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Abstract. Recent advancements in deep learning (DL) have propelled the virtual transformation of microscopy
images across optical modalities, enabling unprecedented multimodal imaging analysis hitherto impossible.
Despite these strides, the integration of such algorithms into scientists’ daily routines and clinical trials
remains limited, largely due to a lack of recognition within their respective fields and the plethora of
available transformation methods. To address this, we present a structured overview of cross-modality
transformations, encompassing applications, data sets, and implementations, aimed at unifying this evolving
field. Our review focuses on DL solutions for two key applications: contrast enhancement of targeted features
within images and resolution enhancements. We recognize cross-modality transformations as a valuable
resource for biologists seeking a deeper understanding of the field, as well as for technology developers
aiming to better grasp sample limitations and potential applications. Notably, they enable high-contrast,
high-specificity imaging akin to fluorescence microscopy without the need for laborious, costly, and
disruptive physical-staining procedures. In addition, they facilitate the realization of imaging with properties
that would typically require costly or complex physical modifications, such as achieving superresolution
capabilities. By consolidating the current state of research in this review, we aim to catalyze further
investigation and development, ultimately bringing the potential of cross-modality transformations into the
hands of researchers and clinicians alike.
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contrast.
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1 Introduction
Modern optical microscopy methods provide researchers with a
window into the microscopic world with visual clarity not pos-
sible using traditional bright-field microscopy. While bright-
field microscopy relies on light absorption by the sample to gen-
erate visual contrast, biological specimens often lack sufficient
light absorption for clear, analyzable images.1 To overcome this
challenge, scientists have traditionally employed various stain-
ing techniques and specialized microscopy methods tailored to

derive contrast from diverse properties of the sample across
different scales, portrayed in Fig. 1. For tissues, researchers
use chemical dyes to stain the sample and create contrast.2

Similarly, fluorescent dyes are employed to highlight specific
cellular structures.3,4 At the molecular level, fluorophores are
commonly utilized to bind to target molecules, enabling re-
searchers to track and observe individual molecules using fluo-
rescence microscopy.5,6

However, modern microscopy techniques also present chal-
lenges. Staining tissue samples is a laborious, invasive, and
often irreversible process, resulting in varying staining out-
comes for different tissues and limiting their reuse for alternative*Address all correspondence to Caroline B. Adiels, caroline.adiels@physics.gu.se
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purposes.7 Similarly, imaging cellular and subcellular structures
poses challenges, such as costly and time-consuming staining
procedures that often limit sample utility.8 Furthermore, at
the molecular scale, light microscopy encounters limitations
in image resolution. Researchers must use specialized objec-
tives, sophisticated setups, and complex fluorophore mixes
and buffers to observe sufficiently small structures, resulting
in expensive and intricate optical arrangements, e.g., interfero-
metric scattering microscopy9 and direct stochastic optical
reconstruction microscopy (STORM).10,11

Recently, deep learning (DL) has emerged as a potential
solution to overcome the aforementioned challenges in micros-
copy.12 By employing neural networks to perform numerical
transformations of images between different optical modal-
ities,13 researchers can capture images using a low-cost modal-
ity, such as bright-field microscopy, and convert them to
preferred modality, such as fluorescence microscopy, for simpli-
fied analysis.14 This process, known as cross-modality transfor-
mation, eliminates the need for costly and invasive staining
procedures,15 allowing for multiple staining techniques to be
produced from the same sample with minimal additional ex-
pense. Moreover, since the entire process is numerical, results
can be easily replicated by independent teams, ensuring repro-
ducible and reliable outcomes.

In this review, we demonstrate the utilization of cross-modal-
ity transformations across biological scales. We outline common
strategies for training neural networks for cross-modality
transformations, while addressing the specific challenges and
possibilities associated with each biological scale. Finally, we
summarize the most successful techniques as rules-of-thumb
and provide guidelines for the development and utilization of
cross-modality transformations.

2 Introduction to DL for Multimodal
Transformations

DL is a subset of machine learning that uses artificial neural
networks to perform specific tasks. Neural networks are com-
plex computational models processing input data to generate
output results. The performance of a neural network is deter-
mined by its parameters, commonly referred to as weights,
which can range from tens of thousands to hundreds of millions,
depending on the application. Primarily, the objective of DL is
to optimize these weights by a process called training, enabling

the neural network to yield desired outcomes for a given in-
put space.

In cross-modality transformations, the neural networks used
are frequently trained using supervised learning.16 During this
process, the network is presented with an image captured from
one modality (e.g., bright-field) and trained to generate the
corresponding image in another modality (e.g., fluorescence).
Typically, these training data are obtained using either a
dual-modality microscope,17 where the sample is imaged using
both modalities, or alternatively, the sample can be imaged
twice—before and after a specific treatment (e.g., staining)—
with subsequent image processing to align the two views.18

In certain cases, it may be feasible to derive the transformation
analytically, necessitating the imaging of the sample using only
one modality to train the network to reconstruct the original im-
age. Even if the physical staining or alternative imaging process
is conducted at least once to establish a training pool, sub-
sequent experiments benefit from their simplification.

Cross-modality transformation involves translating images
from one modality to another, typically employing encoder–
decoder-style fully convolutional neural networks (CNNs).
A CNN is a regularized network, meaning it adds information
unidirectionally and learns features by itself via kernel optimi-
zation. These networks utilize convolutional operations to
process input images and are commonly exemplified by archi-
tectures, such as U-Net, ResNet, and InceptionNet.

An essential aspect in training neural networks for cross-
modality transformation is choice of the loss function, a metric
minimized during training. Traditionally, minimizing the mean
absolute error (L1) or mean squared error (L2) distance between
the predicted and ground truth images is common.19 However,
this approach often yields low-resolution and nonphysical re-
sults. To address this, an auxiliary adversarial loss function is
frequently incorporated.20 This involves training a discriminator
neural network alongside the main generator network, where the
discriminator distinguishes between generated and ground truth
images. The generator is trained to deceive the discriminator by
producing physically reasonable results. Such networks are re-
ferred to as generative adversarial networks (GANs).

Alternatively, diffusion models represent a recent approach
generative modeling. These models utilize probabilistic gener-
ative techniques in a two-step process: forward diffusion,
where noise is iteratively added to images until they become
pure Gaussian noise; and reverse diffusion, where images are

Fig. 1 Applications of cross-modality transformations across biological scales. At the largest
scales, virtual staining is used to enhance imaging contrast. At intermediate scales, virtual staining
is used in conjunction with noise reduction techniques. At the smallest scales, superresolution is
used to study systems far beyond the optical diffraction limit. Image created with the assistance of
BioRender.
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iteratively denoised using a neural network. By conditioning the
reverse diffusion process, diffusion models effectively handle
image-to-image transformation tasks.21 While diffusion models
can produce higher-quality images compared to GANs, they
come with significantly higher computational costs.

3 Tissue Imaging/Histology
Histological staining is a cornerstone of clinical pathology and
research, playing a pivotal role in unraveling tissue details at the
microscopic level. It enables the visualization of structures cru-
cial for medical diagnosis, scientific study, autopsy, and forensic
investigation.22 In recent years, DL advances have revolution-
ized tissue imaging and histology analysis, offering innovative
solutions to overcome the limitations of traditional physical
staining methods.23,24 In the following sections, we will explore
the transformative impact of DL techniques in substituting con-
ventional staining approaches, with the aim of improving the
analysis of histological samples.

3.1 Limitations of Chemical Staining

One of the most impactful applications of DL for cross-modality
transformation is in histology, where visual tissue analysis often
faces challenges associated with traditional physical staining.
Tissues, as the largest biological structures routinely observed
through optical microscopy, require staining protocols to create
visual contrast between features. However, these protocols often
rely on chemical dyes that can be hazardous and may adversely
affect the samples, especially during critical steps when sample
structures are vulnerable.25–27 In addition, manual labor and dex-
terity are necessary, and especially for fluorescence dyes, not all
staining procedures are compatible in the same sample, limiting
the information obtainable.

