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Abstract. The early diagnosis of phytopathogens is of a great importance; it could save large economical losses due
to crops damaged by fungal diseases, and prevent unnecessary soil fumigation or the use of fungicides and bacter-
icides and thus prevent considerable environmental pollution. In this study, 18 isolates of three different fungi gen-
era were investigated; six isolates of Colletotrichum coccodes, six isolates of Verticillium dahliae and six isolates of
Fusarium oxysporum. Our main goal was to differentiate these fungi samples on the level of isolates, based on their
infrared absorption spectra obtained using the Fourier transform infrared-attenuated total reflection (FTIR-ATR) sam-
pling technique. Advanced statistical and mathematical methods: principal component analysis (PCA), linear dis-
criminant analysis (LDA), and k-means were applied to the spectra after manipulation. Our results showed
significant spectral differences between the various fungi genera examined. The use of k-means enabled classifica-
tion between the genera with a 94.5% accuracy, whereas the use of PCA [3 principal components (PCs)] and LDA
has achieved a 99.7% success rate. However, on the level of isolates, the best differentiation results were obtained
using PCA (9 PCs) and LDA for the lower wavenumber region (800–1775 cm−1), with identification success rates of
87%, 85.5%, and 94.5% for Colletotrichum, Fusarium, and Verticillium strains, respectively. © 2012 Society of Photo-

Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.1.017002]
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1 Introduction
The fungi investigated in this study belong to the same phylum
(divisions) named “Ascomycota,” a group whose members are
also known as Sac fungi, and have evolved from one common
ancestor. Living organisms are biologically classified into dif-
ferent units according to their similarity. A species is often
defined as a group of organisms capable of interbreeding and
producing fertile offspring. More precise measures are often
used, such as similarity of DNA, morphology, or ecological
niche. Species that are believed to have the same ancestors
are grouped together, and this group is called a genus. Each spe-
cies may include different isolates (strains) which usually result
from one or more mutations. In the hierarchy of the binomial
classification system, species is above isolate and below genus.

As far as the genus is concerned, these fungi are grouped into
three classes: Fusarium, Colletotrichum, and Verticillium.
These fungi are pathogens which attack crops, resulting in fun-
gal diseases, which lead to large economic losses.1,2 For exam-
ple, V. ahlia causes a wilt disease in hundreds of species of
eudicot plants. Many economically important plants are suscep-

tible, including cotton, tomatoes, potatoes, eggplants, and
peppers. Solanaceous crop may be infected at any age by
fungi causing the Fusariumwilt and Verticilliumwilt, with simi-
lar symptoms. The diseases therefore cannot be distinguished
based on symptoms alone.

Figures 1(a)–1(c)3,4 show plants infected by the various fungi
genera studied here. Figure 1(a) shows potato tubers infected
with F. oxysporum which causes a wilt symptom characterized
by browning of the vascular ring and the stem end. In Fig. 1(b)
Verticillium wilt symptoms on tomato leaves can be seen.
Infected plants usually survive, but both the yields and the
fruits may become small, depending on the severity of attack.
Figure 1(c) shows a tomato infected with C. coccodes which
usually causes serious damage to the fruit.

Early detection of phytopathogens is very important for both
successful protection and effective treatment,5 thus enhancing
the chances of recovery and simultaneously preventing environ-
mental pollution. By standard physiological methods, it is very
difficult to differentiate between closely related species and
strains6,7 based on cultivation. In addition, fungi identification
by visual and microscopic observations are usually time con-
suming and not always very specific.8
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Serological, molecular biology methods are based on differ-
ences in the nucleic acid genome of the tested fungi, whereas the
immunological method is based on differences in the proteins
constructing the fungi and on the availability of specific mono-
clonal antibodies against the tested fungi. These methods are
very sensitive and rapid relative to physiological methods for
the identification of pathogens; however, their use is still limited
due to their availability for only a small number of fungal patho-
gens.9–11 Developing such methods for different fungi strains is
complicated, costly, and not always possible. Therefore, the use
of these methods is expected to be limited and not available for
the screening of large numbers of samples of different fungal
strains.

