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Abstract. We investigate the efficacy of using data reduction techniques to aid classification of terahertz (THz)
pulse data obtained from tumor and normal breast tissue. Fifty-one samples were studied from patients undergoing
breast surgery at Addenbrooke’s Hospital in Cambridge and Guy’s Hospital in London. Three methods of data
reduction were used: ten heuristic parameters, principal components of the pulses, and principal components
of the ten parameter space. Classification was performed using the support vector machine approach with a radial
basis function. The best classification accuracy, when using all ten components, came from using the principal
components on the pulses and principal components on the parameter, with an accuracy of 92%. When less
than ten components were used, the principal components on the parameter space outperformed the other meth-
ods. As a visual demonstration of the classification technique, we apply the data reduction/classification to several
example images and demonstrate that, aside from some interpatient variability and edge effects, the algorithm gives
good classification on terahertz data from breast tissue. The results indicate that under controlled conditions data
reduction and SVM classification can be used with good accuracy to classify tumor and normal breast tissue. © 2012
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1 Introduction

Based on current statistics one in eight women will contract
breast cancer making it the second most common form of cancer
among women and the third leading cause of death from cancer
after lung and colon cancers.! Approximately 70% of women
diagnosed will undergo breast conserving surgery, which entails
removal of the cancer with a view to achieving a microscopic
margin of clearance of 2 mm or more thereby preserving as
much healthy breast tissue as possible.”

Localization of the tissue to be removed is often through
mammography, ultrasound, wire-guided (for impalpable
lesions), intraoperative postexcision imaging, and manual palpa-
tion with the surgeon attempting to cut a clear margin around the
tumor. If, on histologic inspection, diseased tissue is found at the
margin or within 2 mm of the surface of the resected tissue,
current protocol at Guy’s Hospital, London recommends that
patients should undergo a re-excision to ensure adequate clear-
ance of tumor.

Failure to remove the entire cancer with an adequate margin
of normal tissue occurs in about 20% to 30% of cases,’ resulting
in an increased risk of local recurrence unless a second opera-
tion is undertaken to remove additional tissue. This potentially
causes further morbidity, poorer cosmetic result, a delay in
giving adjuvant therapy, increased risk of wound infection, a
potential reduction in survival rates, and increased cost to
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healthcare systems. Thus, there is a clinical need to accurately
define regions of tumor during surgery, to conserve normal tis-
sue, and minimize the number of second surgical procedures.

There are a number of techniques, either in current usage, in
clinical trials, or in the research phase for use preoperatively or
intraoperatively that propose to reduce the number of second
procedures. Hook wires, intraoperative frozen sections, and spe-
cimen x-rays are all used clinically but each has a limitation
typically being a lack of specificity or high cost.? Other techni-
ques are being investigated; for example, spectral reflectance
imaging* and optical coherence tomography> are both optical
based imaging technology that provide unique signatures for
disease but are still very much in the research phase. Terahertz
imaging has also been used to image breast tissue samples from
lumpectomies which have shown good contrast between
diseased and healthy tissues;® in this paper we further explore
the ability of this technique to discriminate between tissue
types.

THz (10'2 Hz) frequency radiation lies between the milli-
meter and infrared regions of the electromagnetic (EM) spec-
trum. The THz regime is typically defined as the range 0.1
to 10 THZ’ or in wavelength, 3 mm to 30 pm. The development
of THz time-domain spectroscopy and imaging has led to com-
mercial systems for use inside and outside the laboratory, which
have found wide applications in security, manufacturing, phar-
maceutical sciences, and nondestructive testing.®!! Early
experiments demonstrated that THz could have biomedical
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applications with images of porcine tissue displaying contrast
between muscle and fat.'> THz imaging has also been used
to reveal contrast between regions of healthy skin and basal
cell carcinoma, the most common form of skin cancer, in
vitro™® and in vivo."* This has led to the development of a
proto-type handheld (intraoperative) THz imaging probe with
potential for use during breast surgery.'>'® Other published
work has shown!? that THz can detect dysplastic changes
(pre-cancer) in excised colon tissue and the THz data have
been correlated to histopathologic images using stains that
show angiogenesis related changes. New blood vessels (angio-
genesis) are known to be “leaky” and thus more interstitial fluid
is present, leading to increased absorption of the THz signal.'®