The histological process usually comprises several steps, in-
cluding fixation, embedding, sectioning, staining, and mount-
ing, although the specific steps may vary according to the
staining technique and the target tissue. The first step is fixation,
where the full tissue sample is preserved using chemicals, such
as formaldehyde or glutaraldehyde. Fixation prevents decay and
maintains the structural integrity by cross-linking the proteins in
the sample. However, the tissue’s original chemistry is altered.
An alternative approach is to freeze the sample, often using
liquid nitrogen, which can preserve the natural state of proteins
and lipids without chemicals. The next step is to dehydrate the
tissue sample through a series of diluted alcohol solutions and to
clear it, using different clearing agents that dissolve remnant lip-
ids and simultaneously homogenize the refractive index. This
process renders the tissue transparent as a consequence of even
light scattering across the sample,28 and prepares it for infiltra-
tion, but can cause tissue shrinkage and morphological altera-
tions. The sample can now be completely encased in an
embedding medium, such as paraffin wax, and left to solidify.
Once hardened, the sample is cut using a microtome into very
thin slices, around 4 to 10 μm thick, in a step known as section-
ing. This process requires high skill and precision, as incorrect
microtome alignment or use can lead to tearing or crushing of
the tissue and obscure important details. Finally, the slices are
placed on microscopic glass slides for observation. Handling
must avoid stretching or folding, which can distort the samples
and hinder analysis. Once mounted, the samples are ready for
the next step: the staining. During staining, various stains are
applied based on the cellular structures of interest. Among

histological stains, hematoxylin and eosin (H&E) are among
the most widely used, with hematoxylin staining cell nuclei
purple and eosin coloring the cytoplasm and extracellular matrix
pink. Other stains target different structures, such as Picrosirius
Red (PSR) for collagen fibers or Alcian Blue for acidic mucins
and cartilage. An important technique within this process is
immunohistochemistry (IHC), which detects specific proteins
in the sample using antibodies. This method requires antigen
retrieval to unmask target proteins after fixation, alongside a
blocking step to reduce nonspecific antibody binding. The stain-
ing process is sensitive to factors such as concentration and
timing, and if applied unevenly, it can obscure details. Other
limitations of IHC regard unspecific binding or cross-reactions
of the added antibodies, which can negatively affect the out-
come. Finally, the sample is prepared for detailed observation,
and the histological features can be identified via microscopy
imaging.

Traditionally a qualitative method, chemical staining can
also yield quantitative data through image analysis,29 such as
measuring staining intensity, to estimate the presence of
biomolecules. However, identifying biological features often
requires additional context and expert analysis, and variability
in staining intensity, reagent quality, and human interpretation
can affect results. Standardized protocols and software tools can
mitigate some of this variability, though issues persist compared
to virtual staining and inherent contrast techniques.

As an alternative to chemical staining, inherent contrast
techniques—such as phase contrast, differential interference
contrast (DIC),30,31 and quantitative phase imaging (QPI)—pro-
vide an alternative to chemical staining by exploiting refractive
index variations in biological tissues to enhance contrast.32

These methods require minimal additional equipment but lack
the specificity of chemical dyes and are prone to optical
artifacts, such as halo effects.33 To improve specificity, they
are often combined with other techniques. The choice between
virtual staining and inherent contrast methods depends on fac-
tors, such as cost-effectiveness and imaging quality.

3.2 DL for Tissue Imaging

DL models can be trained to virtually stain samples, whether
they are unstained34 or have been stained using a different
method.35 By bypassing the physical staining process, multiple
readouts equivalent to different dyes can be obtained from the
same image. This not only maximizes information output36 for
analysis and diagnostics37 but also simplifies the experimental
setup requirements, as shown in Fig. 2.

In histology, DL models are trained to virtually stain tissue
using collections of stain/unstained image pairs as, a refer-
ence,36,37,39–47 as shown in Fig. 3(a). This method constitutes a
pure virtual approach to staining samples, although the starting
point is not always an unstained sample. Some models have the
capability to transform one type of staining into another.36 Hong
et al., as shown in Fig. 3(b),48 washed and restained the samples
to obtain equivalent pairs for a stain-to-stain translation model.
Still, there are cases of cross-modality transformation of tissues
based on unpaired samples.49 These cases are notably more in-
tricate as they typically do not rely on training pools consisting
of paired samples,50 but rather on disparate samples obtained
through different techniques or dyes. In alternative scenarios,
a multistain model,51 such as the one shown in Fig. 3(c), is de-
veloped, where the model is trained to virtually apply various
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dyes to an unstained sample, enabling it to transform a stained
image into each of the other dye types.36 An illustrative example
is provided by Rivenson et al.,52 who used a CNN to transform
wide-field autofluorescence images of unlabeled tissue sections53

into images equivalent to the bright-field images of histologi-
cally stained versions of identical samples. Their study demon-
strates the feasibility of this approach to generate multiple types
of stains on different tissue types through the autofluorescence
signal.

Therefore, virtual and histological stainings are not mutually
exclusive and can be complementary. While virtual staining
offers convenience and reproducibility, it still relies on histo-
logical staining to provide the ground truth for generating large
training data sets. The main trends are summed up in Table 1 in
Sec. 6 guidelines. Some models benefit from existing databases
of images of stained tissues for their training, reducing the
manual effort required to obtain a sufficient training set.34,61,62

Virtual staining also offers advantages over traditional histology,
including the potential for real-time staining of tissue samples63

and three-dimensional (3D) reconstructions of full tissues.63 In
the latter case, Wang et al.63 virtually stained light-field micros-
copy—not to be confused with bright-field microscopy—
images of volumetric samples, merging two typically incompat-
ible techniques. Furthermore, certain virtual staining models
extend their capabilities by integrating segmentation of the high-
lighted region of interest.48,64–66 Segmentation, and potentially
staining protocols, can be applied in imaging techniques where
usually contrast-enhancing staining is not available due to cross-
modality transformations, as shown in Fig. 3(d). In this example
from Dou et al.,49 segmentation, obtained through artificial

intelligence in magnetic resonance imaging (MRI) measure-
ments, is transferred to CT images. This is particularly relevant
for the utilization of machine-learning models for diagnostic
purposes, facilitating the differentiation of healthy tissue sam-
ples from those associated with conditions, such as infections
or tumors.61,62,67,68 Moreover, in certain cases,37 not only diagno-
sis is accomplished through virtual staining, but also the direct
acquisition of suitable input images from patients via noninva-
sive methods, as represented in Fig. 3(e), underscoring the po-
tential of this powerful technique. While most cross-modality
transformations in tissues are based on the same imaging modal-
ity with different nonfluorescent dyes, some examples involve
transformation into fluorescent dyes35 or other imaging tech-
niques. Nevertheless, fluorescence is of greater relevance at
the cellular level, where emphasis is placed on specific struc-
tures and organelles.

Virtual staining models must undergo rigorous validation
against chemically stained samples to ensure accurate represen-
tation of biological features, as variations in color, texture, and
detail may occur. A comprehensive comparison between tradi-
tional and virtual staining methods is therefore crucial for
assessing reliability,69 which requires either manual or auto-
mated ground-truth data annotation. Objective metrics, such
as index measure (SSIM)51,70–72 and peak signal-to-noise ratio
(PSNR),73–75 are used to measure accuracy, while expert visual
evaluations are essential to confirm that virtual stains accurately
reflect key histological features for research and diagnostic
purposes.

In general, a single dye is insufficient to provide comprehen-
sive information about a particular tissue sample. Instead,

Fig. 2 Contrast between physical and virtual approaches to obtain a stained image. In the physical
approach, the sample undergoes a series of complex procedures, including preparation, staining,
and imaging. Tissue preparation may involve fixing, embedding, and sectioning, among other
steps. Similarly, histological staining of an unstained sample requires permeabilization, chemical
dye application, washing, counterstaining, and protocol optimization before imaging. In contrast,
virtual staining offers a simplified alternative to these protocols, eliminating the need for physical
processing37 or staining of the sample.38 In the virtual approach, an unaltered or unstained sample
is processed through a virtual staining network to generate a stained image, with results equivalent
to physical staining. Physically stained images serve as training data, or input, for the model, es-
pecially when transforming between different stains is the objective. Created with the assistance of
BioRender. (Tissue image adapted from Berkshire Community College Bioscience Image Library.)
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(a) (b)

(d) (c)

(e)