Many studies have indicated the potential of FTIR spectro-
scopy methods for the detection and identification of microor-
ganisms, especially in food products.12,13 The vast information
already achieved about spectral bands obtained from FTIR
spectra of living cells14 combined with features of infrared
spectroscopy such as sensitivity, rapidity, low expense, and

simplicity15 enabled us to differentiate the fungi even on the
levels of species16,17 and strains.18–23 The use of Fourier trans-
form infrared-attenuated total reflection (FTIR-ATR) spectro-
scopy followed by principal component analysis (PCA) and
linear discriminant analysis (LDA) for biological classification
has gained momentum in the last decades (see Martin et al.).24–26

Linker and Tsror19 showed good results in differentiating
between fungi genera and species using FTIR-ATR and apply-
ing statistical analysis techniques: PCA, and cluster and cano-
nical variate analysis (CVA). In a different study, A. Naumann18

classified 26 fungi strains belonging to 24 different species
using FTIR-ATR and applying cluster and artificial neural net-
work (ANN) statistical techniques. Fischer et al.22 tried to
develop a method to reproducibly differentiate Aspergillus
and Penicillium species on the generic, species, and strain levels.
In their work they used nine different species and only one strain
from each species. Shapaval et al.23 showed that it was possible
to differentiate 11 species of five different fungal genera using
FTIR spectroscopy. Our former study21 took the method further
into a more challenging stage; by applying the PCA and LDA
techniques, the ability of the FTIR-ATR method to classify six
different strains of F. Oxysporum was examined. The results
showed that it is possible to classify and differentiate between
the strains with a 81.4% success rate.

The main goal of this study was to test the feasibility of the
FTIR-ATRmethodology in differentiating 18 isolates from three
different fungi genera: Colletotrichum, Verticillium, and Fusar-
ium. From each of these genera, we selected six isolates origi-
nating in a single species, namely six isolates of C. coccodes, six
isolates of V. dahliae and six isolates of F. oxysporum. The clas-
sification procedure was done in two phases. In the first phase,
the fungal samples were classified on the genus level, and in the
second phase, the samples were classified on the isolates level.
The classification procedures were based on infrared absorption
spectra of the samples, and used advanced mathematical and
statistical techniques; PCA followed by k-means and LDA.

The uniqueness of our study lies in the analysis of a larger
number of isolates belonging to the same species. Isolates are
very similar; their spectra are blended and overlap, which
makes it difficult to differentiate between them, especially rela-
tive to the species and genera levels as previously mentioned.
Moreover, for pattern recognition methods, increasing the

Fig. 1 Different fungi genera affecting crops. (a) Potato tuber discolora-
tion of the vascular ring, caused by the Fusarium wilt, (b) v-shaped
lesions on tomato leaves, associated with Verticillium wilt, and
(c) C. coccodes causes anthracnose on tomatoes and black dot disease
on potatoes.

Fig. 2 Infrared absorption spectra of C. coccodes, V. dahliae, and F.
oxysporum in the ranges 890 to 1770 cm−1 and 2800 to 2990 cm−1.
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class numbers is a real challenge, especially when the classes are
strains of the same species as in this study.

2 Materials and Methods

2.1 Fungi

Eighteen isolates of three different fungi genera, namely C. coc-
codes, V. dahliae, and F. oxysporum, were examined, six iso-
lates of each. The samples were obtained from the Department
of Plant Pathology at the Gilat Experiment Station, ARO, Israel.

Fungi samples were isolated from different infected crops
obtained directly from the plant stem, root, or tuber. Samples
were scratched from the infected areas of the crops, mixed
well in 1 ml of a potato dextrose medium and cultivated for sev-
eral days on potato dextrose agar (PDA, Difco Laboratories,
Becton, Dickison and Company, Sparks, MD) at 27°C. Several
cultures (5 to 10) of single fungi colonies, obtained by micro-
manipulation, of each strain were cultivated in different batches.
These cultures were grown for 3 to 10 days at 27°C in contin-
uous shaking. Samples of the growing fungi were identified by
visual and microscopic observations.