The purpose of this study was to investigate the feasibility of
using terahertz measurements to differentiate tumor and normal
tissue in freshly excised human breast tissue. Because terahertz
imaging produces large volumes of data, due to the spatial and
temporal components both being recorded, we investigated data
reduction methods prior to classification. THz images have typi-
cally been formed using a range of parameters (or features),
derived from the pulse or spectral profiles.'*! We compare
this heuristic approach to data reduction with an unsupervised
method that has traditionally been used in other areas, principal
component analysis (PCA).>>* PCA is well suited for this pur-
pose as it provides a theoretically optimal linear reduction,
which requires no underlying assumptions about the statistical
nature of the data.® In this study, the PCA method was applied
to the THz pulses directly. However, there is some evidence in
the literature to suggest that PCA may demonstrate improved
performance on discretized data*® compared with the continuous
representation of THz pulses. To investigate this hypothesis and
to aid feature selection in relation to the THz data, we also
applied PCA to the parameter data space as a subsequent method
of data reduction and applied classification to this reduced
data set.

Classification for this study was performed using the support
vector machine (SVM) classification algorithm. This technique
is well suited to finding complicated decision boundaries and
has been used with good effect with THz data sets.””*® SVM
is a relatively recent method® that has been shown to be more
robust and superior at separating higher-order nonlinear features
when compared with methods such as linear discriminate
analysis and partial least squares discrimination analysis.*°

2 Materials and Methods

2.1 Patients and Specimen Preparation

Breast tissue was studied from 51 random, nonconsecutive
patients (patient age range, 39 to 80 years; mean age, 59 years)
undergoing either wide local excision (WLE) or mastectomy at
Addenbrooke’s Hospital in Cambridge and Guy’s Hospital in
London.® Approval for the study was granted by the respective
Research Ethics Committees; signed informed consent, agreeing
to research on tissue removed at the time of surgery, was
obtained from all patients. All samples were fresh at the time
of measurement.

Samples were first inked according to a standard pathology
protocol so that margins could be identified during examination
of the slides. They were then sliced to expose any palpable
lesion; slices were typically >1 cm thick. If there was no palpable
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tumor the specimen was sliced through suspected regions of
tumor identified from the radiographs of the excised sample.

2.2 Data Acquisition

Data from all breast specimens were collected using TPIscan
(TeraView Ltd., Cambridge, UK). The system uses photocon-
ductive methods to generate and detect terahertz pulses in reflec-
tion mode.?! A detailed description of the system is given by
Wallace et al.*> The data were collected over an area that was
typically 20 mm by 20 mm, consisting of 75 X 75 pixels, and
took less than 5 min to acquire. At each pixel position an entire
THz waveform was acquired.

The orientation of the sample on the imaging window and
location of the inked boundaries were recorded and a photo-
graph was taken by a camera within the system so that the THz
image could later be correlated with the histology section. After
imaging, all samples were prepared routinely by being formalin
fixed, wax embedded, and then sliced and mounted onto histol-
ogy slides and stained.

A terahertz impulse function was obtained from each raw
terahertz waveform by deconvolving the system response as
described in Ref. 33. Each impulse function, referred to as a
THz pulse, contained 512 time-domain points which covered
a time range of 33.8 ps.

2.3 Correlation of Terahertz Images with Histology

The histology was read by a pathologist and all areas of pathol-
ogy (tumor, normal tissue, adipose, fibrosis, etc.) were identified
along with inked margins and other landmarks. The histology
was then oriented to the THz images in an image-processing
package so that the areas of pathology could be mapped directly
onto the THz images. An example to demonstrate the orientation
of the terahertz image with histology is given in Fig. 1.