Fig. 3 Representative applications of cross-modality transformations for tissue imaging using DL.
(a) Virtual staining of an unlabeled sample image to obtain the equivalent H&E stained image.
Adapted from Rana et al.39 (b) Stain-to-stain translation where the input and output are images from
two different staining procedures, in this case H&E to IHC staining for cytokeratin (CK). Adapted from
Hong et al.48 (c) Multi-stain model that is able to transform unlabeled tissue images into different
staining options simultaneously: H&E, orcein, and PSR. Adapted from Li et al.40 (d) Cross-modality
transform to apply a segmentation method, or potentially a stain, in a previously incompatible modal-
ity. In this case, an AI segmentation for MRI images is transcribed to CT images. Adapted from Dou
et al.49 (e) Biopsy-free cross modality transformation, where not only the staining procedure but also
the sample preparation is avoided. Using CRM as a noninvasive technique for in vivo measure-
ments, the resulting images incorporate features comparable to H&E, despite being incompatible
with traditional staining techniques in such conditions. Adapted from Li et al.37
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various dyes can be applied on different samples of the same
original tissue, such as different slices of a single specimen.
In the study by Li et al.,40 three distinct dyes—H&E, PSR,
and orcein—the last used to demonstrate elastic fibers—were
utilized on carotid tissue. Each dye targets different components
of artery tissue, aiding in the identification of coronary artery
disease and vascular injuries. First, an independent model
was trained for each dye to virtually stain an unstained sample.
Then, a complete model was trained to simultaneously produce
all three modalities from the original sample. This was accom-
plished by applying one of the three corresponding staining pro-
tocols to the originally unstained samples, generating pairs of
stained and unstained images for each type. A total of 60 (whole
slide images) of each stain, along with their unstained equiva-
lents, were utilized, yielding 1500 to 1800 divided images for
training and 150 to 200 images for validation for each staining
protocol. Following standard practice, a conditional generative
adversarial network (cGAN) was implemented to learn the gen-
eration of stained images from the acquired data set. The gen-
erator architecture was based on U-Net, while the discriminator
comprised a PatchGAN architecture. To accomplish virtual
staining according to three distinct protocols, the StarGAN76 ar-
chitecture was implemented. This framework enables image-to-
image translations across multiple domains using only a single
model, offering practically unlimited potential for utilizing un-
stained samples, as they can potentially be transformed into any
other protocol with an appropriately trained network.36,77

These studies suggest that DL holds significant potential for
histological staining, yet its widespread adoption remains lim-
ited. Though DL has emerged as a leading choice for analyzing
and interpreting histology images with the potential to enhance
medical diagnostics,78 very few algorithms have transitioned to
clinical implementation.79 Several challenges persist, notably
the need for accurate labeling and addressing variations in slide
colors,80–82 as addressed in Sec. 6. Looking ahead, the availabil-
ity of high-throughput experimental devices is crucial for opti-
mizing the performance of DL-based digital histopathology
methods. Fanous et al.83 showed the potential of DL to speed
up data acquisition in scanning microscopes, using a GAN-
based image restoration approach to reconstruct motion-blurred
scanned images.84 This suggests that DL-based approaches
could significantly improve experimentation efficiency and
speed, thereby improving algorithm performance. In addition,
integrating multiple modalities, such as molecular profiling
information,85,86 could further enhance the accuracy of disease
classification and prognosis accuracy in digital pathology.
Furthermore, the development of transfer-learning techniques
that profit pretrained models on large data sets could mitigate
the challenge of limited training data in certain biological appli-
cations, expanding DL’s utility in digital pathology. Promising
advancements are expected in the use of diffusion models for
data augmentations and synthetic image generation, as demon-
strated by Moghadam et al.,87 where the generated histopathol-
ogy images were indistinguishable by experienced pathologists.

Diffusion models have emerged as a powerful tool in histol-
ogy for virtual staining, addressing some of the limitations seen
in traditional models, such as GANs and encoder–decoder net-
works. For instance, StainDiff is a diffusion probabilistic model
designed to improve the stain-to-stain transformations by over-
coming issues, such as mode collapse, where the generator of a
GAN produces images based on a limited range of the training
samples and posterior mismatching found in other networks.88

These models are also applied to generate virtual IHC images
from H&E stained slides, as seen in PST-Diff, which ensures
structural and pathological consistency through mechanisms
such as asymmetric attention and latent transfer.89 Despite their
potential, diffusion models generally require large data sets,
making them less feasible for histological applications with
limited data. To address this, multitask architectures such as
StainDiffuser have been developed to simultaneously generate
cell-specific stains and segment cells, optimizing the perfor-
mance even with constrained data sets.90 In addition, advanced
methods, such as virtual IHC multiplex staining, utilize large
vision-language diffusion models to generate multiple IHC
stains from a single H&E image, addressing tissue preservation
challenges often faced in biopsies.91 However, challenges re-
main. Diffusion models have shown limitations in unpaired
image translation tasks, such as slide-free microscopy virtual
staining, where the sample preparation process is bypassed
along with the staining process. In such cases, they underper-
form compared to models such as CycleGAN without additional
regularization, highlighting the need for further refinement in
certain applications.92 Despite these challenges, diffusion mod-
els show great promise in virtual staining, with ongoing research
focused on enhancing their reliability and applicability in his-
tology.

4 Cellular and Subcellular Structure
Imaging

Biologists and clinical laboratories routinely employ optical
microscopy to examine cell cultures, enabling the study of
cellular and subcellular morphologies and physiology. This
examination helps in understanding intercellular communica-
tion networks, dynamic cell behaviors, and pathophysiological
mechanisms.93 For instance, changes in the morphological char-
acteristics of cellular structures serve as effective indicators of
a cell culture’s physiological status and its response under drug
exposure.94,95 In the subsequent sections of this review, we delve
into the limitations of fluorescence staining techniques, shed-
ding light on the challenges associated with both fixed and live
staining methods. In addition, we explore how DL approaches
are revolutionizing cellular imaging analysis, offering innova-
tive solutions to overcome these limitations and ushering in a
new era of advanced and automated cell culture investigations.96

4.1 Limitations of Fluorescence Staining

Standard cell imaging workflows typically rely on fluorescence
microscopy, employing either fixed or live fluorescent staining
techniques to highlight specific cell structures. Despite their
widespread use, both fixed and live fluorescent staining meth-
ods have limitations. These procedures can be invasive and
toxic, potentially impacting cell health and behavior.97 In fixed
staining, as for tissue, the fixation process itself can introduce
artifacts by altering the native state of cellular components. In
addition, the use of permeabilization methods compromises cell
membrane integrity.98 Furthermore, fixed staining provides only
a static view of cellular processes, limiting the ability to study
dynamic processes. Conversely, live staining, while theoreti-
cally preserving the native state of cells, often alters their bio-
logical activity and can be toxic.99 The availability of specific
and effective live-staining dyes can also be limiting, restricting
the visualization of certain cellular components. In addition,
real-time observation of cellular processes in live staining
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may be challenging due to phototoxicity and photobleaching
over extended imaging periods.100 Lastly, the use of multiple flu-
orophores can lead to spectral cross talk between fluorescence
channels, potentially resulting in misleading results and compli-
cating image analysis. These challenges hinder the acquisition
of reliable longitudinal data, which is often crucial for studying
the effects of drug exposure over time.101

4.2 DL for Cellular and Subcellular Imaging

Recently, research has proposed the use of DL as an alterna-
tive to conventional physical staining methods to mitigate
inherent problems. These works suggest replacing physical
staining and fluorescence microscopy with a neural network
that generates virtual fluorescence-stained images from unla-
beled samples.

Virtual cell staining has been achieved from various imaging
modalities, including phase contrast,55,102 QPI,103 and holo-
graphic microscopy.104 Moreover, recent studies have shown that
bright-field images, despite their limited detail, contain suffi-
cient information for a CNN to reproduce different types of
staining.

For example, Ounkomol et al.105 introduced a CNN-based
framework to map the relationship between paired 3D bright-
field and fluorescence live-cell images for various key subcel-
lular structures (e.g., DNA, cell membrane, nuclear envelope,
and mitochondria). Each cellular component is modeled sepa-
rately, with a U-Net trained independently for each one. The
training process minimizes the mean-squared error between
the ground-truth fluorescence image and the predicted image.
Once trained, these models can be combined, allowing a single
3D bright-field input to generate multichannel, integrated
fluorescence images across multiple subcellular structures.
Particularly advantageous, the training data require relatively
few paired examples (solely 30 pairs per structure), lowering
the machine-learning entry barriers.

The work by Helgadottir et al.54 offers yet another compel-
ling example of the potential of virtual staining of cellular
structures from bright-field images. Similar to other ap-
proaches, this method relies on a modified version of the
U-Net to learn the cross-modality mapping. However, it enhan-
ces the reconstruction accuracy by incorporating GAN-based
training.