As a first step, the cultivated fungi strains were identified
using classical microbiological techniques.27,28 Next, samples
of the fungi were separated and purified by centrifuging
about 1.5 mL of the mixture at 13,200 rpm for 4 min, rinsing
the extract 4 times with distilled water, and suspending the pellet
in an appropriate volume of distilled water (∼1 mL) for spectro-
scopic measurements.

Pure samples enable us to control as many experimental
parameters (such as growth conditions, amount of sample exam-
ined, duration of growth, etc.) as possible, and to verify that each
absorption band in the IR spectrum was due to the specific
sample.

2.2 Sample Preparation

Due to the complicated structure of the fungi, it is difficult to
achieve a homogeneous suspension of the fungi in water or
spread them on the ZnSe crystal surface of the attenuated
total reflection (ATR) accessory. Therefore, the fungi were
mashed into small pieces and mixed as evenly as possible
into the distilled water to obtain a suspension. About 500 μL
of each fungal suspension sample was spread as homogenously
as possible on the surface of the ATR ZnSe crystal to cover the
entire crystal surface. These samples were air dried for about
30 min until all water had evaporated, and then measured by
ATR spectroscopy. The ATR crystal, of a trapezoid shape
80 mm long, 10 mm wide, and 4 mm thick was obtained
from PIKE technologies.

2.3 FTIR Measurements

We used a Bruker Tensor 27 spectrometer in the ATR mode with
DTGS detector for our measurements. After drying them, the
samples were scanned 128 times in the range of 600 to
4000 cm−1, with a 4 cm−1 spectral resolution. OPUS software
was used for spectral manipulation such as baseline correction,
bisecting, and normalization. Our measurements were carried
out over several weeks.

2.4 Spectral Analysis

Two-hundred fifty six spectra were measured from six different
C. coccodes isolates, 131 spectra were measured from six dif-
ferent F. oxysporum isolates, and 105 spectra were measured
from six different V. dahliae isolates. All spectra were corrected
with OPUS software according to the wavelength dependence of
the penetration depth. The spectra were then bisected into two
regions (800–775 cm−1) and (2800–2990 cm−1) to exclude the
water absorption band and the “dead” region between amide I
and the lipid bands. The spectra in each region were baseline
corrected using the rubber band method, normalized separately
using the vector normalization method, and then offset corrected
using OPUS software.

2.5 Statistical Analysis

2.5.1 PCA

PCA is an unsupervised29,30 multivariate analysis tool for
dimensionality reduction31,32 which is widely used in pattern
recognition. The common assumption is that the most separable
dimensions are those with the highest variance; it frequently is
so, but not necessarily.

Here, X ¼ fx1; : : : ; xNg is the data set, where xn ∈ Rd×1,
and Σ is the covariance matrix of X. Be Λ ¼ ½ λ1 · · · λN �
the vector of eigenvalues, so that λ1 ≥ λ2 ≥ · · ·≥ λN with corre-
sponding eigenvectors matrix: U ¼ ½ u1 · · · ud �;
ui ∈ Rd×1 . Then, the data after PCA is:

Y ¼ UT
qX ¼ ½ u1 · · · uq �TX ; q ≤ d;

where T is the transform operator.
Basically, PCA is a mathematical operator that projects the

high dimensional data onto a subspace of low dimension which
captures the orthogonal directions with the highest variability,
i.e., instead of using many variables the variability in the
data is described using only a few principal components (PCs).33

The first projection coefficient is called the first principal
component (PC1). It contains most of the variance. PC2 contains
most of the residual variance and is perpendicular to the first.
The other PCs obey the same rules. This method allows the
reduction of our spectra to three variables in the first phase
of classification (genus level) and nine variables in the second
phase of classification (isolate level), in the lower wavenumber
region that accounts for almost 100% of the variance.34