This mapping enabled the regions of the terahertz image to
be identified and grouped as normal, tumor, or alternative
pathologies. Regions of interest within each image were then
applied to extract terahertz pulses with each type of pathology.
These extracted pulses were grouped into a database containing
pulses grouped as normal, tumor, and other pathologies. The
database contained 31,236 pulses from normal tissue and
30,405 pulses from tissue with tumor. These pulses from the
database were used in the subsequent data reduction and clas-

sification algorithms.
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Fig. 1 Correlation of terahertz image with histology. The scale facili-
tates size correction, and inks and photographs enable orientation.
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2.4 Data Dimensionality Reduction and Classification

Given the large numbers of pulses and number of values for each
pulse (512 data points) it was important for the application of
classification techniques to reduce the dimensionality of the data
and the size of the entire data set. Data dimensionality reduction
was explored in two ways. The first method used parameters,
often applied in THz imaging, that were heuristic and based on
characteristics of the terahertz pulse in the time and frequency
domains.”! The second method made use of the well-known
unsupervised method, PCA. Classification, for outputs of all
data reduction techniques was performed using the SVM
classification algorithm.

2.5 Data Reduction Method 1: THz Image
Parameters

THz data can be represented in either the time-domain or,
through Fourier transform, in the spectral domain. The mean
time-domain pulses for the dataset for normal and tumor tissue,
together with their power spectra, are shown in Fig. 2 to illus-
trate the often subtle differences between the two.

Ashworth and colleagues® performed THz spectroscopy
measurements on normal and tumor breast tissue which they
entered into a computer model® to simulate pulses which
showed very similar profiles to those in Fig. 2. It appears
that physical and biochemical changes in the tissue lead to
changes in the dielectric properties that affect the absorption
coefficient and refractive index across the entire frequency
range in such a way that the pulse shape is altered with broad-
ening and retardation after reflection from tumor tissue, when
compared with normal tissue. This is similar to what was
found with THz data from basal cell carcinoma.*®

Parameters can be derived from these pulses that can be used
to characterize the response of the underlying tissue. Hence
parameters that are sensitive to these changes in pulse shape
will be useful in enabling differentiation of tumor from normal
tissue with THz imaging.
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A large number of parameters may be derived from the THz
pulses and spectra based on time or frequency domain charac-
teristics. To reduce this number we used two steps. First we
determined the optimal time and frequency index points at
which these parameters could be evaluated, and secondly we
removed any highly correlated parameters.

To aid analysis and parameter calculation, all pulses were
baseline corrected, and the peaks aligned in time. For the
purposes of parameter definition, the term E;, is defined as
the amplitude at which the pulse is a minimum. All pulses are
aligned in time so that E,;, occurs at the same time in the time
range. The time at which E,;, occurs is defined as Tgpi,
and is identically set to zero as the reference point on the
time-domain axis. All time indices relating to the parameters
are relative to this point unless otherwise specified.

For many of the characteristics, such as the value of the
amplitude of the pulse at a given time, there was a large range
of time or frequency data points at which the parameter could be
evaluated. For example, the amplitude of the pulse at a given
time point could be evaluated at 512 possible time points over
a time range of 33.8 ps. To refine the selection of optimal time
and frequency points for classification, a receiver operator char-
acteristics (ROC) analysis*’~* was performed on the time and
frequency range for each dependent parameter. ROC is a fast
and efficient method for determining the differentiation ability
of each parameter, so it was suitable for determining the optimal
parameters from the large number of time and frequency data.

ROC determines discrimination ability by adjusting the dis-
crimination threshold and plotting, for the range of threshold
values, sensitivity, or true-positive rate (normals classified as
normal), against 1-specificity, which is the false positive rate
(tumors classified as normal). This produces a graph, and the
area under the curve (AUROC), is a measure of the predictive
power of each parameter. The higher the AUROC value the bet-
ter the classification strength of that parameter. To demonstrate
this procedure, Fig. 3 shows the ROC and AUROC for the para-
meter P7; the amplitude of the pulse parameter over a range of

Log Power Spectrum

0 02 0.4 0.6 0.8 1
Frequency (THz)

(b)

