4(b1l) shows] and IBMQ data training [Fig. 4(b2)
shows]. The theoretical value, NN prediction value, and ONN
predicted value are consistent in both cases. The results suggest
that our positive-valued ONN with EIT nonlinear activation
functions is capable of qubit QST.

4 Discussion and Conclusion

While most demonstrations of ONNs took classification tasks
to verify their feasibility,”**"*° we performed the first regression
task, i.e., ONN-QST. To accomplish regression tasks, the non-
linear function is essential as long as the relation between the
input vector and output vector cannot be expressed linearly. The
tunable EIT nonlinear optical activation functions in our ONN
offer opportunities for performing regression tasks with convex
and increasing/decreasing functions. Although our ONN has
some certain limitations that the linear operation matrix ele-
ments are all positive valued, it has the potential to do large-size
QST with restrictions.

Further, ONN can play a positive role in the noisy intermedi-
ate-scale quantum (NISQ) era. In NISQ algorithms, one usually
only needs to reconstruct some reduced density matrix and ex-
tract the required local information instead of characterizing
the whole system through a full-state tomography. ONN-QST
can serve as an efficient subroutine to speed up this process.
For example, within each Trotter step of the quantum imaginary
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time evolution,”* we can train an ONN to reconstruct the re- 11.
duced density matrix of some neighboring qubits, then use this
information to determine the direction of the next step.

To perform QST for a higher dimensional space requires 12.

more active neurons. Our theoretical simulation shows 10 13
and 30 inputs are needed for the 2-qubit and 3-qubit cases, re- '
spectively. However, while the number of optical neurons is
not a limiting factor in our current experimental setup, the 14.
ONN input/output and matrix weights are all positive-valued.
Meanwhile, the nonlinear activation functions we implemented 15.
are increasing and convex, and it is impossible to conduct the
regression task of nonmonotonic functions experimentally.
These physical limitations limit us to performing more compli- 16.
cated QST. We believe the next generation of complex-valued 17
ONN’s with data encoded in both light amplitude and phase will :
be more powerful. The future development of complex-valued 18.
ONNs may enable large-size QST and more applications.

Optical quantum networks* have been brought to the fore by 19.
the reduced decoherence and high speed of photons. Recently,
apart from generating optical quantum states*® and optical quan- 20.
tum communication over a long distance,” multiple state-of-
the-art experiments on optical quantum interfaces to store*® and
distribute entanglements** have been exhibited. Among all of 2l
these, QST is essential for characterizing the generation and pres- ”
ervation of quantum states and has the potential to verify the en- ’
tanglement distributed across the whole network. We believe that
our optical setup of integrated ONN-QST will shed light on re- 23.
plenishing the optical quantum network with one more brick.
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