2.5.2 LDA

Following PCA, we applied the LDA,35 where the separation is
based on the assumption that different classes sharing the same
covariance matrix have different mean vectors for classification.
The separation procedure is done by maximizing the probability
of a class under these assumptions. The formulation of LDA is
as follows36: given data which was derived from k classes, with a
Gaussian probability density function (PDF) for each class:

f kðxÞ ¼
1

ð2πÞd∕2jΣkj1∕2
exp

�
1

2
ðx − μkÞTΣ−1

k ðx − μkÞ
�
;

(1)

where μk is the mean vector and the covariance matrix Σk .
Assuming that each class’s prior probability is πk, and all the
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classes have the same covariance matrix, Σk ¼ Σ. The clas-
sification of the new input data x ∈ Rd×1 is performed as
follows:

k̂ ¼ argmax
k∈f1; : : : ;Kg

�
xTΣ−1μk −

1

2
μTk Σ−1μk þ logðπkÞ

�
: (2)

Training and test sets were selected randomly from the
database.

The examination of the results performed using two variants
of k-fold cross-validation is applied frequently in pattern recog-
nition. The first run was 5-fold, i.e., 20% to 80% when 80% of
the data was used for training and 20% for testing. Each time,
another 20% (1 of 5) was used for testing and the rest (4 parts)
for training. We ran this approach 20 times, each time with a
random partition of the data into 5 groups. The other variant
“leave-one-out,”31,32 is when k ¼ N, where N is the number
of data points. It is usually applied when the amount of data
is relatively small.

2.5.3 K-Means

K-means is widely used for clustering and vector quantization.37

The aim is to partition the space into K cells, each represented
by a vector, named a centroid or code-word. All code-words
compose the codebook of the quantization process fckgKk¼1.
The goal is to minimize some predefined average distance:

fc�kgKk¼1 ¼ min
fckgKk¼1

�
1

N

XN
n¼1

Dðcln ; xnÞ
�

ln ¼ argmin
l∈1; : : : ;K

Dðcl; xnÞ

(3)

The most common distance is the square Euclidian distance,
Dðx; yÞ ¼ ðx − yÞTðx − yÞ. The partitioning was performed

using an iterative algorithm which converges to a local
minimum.

3 Results
Figure 2 shows the infrared absorption spectra of the three fungi
genera investigated in this study, i.e., Colletotrichum, Verticil-
lium, and Fusarium, each with a different color. The spectra
for each fungus were measured from six different isolates. The
main spectral features in the high wavenumber region
(2700–2950 cm−1) are the bands detected at 2853 and
2922 cm−1. These bands derive mainly from phospholipid
absorbance.38 Water absorbance bands in this region were
excluded from the spectra as part of the analysis procedure.
The main features in the low wavenumber region
(800–1775 cm−1), were the amide I and amide II with centroids
at 1650 cm−1 and 1553 cm−1, respectively. There is a clear peak
which arises from lipids absorbance39 at 1743 cm−1. A large
absorbance band at 1076 cm−1 was mainly attributed to carbo-
hydrate and nucleic acid vibrations. The centroid of the amid III
band was detected at 1252 cm−1. The chitin band, which is spe-
cific to fungi, was detected at 1151 cm−1 and 1078 cm−1 due to
its C−O and C−C stretching vibrations, and the glycogen C−O
stretching vibration was detected at 1024 cm−1.

As previously mentioned, there are clear differences between
the fungi mainly in the lower wavenumber region, namely, in the
amide I and II, chitin, and glycogen peaks. These differences
enabled us to differentiate the three genera using unsupervised
methods, such as k-means, achieving an accuracy of 94.5%.

As shown in Fig. 2, the Colletotrichum fungus has low inten-
sities in the amide I and II regions which may indicate lower
protein content relative to Fusarim and Verticillium fungi.