Fig. 2 The mean pulses for normal fibrous tissue (black line) and tumor (grey line) in the (a) time-domain and (b) frequency domain.
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Fig. 3 ROC analysis to evaluate the discrimination ability of parameter P7, the amplitude of the pulse at a given time. (a) AUROC values, which are a
measure of the discrimination ability, for the time range around the time at which the pulse is minimum (T ,,;, = 0). From this analysis it can be seen
that the time that gives the largest AUROC is —0.26 ps, hence the amplitude at this time was used as a parameter feature. (b) The ROC curve for

parameter P7 with the time index of —0.26 ps.

time indices. In this way, the best performing time index and
frequency index points were chosen for parameters related to
the values of the pulse or the spectra.

To determine independent parameters, the linear correlation
coefficient was calculated between all parameters and the cor-
related parameters removed, leaving the better performing
parameter, according to the AUROC. The ten remaining optimal
and uncorrelated parameters were then used for classification
with the SVM technique. Table 1 contains the list of parameters
and their descriptions, whereas Fig. 4 illustrates an example
terahertz time-domain pulse and power spectrum, with sections
of the pulse that were curve-fitted by various functions to give
parameters related to aspects of the pulse shape.

The ten parameters (Table 1) were assessed for their indi-
vidual ability to discriminate between normal and tumor

pulse responses by applying the SVM classifier (Table 2).
The values obtained from the SVM, given in Table 2, were
then used to select the order in which parameters were added
to the combinations of parameters that could give better classi-
fication than the individual parameters alone. It is not immedi-
ately obvious in which order parameters should be added in the
subsequent combinations to give the optimal results. To inves-
tigate whether order was important we compared a number of
different combinations. We compared combining two individual
parameters that were the best performing, according to the indi-
vidual SVM results, against combining two that were the worst
performing. The combinations that used the best performing
individual parameters always equaled or outperformed those
using combinations of lower accuracy parameters (results not
shown). With this justification we use the combinations formed

Table 1 Time-domain and frequency domain terahertz parameters for the ten parameter space.

Parameter Expression Feature Description

P1 FWHM Full width half maximum of the absolute magnitude of the pulse, |Eqminl-

P2 W@+t (0.3Emin) to Temin Time width of the pulse from the time at which the pulse amplitude is initially at the fraction
0.3 of Emin to the time Tgy,.

t=0.98 ps . .

P3 -0 E(t) The integral area of amplitude of the pulse from Tgpy, to t = 0.98 ps.

P4 E=ait+a, The intercept, ay, of the linear regression fit from t = —0.26 ps to t = —0.66 ps shown as
section (1) on Fig. 4(a).

P5 E=a +at+as Coefficient a; from quadratic fit of the minimum section of the pulse from t = —0.20 ps to
t =0.20 ps shown as section (2) in Fig. 4(a).

P6 E=Ae? The coefficient 4 from the exponential curve fit to the section (3) on Fig. 4 from t = 0.66 ps
tot=1.31 ps.

P7 A(t=-0.26 ps) Amplitude of the pulse at time index t = —0.26 ps.

P8 PS(f=0.15 THz) Power in spectrum at frequency = 0.15 THz.

P9 Re[FFT(f = 0.15 THz)] Real part of FFT at frequency = 0.15 THz.

P10 Y=aif+a Gradient, a; of linear fit to logarithm of the power spectrum f = 0.15 THz to f = 1.50 THz

as shown in Fig. 4(b).

Journal of Biomedical Optics

016005-4 January 2012 « Vol. 17(1)



Fitzgerald et al.: Classification of terahertz-pulsed imaging data from excised breast tissue

0
c
]
e
< 02} fef
(0] section 1 o
© o
= o
S -0.03 o
S
<C
004 rEmin section 2
005 _ T(Emin) . ‘
-1 0 1 2 3
Time (ps)

(a)

Power Spectrum

Frequency (THz)
(b)

Fig. 4 (a) The sections of the pulse in the time-domain that were fitted with linear (section 1), quadratic (section 2) and exponential (section 3) functions
in the time-domain. Section (1) was fitted with linear regression for parameter P4. Section (2) was fitted with a quadratic for parameter P5, whereas
section (3) was fitted with an exponential for parameter P6. (b) For parameter P10, the log power spectrum was fitted with a linear fit.

by adding the individual parameters in order according to their
classification accuracy from the SVM, starting with the best
performing parameter, and adding one parameter at a time until
all ten parameters were included in the combination. Results for
the combinations of parameters are given in Table 3.