GANs have become a widely adopted framework in virtual
cell staining due to their capacity to generate high-quality, real-
istic images.54,55,102–104 Particularly, Helgadottir et al. employed a
conditional GAN to virtually stain lipid droplets, cytoplasm, and
nuclei from bright-field images of human stem-cell-derived adi-
pocytes. The generator network, a U-Net, processes a stack of
bright-field images captured at multiple z positions and gener-
ates virtually stained fluorescence images. The architecture fea-
tures three independent decoding paths, each dedicated to one
cellular component, to effectively decorrelate the features asso-
ciated with the predicted fluorescence images. The discrimina-
tor, a CNN, is trained to distinguish between the synthetically
generated virtual stains and actual fluorescently stained samples
(conditioned on the input bright-field image). These two neural
networks are trained simultaneously until the generator can fool
the discriminator by producing images that closely mimic real
fluorescence [Fig. 4(a)]. An interesting feature of Helgadottir’s
method is its robustness and rapid convergence; the neural

network requires relatively few epochs to quantitatively repro-
duce the corresponding cell structures [Fig. 4(b)].

While GANs have proven effective in enhancing the perfor-
mance of virtual staining networks for various applications,
they rely on co-registered input and ground-truth images.
Nevertheless, obtaining perfectly co-registered training pairs
is often challenging due to the rapid dynamics of biological
processes or the incompatibility of different imaging modalities.
To address this limitation, Li et al.55 introduced unsupervised
content-preserving transformation for optical microscopy
(UTOM). This approach utilizes a CycleGAN to transform
images between domains without requiring paired data. Unlike
traditional GAN models, CycleGANs employ two generator-
discriminator pairs, one for each domain, to learn bidirectional
mappings between imaging modalities [Fig. 4(c)]. UTOM has
been applied, among other examples, to the virtual staining of
phase-contrast images of differentiated human motor neurons,
notably delivering competitive performance compared to a CNN
architecture trained on paired samples under supervision despite
the lack of paired training data [Fig. 4(d)].

Importantly, although the architecture and training of the
neural network play a decisive role in the performance of virtual
staining models, the input imaging modality must capture
sufficient contrast of the different cell structures, providing the
network with enough information to learn the transformation to
the desired high-contrast, high-specificity fluorescently stained
samples.

Recent research has centered on the development of optical
systems that capture the rich structural details of cells and
embed inductive bias within the network to enhance its perfor-
mance. For instance, Cheng et al.106 profited from the rich struc-
tural information and high sensitivity in reflectance micro-
scopy to boost the performance of virtual staining models.
Specifically, the authors employed an LED array reflectance
microscope to acquire co-registered label-free reflectance and
fluorescence images.107 This platform collects four dark-field
reflectance images using half-annulus LED patterns oriented
in different directions (top, bottom, left, and right). These mea-
surements derive two dark-field reflectance differential phase
contrast (drDPC) images computed along orthogonal orienta-
tions [Fig. 4(e)]. Interestingly, the oblique illumination dark-
field and drDPC images provide complementary contrast
information. While raw dark-field images highlight subcellular
structures, such as nuclei, nucleoli, and hyperreflective areas
near the nuclear periphery, the drDPC images emphasize cell
membranes with clearly defined boundaries. These images serve
as multichannel input for the virtual staining model, which,
boosted by the enhanced resolution and sensitivity in the back-
scattering data, provide a reliable prediction of subcellular
features [Fig. 4(f)].

In a similar vein, Cooke et al.108 proposed incorporating a
physical model of the experimental microscope into the virtual
staining model. This approach utilizes a CNN which incorpo-
rates a “physical layer” representing the microscope’s illumina-
tion model. Consequently, during training, the network learns
task-specific LED patterns that significantly enhance its ability
to infer fluorescence image information from label-free trans-
mission microscopy images. This work, in particular, further
underscores the importance of rich input data and highlights
the potential combination of programmable optical elements
and physics-informed DL to open new possibilities for explor-
ing the structure and function of cells.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Virtual cell staining using DL. (a) Helgadottir et al. introduced a cGAN to virtually stain lipid
droplets, cytoplasm, and nuclei using bright-field images of human stem-cell-derived fat cells
(adipocytes). The U-Net-based generator processes bright-field image stacks captured at various
z positions to generate virtually stained fluorescence images. A CNN-based discriminator is
trained to differentiate between the virtually generated stains and real fluorescently stained sam-
ples, conditioned on the input bright-field image. (b) The virtual staining of lipid droplets (green
channel) and cytoplasm (red channel) exhibits a high degree of fidelity, as evidenced in the fine
details of the lipid droplet internal structure and the enhanced contrast among distinct cytoplasmic
components (highlighted by the arrows). Panels (a) and (b) adapted from Helgadottir et al.54

(c) Unsupervised cross-modality image transformation using UTOM. Two GANs, G and F, are
trained concurrently to learn bidirectional mappings between image modalities. The model incor-
porates a cycle-consistency loss (Lcycle) to ensure the invertibility of transformations, while a
saliency constraint (Lsc) preserves key image features and content in the generated outputs.
(d) UTOM achieves performance comparable to a supervised CNN trained on paired samples,
without requiring paired training data. Panels (c) and (d) adapted from Li et al.55 (e) Co-registered
label-free reflectance and fluorescence images acquired using a multimodal LED array reflectance
microscope. (f) Multiplexed prediction displaying DNA (blue), endosomes (red), the Golgi appa-
ratus (yellow), and actin (green). Zoomed-in views, with white circles, highlight representative cell
morphology across different phases of the cell cycle. Adapted from Cheng et al.106
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5 Molecular Imaging
One of the most significant advancements in molecular imaging,
which involves the optical imaging of single biological mole-
cules at micro- and nanoscales, has been the introduction of
fluorescence microscopy techniques.3 However, unlike in tissue
and cellular imaging, the lack of viable techniques for studying
molecules without fluorescence currently prevents virtual stain-
ing in molecular imaging. Rather, the focus of cross-modality
transformations in molecular imaging typically revolves around
superresolution microscopy aiming to surpass diffraction-
imposed limits in imaging molecules.16 Traditionally, achieving
such high resolutions requires either expensive microscopy
setups with specialized objectives, complex numerical estima-
tions of the imaging process, or specific fluorophores.109

Nevertheless, recent research has indicated that DL-based ap-
proaches using generative learning (Sec. 2) can enhance the res-
olution of images captured with ordinary objectives, comparable
to those obtained with costly specialized objectives. Further,
DL-driven cross-modality transformations have demonstrated
the ability to achieve superresolution across various microscope
modalities.16,110–112 In this section, we first survey the physics
underlying the spatial resolution limitations and the subsequent
methods for achieving superresolution, aiming to overcome
these constraints. Thereafter, we present an overview of the rel-
atively recent work in applying DL techniques to transform im-
ages into their superresolved counterparts, particularly focused
on, but not limited to, applications in molecular imaging.

5.1 Physics of Superresolution Microscopy

When light from a point-like light source (an object with diam-
eter D1) traverses a lens, it undergoes diffraction, producing a
characteristic pattern known as the Airy disk. This pattern com-
prises a bright central region surrounded by concentric rings of
diminishing intensity (D2). The Airy disk represents the small-
est focal point achievable by a light beam. Below the object
and Airy disk representations, corresponding intensity plots
illustrating the point spread functions (PSFs) are displayed. As
Airy patterns reach a point of significant interference, causing a
reduction in contrast, they merge, becoming indistinguishable
and limiting the spatial resolution. Spatial resolution, the short-
est physical distance between two points within an image,
stands out as the single most important feature in optical
microscopy.113 The primary constraints affecting the achievable
spatial resolution stem from an intrinsic phenomenon of diffrac-
tion physics. Regardless of lens quality or optical component
alignment, a microscope’s resolution ultimately correlates

with the wavelength of the detected scattered light and inversely
with the numerical aperture (NA) of its objective. This relation-
ship is shown in Fig. 5(a), where light from the sample traverses
an objective to the image plane, generating a fundamentally lim-
ited diffraction pattern known as a PSF. The PSF inherently
limits the minimal distance between two discernible points in
the sample, shown in Fig. 5(b). The full width at half-maximum
of a PSF in the lateral directions can be approximated as
FWHM ¼ 0.61 λ