Utilizing the PCA and LDA (20 to 80) methods, we classified
the sample into three groups with great success. When using one
PC we obtained an accuracy of 61.2%, using two PCs a 96.9%

Fig. 3 Complete date sets of Colletotrichum, Verticillium, and Fusarium presented in a 3-D PCs domain. This figure summarizes the first phase (genus)
classification results.
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accuracy was achieved, which increased to 99.7% with
three PCs.

Figure 3 shows the results for the three fungal groups
obtained by LDA based on three PCs of PCA at the lower wave-
number region.

In this figure each spectrum was calculated as a superposition
of three loadings (PCs) derived using the PCA algorithm. Each
spectrum was identified by three numbers, which are the coeffi-
cients of the loadings. As shown in Fig. 3 the data is divided into
three groups, red squares (Colletotrichum), blue crosses (Fusar-
ium), and green open triangles (Verticillium). There is an excel-
lent separation between the three groups. To find out which
feature contributed to the classification procedure, we plotted
two-dimensional figures for PC1 versus PC2, depicted in
Fig. 4(a), which provided the best classification between the
three studied genera. The projection of the data on the PC1
axis provided a good classification of Fusarium. The projection
of the Colletotrichum and Verticillium data on the PC2 axis pro-
vided a complete classification between them. The first two PCs
are plotted in Fig. 4(b) where the main peaks are labeled. These

are: for PC1, the C ¼ O stretching mode of lipids (1743 cm−1),
the amide I and II bands (1641 cm−1 and 1544 cm−1, respec-
tively), the asymmetric and symmetric CH3 bending modes
of the protein methyl groups40 (1453 cm−1 and 1397 cm−1),
collagen, the asymmetric stretching of phosphate groups of
phosphodiester linkages in DNA and RNA41 (1224 cm−1),
carbohydrates42 (1148 cm−1), the symmetric phosphate PO−

2

stretching43 (1076 cm−1), and OCH3 [polysaccharides-
cellulose44 (989 cm−1)]. All the peaks labeled with dashed
lines are also common for PC2. The other main peaks of
PC2 are: C−N stretching and C−N−H bending of N−H45

(1478 cm−1), collagen46 (1345 cm−1), amide III, collagen47

(1280 cm−1), phosphate, oligosaccharides,48 and carbohy-
drates42 (1146 cm−1), stretching C−O ribose49 (1068 cm−1),
C−C [Ref. 49(994 cm−1)], and the phosphodiester stretching
bands region [for absorbance due to collagen and glyco-
gen50 (926 cm−1)].

In the second phase we tried to classify the six different iso-
lates within each group (genus). In contrast to the genus level
where there were clear differences between the spectra, here
the spectra of the different strains were blended and overlap
[Figs. 5(a)–5(c)], and in each spectrum all major absorption
bands described earlier were detected. However, some differ-
ences were found, such as different absorbance intensities in dif-
ferent absorbance bands in the two regions.

The analysis was performed for different regions of the spec-
trum, and the best results were achieved when the lower wave-
number region (800–1775 cm−1) was used. The k-means

Fig. 4 (a) Two-dimensional plot of Colletotrichum, Verticillium, and
Fusarium included in this study. (b) This figure presents the first 2
PCs, derived from PCA, in the lower range. The main peaks of each
PC are labeled.

(a)

(b)

(c)

Fig. 5 Infrared absorption spectra of six isolates of C. coccodes (a), six
isolates of V. dahliae (b), and six isolates of F. oxysporum (c) in the
ranges 800 to 1770 cm−1 and 2800 to 2990 cm−1.
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achieved poor results, thus we adopted the PCA and LDA meth-
ods. In the second phase where the number of measurements for
each strain was low, the “leave-one-out” method was preferred,
whereas in the first phase where the statistics were good the 20
to 80 algorithm was used.

Figure 6 shows the identification errors (percentage) derived
using LDA together with the “leave-one-out” and 20 to 80 algo-
rithms, as a function of the PC number used in the analysis of
Colletotrichum. Due to the similarity between the strains of each
of the three groups, more PCs had to be used than in the first
(genus) phase.21 Nine PCs were used in the strain phase, which
achieved a good classification and simultaneously kept the high-
est loading (PC) meaningful and noiseless.