2.6 Data Reduction Method 2: PCA on Database
Pulses

PCA is a well-known unsupervised linear feature extraction
algorithm traditionally used to reduce data dimensionality. It
involves an orthogonal transformation of the feature space to

Table 2 Performance of the SVM on the parameter feature space.

form a set of uncorrelated values with each successive principal
component having the highest variance possible under the ortho-
gonality constraint.

For the purposes of this study the Matlab implementation of
PCA was used (MATLAB 7.7, The Mathworks Inc., Natick,
MA, 2008). PCA was applied to the database of tumor and nor-
mal pulses. Combinations of the projections in the principal
components were then used for classification with the SVM.
The first combination used only the first principal component,
the second combination used the first two principal components,
and so on, up to the tenth combination which used the highest
ten principal components. Results for the SVM classification on

Table 3 Performance of the SVM on combinations of parameter
features for method 1.

Correctly classified (%)

Correctly classified (%)

Parameters Normal Tumor Total Parameters Normal Tumor Total

P1 59.1 78.0 68.7£0.3 Best 1 75.2 64.1 70.2+0.3
P2 56.3 80.3 70.2+0.3 Best 2 65.6 77.6 71.9+£0.3
P3 60.4 67.8 64.9+0.3 Best 3 70.3 78.0 74.1+£0.3
P4 66.8 65.6 66.6£0.3 Best 4 79.5 75.2 78.4+0.3
P5 75.9 60.2 67.3+0.3 Best 5 82.3 76.8 79.9+0.3
P6 33.5 85.9 64.1 £0.3 Best 6 85.5 80.0 82.44+0.2
p7 727 62.7 69.0+0.3 Best 7 85.1 81.9 83.7+£0.2
P8 93.6 425 63.8+0.3 Best 8 84.8 83.6 85.1+£0.2
P9 90.3 45.3 64.0+0.3 Best 9 89.1 86.2 87.8+0.2
P10 56.1 78.1 69.1+£0.3 Best 10 90.6 89.1 90.2+0.2
Journal of Biomedical Optics 016005-5 January 2012 « Vol. 17(1)
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Table 4 Performance of the SVM with increasing numbers of

Table 5 Performance of the SVM on the PCA parameter space for

principal components from the time-domain THz pulses for method 2. method 3.

Correctly classified (%) Correctly classified (%)
PC pulse Total contribution PC pulse Total contribution
combinations  to variance (%) Normal  Tumor Total combinations  to variance (%) Normal  Tumor Total
Tto1l 36.3 64.9 68.4 66.7+0.3 1to1 66.5 64.9 740 70.1+0.3
1102 58.5 76.1 656 71.0+0.3 1102 90.3 73.1 777 747 +0.3
Tto3 70.9 81.8 70.8 78.6+0.3 1to3 97.4 80.8 79.1  80.2+0.3
1104 77.8 84.7 732 794+03 Tto4 98.4 85.3 80.0 82.8+0.2
Ttob 82.3 85.4 789 81.9+0.2 Ttob 99.3 86.0 83.4 852402
1to 6 85.2 86.1 82.0 83.6+0.2 1tob 99.9 87.6 855 86.3+0.2
Tto7 87.4 87.8 874 87.4+02 Tto7 99.9 91.4 878 89.7+0.2
1to8 89.0 87.5 89.5 89.2+0.2 1to8 99.9 91.0 89.7 90.1+£0.2
1t09 90.5 90.1 89.7 90.0+0.2 1t09 99.9 91.7 89.3 91.3+0.2
11010 91.5 91.8 919 91.9+0.2 11010 100.0 92.1 90.3 91.9+0.2

these ten combinations of principal components are given in
Table 4.