NA
, where λ represents the light’s wavelength,

and NA denotes the numerical aperture of the objective.
Thus, for a typical oil immersion objective with NA ¼ 1.4,
the resulting PSF has a lateral size of 200 nm and an axial size
of 500 nm, effectively restricting the resolution to this range
for visible-light studies.114 Comparing these scales with those
depicted in Fig. 1, it becomes evident that the diffraction limit
rarely poses a challenge in most imaging at organ, tissue, or
even cellular levels. However, in cellular exploration, where
subcellular and molecular structures are of interest, issues re-
garding diffraction limits become prominent. These issues are
exacerbated by the typically dense distribution of molecules
and subcellular structures, causing their PSFs to overlap, thus
blurring many intricate details together. Hence, the development
of superresolution techniques that surpass the diffraction limit
becomes imperative for further exploration of these structures
using noninvasive optical light. Various microscope techniques
have been developed to overcome this limitation, including
single-molecule localization microscopy (SMLM) methods,
such as STORM,115 photo-activated localization microscopy
(PALM),116 and fluorescence photoactivation localization
microscopy.117 Other methods of transcending the standard
resolutions of microscopes exist, including complex numerical
estimations of point spread (transfer) functions seeking to
estimate the diffraction behavior, illumination pattern engineer-
ing methods reducing the PSF size,118 as well as specialized
fluorophores.109 However, these approaches pose their own
challenges, including complex and multivariate dependencies
on imaging conditions, making solving diffraction integrals of
PSFs exceedingly difficult for practically relevant systems,119

as well as increased costs associated with the aforementioned
fluorophores.120

In recent years, another promising avenue for achieving
super-resolution has emerged as a consequence of the astound-
ing growth and success of DL-based computer vision algo-
rithms. Analogous to the cross-modality transforms mentioned
above, the DL approach to superresolution involves training
neural networks to transform one imaging modality (regular-
resolution images) to another (superresolved images). Some of
these approaches utilize generative learning, effectively learning

Fig. 5 Superresolution physical principles. (a) Illustration of the PSF resulting from imaging object
of diameter D1 below the diffraction limit of an optical system, leading to an image of diameter D2.
(b) Low-resolution image of simulated emitters alongside ground-truth emitter positions. Image
reproduced with permission from Ref. 56.
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the complex interpolation function between regular- and super-
resolved images, or through direct supervised learning, for ex-
ample, by estimating the positions of underlying diffraction-
limited emitters. The specific techniques for training these net-
works vary considerably across applications, as elaborated upon
further below.

5.2 DL for Superresolution Microscopy

In general, DL for superresolution can be categorized into two
approaches, each with two learning paradigms. The first ap-
proach aims to enhance resolution by training end-to-end, di-
rectly transforming low-resolution images into high-resolution
ones. This can be achieved through supervised learning, using
pairs of simulated or experimentally measured images from the
same sample at different resolutions to train neural networks,
or through unsupervised learning, where only low-resolution or
high-resolution images are obtained, either experimentally or
through simulations. The other approach seeks resolution en-
hancement by training a network to output the position of each
individual molecule (or equivalent scattering object) within an
image, and then reconstructing the high-resolution image from
these positions, thus transcending the diffraction limits. This ap-
proach can also be trained either in a supervised or unsupervised
fashion. A summary of the different models and their character-
istics can be found in Table 1 in Sec. 6 guidelines. Once such
a network is trained, it can swiftly generate high-resolution
images without the need for parameter adjustment, yielding an
efficient algorithm for improving image resolution within a
specific modality.121–126

5.2.1 End-to-end superresolution mapping

One common approach for supervised end-to-end low- to high-
resolution mapping involves pre-upsampling the low-resolution
image using a traditional upsampling interpolating algorithm,
followed by training a CNN to refine the upsampled image until
accurate superresolution is achieved. This approach, initially
implemented for single-image superresolution,127 has been used
in various biological applications, such as enhancing the reso-
lution of magnetic resonance (MR) images128–132 and X-ray com-
puted tomography (CT) images.133

Another approach is to apply superresolution to the image
after it undergoes computationally intensive CNN layers. This
reduces the overall computational burden, as most of the
computations are performed on low-resolution images. This ap-
proach, known for its efficiency, was first introduced by Dong
et al.134 and has also been applied in various biological contexts,
including superresolution of X-ray images,135 endoscopy im-
ages,136,137 cardiac images,138 and MR images.131

A different strategy for end-to-end low- to high-resolution
mapping involves iteratively up- and downsampling the image
using downsampling convolutional layers and upsampling
transposed convolutional layers. This technique utilized in
the “back projection” networks presented by Harris et al.,139 in-
corporates an error feedback mechanism for projection errors at
each iteration stage. Each up and downsampling stage is mutu-
ally connected through concatenation, reflecting the mutual
dependence of low- and high-resolution image pairs, for which
the authors demonstrated yield superior results across multiple
data sets, as outlined in Table 1 in Sec. 6 guidelines. This ap-
proach has also been applied in various biological applications,
such as transformation of CT scan brain images into higher-

resolution MRI images140,141 for the detection of multiple
sclerosis142 and Alzheimer’s disease,143 as well as cardiac MRI
scans,144 and 3D scans.145

Yet another approach involves sequentially upsampling low-
resolution images in several separate steps using separate mod-
els, as introduced by Lai et al.146 This approach offers two main
benefits. First, it allows the user to choose desired resolutions
for their high-resolution images without retraining models.
Second, it simplifies the learning task for individual networks,
since their task is simpler than performing full superresolution
in a single feedforward pass. This may potentially improve the
performance of the final models.

5.2.2 Specific architectures and methods

Although the generic approaches mentioned above can result in
a practically infinite variety of specific architectures, many
significant superresolution studies in molecular microscopy
have been achieved using a small number of named architec-
tures. Structured feature superresolution microscopy model
architecture, shown in panels of Fig. 6 as an example, allows
for precise live-cell imaging with high spatial and temporal
resolution to continuously monitor subcellular dynamics over
extended periods. Among these, ANNA-PALM,60 a U-Net
based cGAN trained solely with experimental data, stands
out; Deep-STORM,56 based on a CNN encoder–decoder net-
work trained with simulated data; and smNet,57 which directly
outputs molecule location, dipole orientation, and wavefront
distortion from complex and subtle features of the PSF. In
single-molecule superresolution microscopy, there is generally
a trade-off between throughput and resolution. To construct a
high-quality superresolution image, a large number of mole-
cules need to be localized with high precision, requiring suffi-
cient localizations before sampling a structure of interest.

ANNA-PALM accomplishes this by training on a set of
blinking single molecules from which a high-quality superreso-
lution image can be experimentally acquired. A subset of these
frames is used to generate a (low-quality) “sparse” superresolu-
tion image, which, alongside the diffraction-limited image and
information about the imaged structure, serves as inputs into
ANNA-PALM. The output, or label, is the full superresolution
image reconstructed using all frames. Once trained, ANNA-
PALM demonstrated the ability to provide high-quality results
in imaging mitochondria, the nuclear core complex, and
microtubules60 at significantly higher speeds than conventional
methods.

ANNA-PALM has proven to be a valuable method for accel-
erating the acquisition of high-density superresolution images
by several orders of magnitude. However, there are many other
DL models more appropriate for direct single-molecule locali-
zation. An important early model for this is Deep-STORM,
developed for the acquisition of superresolution images of
microtubules with single or multiple overlapping PSFs. While
non-DL algorithms exist for this purpose,148 they typically suffer
from high computational costs and require sample-specific
parameter tuning. Deep-STORM, an encoder–decoder CNN
trained on simulated images, consists of simulated PSFs in
various positions in an image on top of experimentally relevant
background levels. Said simulated images are thereafter up-
sampled by a constant factor, constituting a superresolution im-
age. These two versions of the same image are fed as input and
output, respectively, to Deep-STORM during training. Such a
model has been used to superresolve images of microtubules

Hassan et al.: Cross-modality transformations in biological microscopy enabled by deep learning

Advanced Photonics 064001-10 Nov∕Dec 2024 • Vol. 6(6)



and quantum dots,56 and inspired works on localizing high-
density ultrasound scatterers149 and Crispr-CAS-protein-DNA
binding events.150

Another impactful model is the aforementioned smNet, which
similarly employs a (ResNet-inspired) CNN trained on simulated
images for superresolution. The key distinctions lie in the image
recreation of 3D images and the network’s outputs of the 3D
coordinates and orientations of PSF-convoluted emitters from
which the superresolution image can be reconstructed. smNet
has been demonstrated to localize highly astigmatic single-mol-
ecule PSFs in experimental images of significantly higher quality
compared to conventional Gaussian fitting methods.57 This ap-
proach, reminiscent of DeepLoco,151 was developed around the
same time and trains NNs to reconstruct simulated emitters in
3D through well-defined mathematical models of astigmatic
PSFs. Other related examples of 3D superresolution are that of
Zhou et al., who used a dual-GAN framework to directly super-
resolve images of mouse brains and bodies taken with fluores-
cence microscopy,152 or Zhang et al.153 and Zelger et al.,154 who
used a U-Net-based and CNN-based approach, respectively, for
superresolution in SMLM.