2.7 Data Reduction Method 3: PCA on Parameter
Feature Space

With method 1, although we combined parameters in the order
according to the individual accuracy from the SVM, there was
no obvious optimal order in which to combine them. To inves-
tigate if there is a better grouping based on variation under
the orthogonality constraint, we applied the PCA to the ten
parameter space described in method 1. There is evidence in the
literature to suggest that PCA performs better on discrete data,
such as the parameter feature space, compared to time-domain
waveforms such as the pulses used in method 2.%° Combinations
of the principal components (PCs) from the highest 10 PCs were
used for the SVM classification in the same manner as method 2.
Results for the SVM classification on the PCs of the parameter
space are given in Table 5.

2.8 Classification of TPI Data by SVM

All classification was performed using the SVM algorithm to
find decision boundaries between the classes in the reduced
dimension feature spaces. This nonlinear classification function
uses an iterative method to maximize the margin between the
classes with an estimated optimal boundary by selecting a mini-
mum number of support vectors.*’

For SVM classification in this study we used the Matlab
implementation developed by the researchers at the National
Taiwan University*' with the radial basis function. The kernels
and coefficients were optimized by grid search for each of the
methods, giving optimized cost and gamma coefficients of 32
and 128, respectively for methods 1 and 3, the parameter space
and PCA of the feature space; and 8 and 8 for method 2, the
PCA on the pulses.

Journal of Biomedical Optics
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The SVM was trained on 75% of the normal and tumor data-
base pulses, randomly selected, and tested on the other 25%.
From the SVM, we obtained the total overall classification per-
centage accuracy, as well as the accuracy rates for classifying
tumor and normal pulses.

The precision or error on the classification accuracy, which is
dependent on sample size and the desired confidence limit, is
given by Fisher and van Belle* as:

N $\/ (@ (ﬁ) (1 ‘%)Zl—a/z’

where N is the total number of cases, ¢ is the number of
correctly classified cases, and z;_,/, comes from the normal
distribution table.* In this work, all classification accuracys
are quoted with a 99% confidence limit, giving zp99 = 2.58.

3 Results

3.1 Method 1: SVM Classification of Parameter
Features

The ten parameters used for classification are compared in
Table 2 for their ability to classify tumor and normal tissue
from THz pulses. It is apparent that certain parameters more
accurately identify tumor tissue than normal tissue, for example
parameters 1 and 2, and vice versa (e.g., parameters 8§ and 9).
Combinations of parameters clearly perform better at classifying
tumor and normal tissue than single parameters alone, and the
more parameters used in a combination, the better classification
accuracy as shown in Fig. 5.

3.2 Method 2: Classification of PCA for THz Pulses

The first principal component of the database pulses was com-
pared with the difference between the mean database normal and

January 2012 « Vol. 17(1)
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Fig. 5 Comparison of SVM total accuracy for method 1, parameter
space (A, grey line), method 2, PCA on the pulses ({J, dashed line),
and method 3 PCA of the parameter space (O, full line).

tumor THz pulses. As might be expected, the highest variance
principal component had a very similar profile to the difference
between the mean tumor and normal THz pulses (Fig. 6). The
first three principal components are illustrated in Fig. 7, showing
the importance of the region around the pulse minimum and the
decay, accompanied with pulse broadening on either side as
observed in the parameter space. Table 4 shows that the SVM
classification accuracy increases for greater numbers of PCs.
Fig. 5 shows that the increase in the classification accuracy
is largest for the first three PCs, which contribute the most to
the overall variance, and then increases steadily with the addi-
tion of the next seven PCs. This continued increase could be due
to the contribution of variation on the pulse being spread widely
across all ten PCs.

3.3 Method 3: Classification of PCA for THz
Parameters

Table 5 shows the SVM classification accuracy for the PCA on
the parameter space. Again, increasing numbers of PCs leads to
improved classification accuracy. Also, as before, the first three
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Fig. 6 The first PC of the pulses (grey line) compared to difference of
mean normal and tumor waveforms (black lines). Both have been nor-
malized to their absolute maximum value for comparison.
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PCs contribute the most to the overall variance (80%), and there-
fore contribute to the classification accuracy. However, after
these first three PCs, the subsequent PCs appear to contribute
less to the overall variance, and hence classification.

4 Discussion

In all three data reduction methods, the number of correctly clas-
sified pulses increased when using more PCs, as would be
expected. Fig. 5 compares the three methods. Method 3, the
PCA on parameters, performed better overall than method 2,
the PCA on pulses, whereas method 1, the parameter combi-
nations, gave the lowest accuracy overall after three or more
features were combined. For method 1, the parameter space,
classification improved almost linearly with increasing numbers
of parameter combinations, whereas methods 2 and 3, involving
principal components, displayed a faster increase in accuracy
due to the improved contribution of the high-order PCs when
only a few were used. The fast increase observed for method 3
appears to come from the strong contribution of the first three
principal components, while the slower linear rise of method 2
reflects the more even spread of contributions to the variation
of the PCs.

Variation due to noise will affect the pulses and therefore
parameter calculation and subsequently PCAs with varying
degrees. Because the PCA, which uses variation for separability,
deals with the highest-order variations, it should somewhat filter
the effect of noise compared with the parameter calculation,
which will be more sensitive.

Another source of variation in the data is interpatient varia-
bility. As shown from other work published on colon tissue,**
the natural biological variation in parameter values for normal
tissue between patients can be large. This biological variation of
normal values from patient-to-patient can be larger than the dif-
ference in normal and tumor parameter values for a given indi-
vidual. This implies that pooling the data into a single database
to be used for analysis can introduce discrepancies in the clas-
sification depending on the individual patient’s original
normal value in the range of the database. Given this biological
variation, there are two approaches that can be taken; one is to
still use a database, but to establish the location of the patient’s
normal values relative to the established database values, and
then use the equivalent tumor range. A second approach is to
limit the analysis to only data from within a patient’s measure-
ments for classification. This would involve establishing the
patient normal range within the known normal, nonpathologic
tissue, and then to base classification on the changes beyond this
normal range.

4.1 Classification of THz Image Data Using SVM

As a visual demonstration of the classification technique we
apply the data reduction and classification to several example
images. During breast surgery the intraoperative THz probe will
be used to classify pulses and not form images as such. How-
ever, the exercise of forming and classifying pixels in images
can inform the practical development of portable clinical devices
based on THz technology, for example the intraoperative breast
probe.

Because data reduction method 3, the PCA on the parameter
feature space using 10 PCs, leads to best classification accuracy,
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Fig. 7 First three PCs of the pulses.

this method was used in the images. Training of the SVM model
was done using the PCA results from all pulses in the database.
The SVM output was a probability that each pixel in the image
was tumor or normal. The values near 1 represented the probabil-
ity that the pixel was classified by the SVM model as tumor,
whereas a value near zero represented tissue classified as normal.

Prior to data reduction and classification, there were two
structures in the images that were excluded from the analysis.
These were the adipose tissue, and gaps in the tissue due to the
internal structure or damage due to the slicing of the tissue.
These regions were determined by an algorithm that identified
them through their pulse shapes, which are very different to nor-
mal fibrous and tumor pulses. To represent the results, a classi-
fication probability map was plotted, with a neutral background
for all pixels that were calculated to be adipose or gaps; these
results are presented in Fig. 8.

Adipose tissue can be easily identified and removed in
images with a simple algorithm, because the pulse shape due
to its refractive index and absorption™ is so different to normal
or tumor fibrous tissue. However, at the border of adipose and
fibrous tissue, an edge effect occurs that is more complicated
to deal with in classification. At this border, the pulse shape
undergoes a transition where the finite dimension of the THz