For images with higher PSF density, Speiser et al. introduced
the method known as DECODE.58 This architecture consists of

a stack of two U-Nets, where the first U-Net processes a feature
representation of a single frame, and the second U-Net proc-
esses feature representations of consecutive frames. The output
of this method consists of several channels, each containing in-
formation in each pixel of the input image regarding (1) the
probability of containing an emitter, (2) its brightness, (3) its
3D coordinates, (4) its background intensity, and (5) epistemic
uncertainty of its localization and brightness. In the work of
Speiser et al.,58 this architecture is trained on simulated PSFs
with a loss function connected to all five aforementioned types
of pixel-level information and has been successfully applied to
microtubules in conditions of low light exposure and ultrahigh
sample densities.

5.2.3 Superresolution by emitter localization

Further, there are DL methods revolving around improving the
precision of localizing underlying emitters in images. This is
particularly relevant in SMLM imaging, where spatial resolution
of the microscope is in practice directly correlated with the
localization precision of single molecules.155 Since this localiza-
tion is normally enabled by conventional heuristic-based fitting
algorithms, using DL methods may enhance its performance.
BGNet59 is one such architecture, designed to accurately identify

Fig. 6 Superresolution applied architecture. The superresolution network enhances image res-
olution by training on pairs of simulated low-resolution (LR) and high-resolution ground-truth im-
ages or on wide-field (WF) and STORM images from a STORM microscope. First, the LR/WF
image undergoes preprocessing through a subpixel edge detector to generate an edge map, both
of which serve as inputs to the network. Training is guided by a multi-component loss function that
incorporates the combination of multiscale structure similarity index measure and mean absolute
error loss (MS-SSIM L1) to capture pixel-level accuracy between the superresolution (SR) and
ground-truth/STORM images through multiscale similarity and mean absolute error, perceptual
loss to assess feature map differences via the visual geometry group network, adversarial loss
using a U-Net discriminator to differentiate ground-truth/STORM images from SR images, and
frequency loss to compare differences in the frequency spectrum between SR and ground-
truth/STORM images within a specific frequency range using the fast Fourier transform function.
This comprehensive loss function helps the superresolution network model achieve precise and
perceptually accurate superresolution imaging. Image adapted from Chen et al.147
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the centroid of a PSF. It achieves this by training on (simulated)
corrupted PSF images and outputting the background of the im-
age. A trained BGNet can then be used to correct the back-
ground of a given image at inference time by subtracting its
predicted background. Thus, one obtains background-corrected
PSF images, which can be fed into conventional maximum
likelihood estimation-fitting algorithms for superresolution,
thereby enhancing the overall final output without the need to
replace the entire analysis pipeline with an end-to-end DL-based
system.

5.2.4 Extracting additional information from PSFs

Further, DL methods aim to extract more information from PSFs
themselves.10,147,156–160 PSFs contain often unexploited informa-
tion, such as emission wavelengths, as well as lateral and axial
location and identity of emitters. Many deep architectures,
including smNET, have been developed to exploit this. smNet
outputs not only 3D localization of emitters but also their ori-
entation and wavefront distortions. Another notable architecture
is DeepSTORM3D,10 following the original Deep-STORM,
which can identify the location of emitters with multiple over-
lapping PSFs in highly dense conditions over a large axial
range by combining information from multiple 3D PSFs.
DeepSTORM3D consists of two components: an image forma-
tion model and a decoder CNN. The former takes simulated 3D
emitter positions as input and outputs their corresponding low-
resolution CCD image, while the latter tries to recover the si-
mulated emitter positions given the low-resolution CCD image.
The difference between simulated and predicted positions is
then used to optimize the phase mask in the Fourier plane and
recovery CNN parameters in tandem. This architecture was used
by Nehme et al.10 to superresolve mitochondria and enable the
volumetric imaging of telomeres within cells. Further, there are
architectures157,158 to classify the color channels of individual
PSFs. Hershko et al.158 exploited the chromatic dependence of
the PSF to train a CNN architecture to determine the color of
an emitter from a gray-scale camera image from a standard fluo-
rescence microscope.

The progress in DL for superresolution has been astounding
in the past half-decade, driven mainly by different forms of
CNNs trained in GANs through supervised learning. More re-
cently, there are highly promising developments in few-shot,161

single-shot,162 zero-shot learning163 and even untrained neural
networks for image superresolution.164 Diffusion models have
also shown significant promise in improving the fidelity and ro-
bustness of image superresolution methods.165–168 Diffusion
models represent a recent approach in generative modeling.
These models utilize probabilistic generative techniques in a
two-step process: forward diffusion, where noise is iteratively
added to images until they become pure Gaussian noise, and
reverse diffusion, where images are iteratively denoised using
a neural network. By conditioning the reverse diffusion process,
diffusion models effectively handle image-to-image transforma-
tion tasks.21 While these models can produce higher-quality im-
ages compared to GANs, they come with significantly higher
computational costs.

Recently, they have been used to generate superresolution
images of microtubules,169 reconstruct authentic images with un-
seen low-axial resolutions into high-axial resolution of 3D mi-
croscopic data,170 and outperform state-of-the-art in high-fidelity
continuous image superresolution.171 Thus, these advancements

suggest that the field will continue to progress significantly in
the near future.

6 Guidelines
This section provides detailed recommendations for developing
cross-modality transformation models in microscopy, with
an emphasis on data quality, model architecture selection, and
evaluation metrics. Researchers can use this as a framework to
navigate the key decisions and challenges associated with
their tasks.

6.1 Data Quality, Augmentations, and Data
Normalization

The quality of data plays a critical role in determining the per-
formance of DL models. Two major issues commonly affect
model quality: insufficient data to capture the variability within
the data set or training data that fail to represent the conditions
under which the model will be applied.

To detect the issue of insufficient data, a standard approach is
to set aside a validation set that the model never sees during
training. If the model’s performance on this validation set is sig-
nificantly worse than on the training set, it likely indicates a lack
of sufficient training data to generalize effectively. A common
practice is to allocate ∼20% to 30% of the data set as a valida-
tion set. However, it is important to ensure that the validation
set is maximally decorrelated from the training set to avoid mis-
leading results. For example, it is ideal to sample from different
locations in the sample or even from entirely different experi-
mental videos. A poor sampling strategy, such as selecting every
fifth frame from the same video, would introduce a high corre-
lation between the training and validation sets, resulting in
overly optimistic performance estimates.

If detected, data scarcity can be mitigated by data augmen-
tation techniques to synthetically increase the diversity of
training data. Techniques such as geometric transformations
(rotation, scaling), noise injection, and intensity variation can
simulate a broader range of conditions. However, care must
be taken to ensure that these transformations can be meaning-
fully applied across modalities. For instance, intensity variations
in quantitative phase contrast imaging hold physical signifi-
cance and altering them synthetically could distort biologically
relevant information. Geometric translations, in most cases, pro-
vide limited benefit, as convolutional models are inherently
translation-equivariant. However, if the chosen model breaks
translation equivariance (such as vision transformers), they may
be useful.

Regularization techniques also play an essential role in im-
proving model robustness, especially when data are scarce or
noisy. Methods, such as dropout, weight decay, or L2 regulari-
zation, are commonly used to prevent overfitting by penalizing
overly complex models that may fit noise in the data rather than
in underlying patterns. In scenarios where the model could
easily memorize the training data, these techniques ensure that
the model learns generalizable features rather than artifacts spe-
cific to the training set. Advanced regularization techniques,
such as Bayesian regularization, can further improve robustness
by incorporating uncertainty into the model’s predictions, mak-
ing it especially useful in tasks where noisy or variable data are
expected.

Transfer learning offers another potential solution to address
limited data availability. Pretrained models, especially those
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trained on large data sets from similar domains, can be fine-
tuned to perform specific tasks in microscopy. By leveraging
features learned from related tasks, transfer learning reduces
the need for extensive training data while still allowing the
model to generalize effectively. This approach not only speeds
up training but also improves the model’s performance on
smaller, domain-specific data sets. In some cases, transfer learn-
ing from pretrained models in related fields, such as medical
imaging, can be more effective than starting from scratch, espe-
cially in scenarios where biological structures share visual char-
acteristics across different imaging modalities.

When the training data are nonrepresentative, this issue can
be identified by observing a drop in model performance under
real-world conditions, even though the performance on the val-
idation set remains strong. This discrepancy often arises due to
variations in optical systems, sample preparation protocols, or
environmental factors that differ from those present in the train-
ing data. For instance, subtle differences in microscope settings,
sample staining techniques, or even temperature can cause a
shift in the data distribution, leading to poor generalization
when the model is applied in different scenarios.

The primary strategy to address issues of representativeness
is through effective data normalization. Normalization tech-
niques aim to reduce variability in the data by standardizing
features across data sets, such as intensity scaling, contrast
adjustment, or color normalization. This can help minimize dis-
crepancies between data sets generated under different condi-
tions. However, caution must be taken in modalities where
quantitative relationships between intensity values are critical.
In such cases, aggressive normalization may disrupt important
mappings between intensity and biological features, potentially
degrading the model’s ability to learn meaningful cross-modal-
ity transformations. Furthermore, domain adaptation techniques
can be employed to align the distributions of training and
application data, improving the robustness of the model across
diverse conditions.

6.2 Model Selection

The choice of model architecture can have a significant impact
on the performance of the model and depends on several key
factors, such as data availability, target task, and specific re-
quirements. Here, we give a general guideline for choosing
an appropriate model.

If your data are not aligned, the CycleGAN is recom-
mended. Aligned data refer to cases where each image in
one modality has a direct counterpart in the other modality,
meaning that both images capture the same sample part of
the sample under the same conditions, making it possible to
map pixel-to-pixel relationships between the two. When such
paired data are unavailable, CycleGAN is suitable because it
learns to map between modalities without requiring this strict
correspondence. However, the less restrained training pro-
cedure also is likely to result in the model learning transfor-
mations that are less precise or biologically relevant,
especially when precise quantitative relationships between
modalities are required. Careful evaluation and additional con-
straints may be necessary to ensure that the model’s outputs are
meaningful and accurate.

Assuming your data are paired and aligned, we recommend
starting with a conditional GAN architecture, specifically using
a U-Net-like generator and a spatial discriminator. A well-

established configuration for this setup is the pix2pix model.
Conditional GANs are optimized to generate quantitative,
physically meaningful images by leveraging paired data to learn
a direct mapping between input and output modalities. The
U-Net generator was originally developed for biomedical im-
ages and is one of the most proven and widely adopted archi-
tectures for tasks involving fine-scale structural details. Spatial
discriminators, in turn, evaluate the realism of local regions of
the image rather than assessing it as a whole, often resulting in
more detailed and accurate outputs.

However, depending on the specific requirements of your
task, other architectures may be better suited. For example,
if the goal is simply to enhance the contrast of specific sub-
structures without requiring physical realism in the produced
images, it may be more practical to forego generative models
entirely. In such cases, direct supervised training of a U-Net
can offer a simpler and stabler solution. The drawback of
using a purely supervised U-Net is that it may lack the ability
to generate the nuanced, high-fidelity details that generative
models, particularly GANs, are capable of producing.
However, for applications where interpretability and stability
are more important than photorealism, this trade-off can be
worthwhile.

On the other hand, if maximal photorealism is required, dif-
fusion models are worth considering. These models have con-
sistently been shown to produce highly realistic images, often
outperforming GANs in terms of image quality and stability.
Diffusion models work by iteratively denoising random noise
to generate an image, which allows them to better capture
fine-grained details and complex textures. However, diffusion
models are typically much more computationally expensive,
both to train and to evaluate, compared to GANs. Moreover,
one should be careful not to conflate photorealism with better
quantitative performance on downstream tasks.

Another important consideration is the spatial distribution
of information in the image. The U-Net generator is highly
effective for analyzing local, position-invariant features,
making it ideal for tasks where the meaning of a structure
does not depend on its specific location within the image.
However, for data where the spatial context is crucial, such
as brain scans, attention-based models may be more suitable.
Attention mechanisms allow the model to focus on specific
regions of the image while considering their global relation-
ships, enabling more context-aware analysis. This makes
attention-based architectures a better choice for tasks that re-
quire understanding both local features and their larger spatial
context.

Finally, for more specialized applications, more complex, hy-
brid models may be necessary. For tasks where interpretability is
a priority, incorporating latent-space constraints can improve
both stability and clarity in the results. For example, using a
Wasserstein GAN (WGAN) with a carefully designed loss func-
tion can provide more control over the training process and gen-
erate smoother, more interpretable transformations. In addition,
hybrid models that combine multiple architectures, such as
variational autoencoders (VAEs) with GANs, can provide both
generative flexibility and the ability to impose structural con-
straints, improving the model’s capacity to generate accurate,
interpretable results for complex tasks. In superresolution tasks,
specialized models such as Deep-STORM or DECODE utilize
domain knowledge to far outperform what standard cGANs can
achieve.

Hassan et al.: Cross-modality transformations in biological microscopy enabled by deep learning

Advanced Photonics 064001-13 Nov∕Dec 2024 • Vol. 6(6)



Table 1 Overview of the key parameters for common approaches of DL in microscopy across scales.

Method Architecture Data sets Learning type Significant aspect
Discriminator Generator

Tissue

Conditional GAN
(cGAN)39

CNN U-Net Paired labeled/annotated
images

Supervised Conditioning mechanism based
on the additional input information

CycleGAN35 CNN U-Net Unpaired histology images Unsupervised Cycle-consistency loss enforces
consistency and unsupervised
translation

StarGAN40 PatchGAN U-Net/
ResNet

Unpaired images of tissue
structures from multiple
domains

Unsupervised Unified architecture for a single
model across multiple domains

Cellular and subcellular structures

Conditional GAN
(cGAN)54

CNN U-Net Paired images from
fluorescence, confocal
electron microscopy

Supervised Conditioning mechanism based
on the additional input information

CycleGAN55 CNN U-Net Unpaired images of bright-
field, phase-contrast,
fluorescence, and DIC
microscopy

Unsupervised Cycle-consistency loss enforces
consistency and unsupervised
translation

Molecular structures

Deep-STORM56 Encoder–decoder CNN Fluorescent images from
techniques like STORM,
PALM, or dSTORM

Supervised,
labeled

Trained on simulated data to
enhance resolution in SMLM,
enabling superresolution imaging
of molecular structures with
improved accuracy

smNet57 ResNet-inspired CNN Fluorescent images from
techniques such as
STORM, PALM, or SIM

Supervised,
labeled

Simulated PSFs and ground-truth
3D position labels training,
accurately localized astigmatic
single-molecule PSFs

DECODE58 Stack of two
U-Nets

Images captured via
optical diffraction
tomography

Supervised,
labeled

Stacked U-Net to process
single and consecutive frames,
improved accuracy, and
resolution under low-light
conditions

DeepSTORM3D10 Encoder–decoder CNN Simulated images of
fluorescent emitters
noise, and optical
properties of the
microscope with known
positions, including PSFs,
background

Supervised,
labeled

Image formation model and
decoder CNN to pinpoint 3D
emitter coordinates from
simulated PSFs, enabling high-
resolution volumetric molecular
imaging

BGNet59 CNN Fluorescent images from
fluorescence microscopy
or SMLM

Supervised,
labeled

Identifying PSF centroids for
background correction, improving
single-molecule localization and
overall imaging resolution

ANNA-PALM60 U-Net-based
cGAN

Images of photoactivated
single molecules captured
by PALM or STORM

Supervised,
labeled

Trained on experimental data to
rapidly acquire high-density
superresolution images,
especially for mitochondria,
nuclear core complexes, and
microtubules
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6.3 Evaluation Metrics

Evaluating the performance of a cross-modality transformation
model can be challenging. Typical strategies involve measuring
the visual fidelity of the images, but these measures may not
fully correlate with the retention of biologically relevant infor-
mation. Some examples of evaluation metrics include the fol-
lowing.

• SSIM and PSNR: These metrics are simple to calculate
and provide an overall assessment of image quality. However,
they may not capture fine-grained differences in features critical
to biological research.

• MS-SSIM: Multiscale SSIM evaluates image quality at
different scales, which may make it more suitable for capturing
hierarchical structures.

• NIQE: Natural image quality evaluator is a no-reference
metric that measures perceptual quality, making it useful when
ground truth is not available. However, the metric is optimized
for natural images, and its applicability to microscopy images
should be questioned.

• Frequency domain analysis: For specific tasks, such as
superresolution, analyzing the frequency components of an im-
age can give insights into how well high-frequency details are
preserved.