F g

. %‘vf % P

pulse profile samples a portion of both adipose and fibrous
tissues. This edge has been observed with other THz imaging
applications*** and is frequency dependent because the beam
diameter, and therefore resolution, is smaller at higher frequen-
cies.*’” This distortion of the recorded pulse shape leads to
features not recognized in the classification database, and hence
not well classified by the algorithms. It may be possible to train
the SVM classifier for edges to deal with these features; how-
ever, in practice this may not be necessary as it does not appear
to affect the classification significantly. In the few cases where it
does appear to be an issue, for example in case 2, the edge is
mostly misclassified on the top or side edges, suggesting there
is a directional component, probably due to the 30-deg angle
of incidence of the THz pulse.*® In practice with the concept
of the intraoperative probe, the angle of incidence is much
lower, approximately 5 deg, so the effect is likely to be less
profound. However, if the effect remains and causes ambiguity,
the surgeon would simply be able to change the orientation and
determine if it is an edge effect or not. There is also a second
type of edge effect present in case 1, whereby the edge of the
tissue presents a discontinuous boundary. It occurs in this case
because the tissue has been removed by incision and has edges
that are thin compared to the thicker central portion. This type of

(b) ()

(d) (e) (f)

(9)

Fig. 8 Demonstration of SVM classifications on example THz images of breast tissue. Probability maps (top row), obtained from the SVM classification
using the PCA on the parameter space are displayed with red representing the probability that the pixel is tumor, whereas green represents the prob-
ability from the SVM that the pixel is normal. Adipose and gaps in the tissue are removed from the analysis and shown as white background. The bottom
row shows the corresponding histology for the various cases (a) normal tissue, (b) normal tissue, (c) mixed normal tissue and multifocal tumor (invasive
ductal and DCIS), (d) mixed normal and tumor (invasive lobular), (e) tumor (invasive lobular), (f) tumor (invasive ductal), and (g) tumor (invasive ductal
and necrosis). The square box around the classification maps and histology represents 20 mm by 20 mm.
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edge effect would not normally occur during surgery in situ as
the surrounding breast tissue would still be intact. The combi-
nation of the discontinuous edge and thin profile in the third
dimension produced an altered profile not accounted for in
the database.

In general the image pixels appear to be well classified. In
most cases there appear to be small numbers of pixels, around
10% to 15%, misclassified, which is similar to the accuracy rate
seen in the classification algorithm on the database pulses. In
some images however, e.g., case 6, nearly all the pixels are
misclassified, highlighting the importance of considering inter-
patient variability in this approach.

5 Conclusion

We have shown that using appropriate data reduction methods
based on parametric features and/or PCs on THz signals
reflected from freshly excised breast cancer tissue, when com-
pared with histopathology, can be classified with accuracies up
to 92%. Previous successful studies on THz imaging of cancer
tissues have led to development of a THz probe for use intrao-
peratively, which is currently undergoing clinical trials. This
paper provides further evidence for the efficacy of the technique
and points to methods to improve classification of signals
obtained by the probe. However, there are several challenges to
using this technique during surgery, such as the presence of
blood and other fluids in the region, maintaining good contact
of the probe with the breast tissue, and interpatient variability.
Although the presence of blood and other fluids can be managed
during surgery, e.g., through cauterization, this may also affect
the THz response of the tissue to a varying degree and thus will
require further study.

Other factors, such as tissue hydration and temperature of in
vivo tissue, may remove some of the variability seen in ex vivo
tissue measurements. To date, the temperature and hydration of
ex vivo tissue specimens measured were allowed to equilibrate
with ambient conditions which may vary from day-to-day. As
the THz response of tissue is strongly influenced by the presence
of water and water itself has a temperature dependent THz
response,* it is possible that these factors may have introduced
some variability between specimens in an ex vivo setting. In the
case of in vivo measurements, the hydration and temperature of
tissue being measured is probably more stable in the surgical
environment.

The use of a sterile sheath on a THz probe to prevent cross-
contamination between patients is likely to introduce a systema-
tic offset in the THz response of the tissue. This will in turn
affect the values of the parameters calculated prior to application
of the classification algorithm, and so it may be necessary to
redefine the loading values of the parameters before the techni-
que can be applied directly in surgery. This paper has shown that
THz responses from breast tissue can be classified with data
reduction methods and classification algorithms with an
encouraging degree of accuracy, which may be improved further
when allowing for patient-to-patient variability and tissue
boundary transitions.
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