Another approach is to evaluate the biological relevance of
the generated images by performing downstream analyses, such
as cell counting or feature segmentation, and comparing the
results to known quantities or those obtained from real exper-
imental data. This method more directly assesses the retention of
biologically meaningful information, but it introduces addi-
tional uncertainties. For example, inaccuracies in the down-
stream task, such as errors in the cell-counting algorithm, can
confound the evaluation of the model’s performance, making
it difficult to disentangle the model’s contributions from errors
in postprocessing or analysis pipelines.

6.4 Ethical Considerations

Ethical considerations are essential for ensuring responsible and
fair use of AI in the image analysis of biological samples. A key
concern is protecting the privacy of patients and donors, as
these samples often contain sensitive personal information.
Handling biological samples must comply with data protection
laws, which require informed consent from all parties involved
and transparency about how the samples will be used. These
laws vary by region, with the General Data Protection
Regulation (GDPR) in the European Union,172 the Health
Insurance Portability and Accountability Act (HIPAA) in the
United States,173 the Data Protection Act 2018 in the United
Kingdom,174 and the Personal Information Protection Law
(PIPL) in China.175 International efforts, such as those led by
the World Health Organization,176,177 along with national initia-
tives, such as India’s data protection frameworks,178 continue to
evolve these regulations to keep pace with the rapid growth of
AI technologies.179–181 In addition, a growing body of literature
addresses these developments across various countries,182 stages
of database handling,183 and specific fields.184

These regulations address issues such as privacy breaches
due to improper data use and cybersecurity threats.185

Furthermore, the responsibility for AI models used in diagnos-
tics is a major concern, particularly in relation to bias mitigation.
Biased data sets can result in inaccurate or discriminatory

outcomes, especially in healthcare applications. Rigorous vali-
dation of AI models is critical to ensure accuracy, reproducibil-
ity, and the prevention of errors that may lead to misdiagnosis
or flawed scientific conclusions. Transparency is also crucial,
requiring clear documentation of model training, data sources,
usage frameworks, and decision-making processes.186 Guidelines
should promote not only sharing data sets but also the trained
model weights, enabling researchers to independently validate
and replicate findings. Lastly, accountability frameworks are
necessary to ensure that researchers and developers are held
responsible for the ethical use of AI, with proper oversight to
enforce compliance with established guidelines.

7 Perspectives
Cross-modality transformations in biological microscopy
present advanced techniques with important implications for
biology, medicine, and materials science. Although these
advances suggest exciting opportunities where AI is set to in-
crease diagnostic accuracy and improve workflow efficiency,
it still faces ongoing challenges that require innovative solutions
for them to be implicated and come to societal use. Figure 7
summarizes the ongoing developments and potential outcomes
of combining AI with novel imaging modalities.

For example, the synthesis of high-resolution images from
less invasive imaging methods such as MRI and CT scans pro-
vides tissue insights without the need for biopsies,37,49 illustrated
in Fig. 7(a). This approach provides another important advan-
tage: access to living tissue data that can have a significant im-
pact on clinical studies. Similar strategies may also advance
cellular in vitro culture studies in preclinical settings. Such strat-
egies may advance preclinical in vitro cell culture studies in cre-
ating physically relevant environments with 3D settings, such as
promoting cell growth into spheroids or inoculating them on a
microphysiology platform.190 Recent advances of this technology
have enabled co-culture of single or multiple cell types that mimic
closer in vivo conditions by implementing 3D architectures,
fluid dynamics, and the gradient of materials contained in living
tissues. In these environments, extracting probe-free information
on cellular behavior, metabolic states, or migration is currently
not feasible, but may soon be achievable through AI and various
imaging modalities, as presented in the bottom right panel.

It is also likely that new imaging technologies and implemen-
tations with AI will be able to integrate data across scales to
provide unprecedented perspective on diseases at the cellular
and molecular levels, portrayed in Fig. 7(b). This approach
would produce realistic models that combine visual, molecular,
and genomic information. By implementing data from a variety
of modalities, AI will enable a more comprehensive analysis of
biological models including the practical information required
for the diagnosis of complex diseases where tissue morphology
and function are crucial, exemplified in Fig. 7(d). In addition,
longitudinal disease monitoring could be more sensitive,
allowing clinicians to track tissue changes over time, shown
in Fig. 7(c), and tailor treatment responses accordingly. This
possibility extends to the field of transplantation biology, where
the cellular integration, biocompatibility, and biodegradation of
transplanted tissues, synthetic materials, or prostheses can be
monitored over time. In summary, AI-powered tools will enable
faster and more accurate diagnostics with reduced bias, thus
minimizing the time required for human review. Over time,
these advancements have the potential to make high-quality his-
tological analysis more accessible, particularly in areas with
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limited pathology expertise, while also standardizing diagnostic
protocols across institutions.

Beyond diagnostics, AI is already being used to guide
physicians during advanced surgeries, directing the surgeon’s

movements189 with accuracy and precision. Future imaging
cross-modality transformations may facilitate real-time tissue
mapping during surgery, giving surgeons immediate insights
from various imaging techniques, represented in the top right

(a) (b)

(c)

(d)

Fig. 7 Potential application perspectives of AI on biological samples imaging. Current develop-
ments found in the literature are contained in green boxes, while speculative prospects for the
future are contained in yellow boxes. Starting from the top left, AI is extensively used in diagnostics
such as virtual staining and other cross-modality transforms (image in the green panel adapted
from Li et al.187). (a) In the future, this could lead to in vivo analysis of virtual biopsies instead of
performing tissue extraction and preparation. (b) Cross-modality transform could progressively
transition the limits of the different scales outlined in this review. (c) As a consequence of broader
data availability and in vivo imaging, AI models could also transform and predict sample evolution
over time. (d) Further, cross-modality transformations could also become more accessible and be
routinely integrated in the sampling process, obtaining simultaneously different modalities with one
single measurement. In the bottom left panel, these ideas could be integrated in treatment pre-
diction and design for biological samples, leading to personally tailored therapy. The potential of
superresolution to better characterize molecules structures is nowadays used for protein-folding
determination (image in the green panel adapted from Kumar et al.188), but implementing other
information input from different modalities could enhance the reach of our knowledge (centered,
bottom panel). The application of AI extracting cellular information from 3D structures hosted in
increasingly complex in vitro systems that better replicate the dynamic conditions of in vivo sys-
tems (bottom right panel), is highlighted. AI is already implemented in assisted-surgery settings
and equipment (right green panel adapted from Zhang et al.189), which could be greatly improved
by including real-time contrast enhancement and segmentation from cross-modality transforma-
tions. Images in the yellow boxes were created with the assistance of Designer, using DALL·E 3
technology, and BioRender. They have demonstrative purposes and do not hold real scientific
meaning beyond the visualization of the ideas expressed.
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panels. AI-powered methods are also being used in the research
for drug discovery to identify new drug candidates and their po-
tential folding structures,188 as demonstrated in the bottom cen-
tral panels. Subsequent preclinical studies to predict how tissues
will respond to novel treatments could be envisioned using
cross-modality transformations, as seen in the bottom left panel.
In the future, AI may simulate the effects of drugs on a patient’s
tissue, aiding in the development of personalized therapies.
However, challenges remain, including the need for high-quality
multimodal data sets to train AI systems and the development of
interpretable AI models that biologists and clinicians can trust.
In addition, integrating AI into clinical workflows requires care-
ful consideration to ensure these new technologies are used ef-
fectively and ethically by healthcare professionals. Despite these
hurdles, the future of AI in cross-modality transformations in
biology is promising, with profound implications for both bio-
medical research and clinical diagnostics.

8 Conclusions
The incorporation of DL techniques in biological microscopy
represents a significant advancement, with the potential to en-
hance our understanding of histology, cellular structures, and
molecular imaging. While these technologies offer promise,
it is essential to acknowledge that the field is still evolving.
The current state of these methods often involves grappling with
their black-box nature, necessitating further refinement and in-
vestigation. Researchers continue to address challenges related
to interpretability and the need for extensive developments to
unlock the full transformative potential of DL in biological
microscopy. Beyond technological advancement, these methods
offer a paradigm shift by enabling imaging without the reliance
on chemical stains and fluorescence, both simplifying experi-
mental processes and preserving sample integrity. This marks
a pivotal shift in microscopy, offering a noninvasive and la-
bel-free alternative that preserves the integrity of the specimens
under investigation. Cross-modality transformations have a sig-
nificant impact not only in laboratory settings but also in clinical
diagnostics and fundamental biological research, opening new
avenues for discoveries and breakthroughs. Furthermore, these
techniques are becoming more accessible and affordable,
democratizing access to microscopic exploration and empower-
ing researchers across disciplines.
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