The LDA results using the “leave-one-out” algorithm and
nine PCs showed that it was possible to differentiate between
the Colletotrichum isolates with a 86.8% success rate, whereas
the classification success rates of the Fusarium and Verticillium
strains were 85.5% and 94.6%, respectively. The LDA results
using the 20 to 80 algorithm and 9 PCs showed that it was pos-
sible to differentiate between the Colletotrichum isolates with a
84.6% success rate, whereas the classification success rates of
the Fusarium and Verticillium strains were 80.7% and 94.3%,
respectively.

Table 1 shows the results of the classification of the studied
genera on the isolate level using the “leave-one-out” method.

4 Discussion
In principle, the ATR sampling technique is similar to measure-
ments done using remote fiberoptic probes. Thus, evaluation of
the ATR potential for fungal classification on large numbers of
strains on the levels of genus, species, and isolates is an impor-
tant step toward in vivo measurements using infrared fibers.

Many studies have shown that it is possible to use FTIR-ATR
for detection and identification of fungi.18,19,21 In their study,
Linker et al.19 managed to classify different fungi genera species
and to differentiate between two isolates of Colletotrichum
based on the measured FTIR-ATR spectra and advanced statis-
tical methods: CVA and PCA. Based on the ATR sampling tech-
nique, Naumann18 succeeded to differentiate between 26 fungal
isolates that belong to 24 different species using cluster analysis
and ANN analysis.18

In their work, Fischer et al.22 used nine different species and
only one strain from each species. Shapaval et al.23 used 11 dif-
ferent species of five different fungal genera. In our previous
work, we used the FTIR-ATR to differentiate between six dif-
ferent isolates of F. oxysporum.21

By enlarging the number of strains, we come closer to reality,
where tens of isolates from each species exist. All previous stu-
dies focused on just a few species belonging to the same genus,
and a few strains belonging to the same species. Thus, success in
the classification of large numbers of isolates and species pro-
vides a solid base for the future large scale in vivo examination
of phytofungal pathogens using infrared spectroscopy.

In this study we investigated six different isolates from each
of three fungi genera Colletotrichum, Verticillium and Fusar-
ium. Our main objective was to test and evaluate the potential
of FTIR-ATR spectroscopy to differentiate between these iso-
lates. This was done in two phases of examinations of fungi
samples, the first on the genus level and the second on the isolate
level. The fungal isolates to be tested were collected, isolated,
and purified to obtain pure samples of the desired strain.

Our analysis was based on the fungal IR evanescent wave
absorption spectra. We used a statistical approach to analyze
the large database of the obtained IR spectra.

Using the currently practiced classic physiological methods,
it is very difficult to accurately differentiate between the strains
because of their high morphological similarity. Molecular and
serological methods are also not available for all these strains.

Due to the variance in the penetration depth occurring in the
ATR mode measurements, absorption band intensities and posi-
tions are different than those obtained using the transmission
mode.51–53 Thus, all our spectra have undergone the same pene-
tration depth correction using OPUS software. On the genus
level, there were clear differences that have enabled the differ-
entiation between the samples by unsupervised clustering ana-
lysis using K-means, with a 94.5% success rate. In-house
developed software codes based on MATLAB software54

were used. After PCA calculation, a supervised classifier
LDA was applied, which enabled the classification of the
data with an accuracy of 99.7%. In this phase of the work
(genus level), 3 PCs were sufficient to obtain such high accu-
racy, whereas in the second phase (isolate level) nine PCs were
required. PCA enabled capturing the variability of the fungi
using a small number of PCs. In the first phase the examined
fungi genera were successfully differentiated with a high accu-
racy using two PCs, and using three PCs obtained almost a
100% success rate. The second phase, in which the samples
were isolates of the same species, the differences between
their spectra were minor, and therefore a good differentiation
was achieved using a larger number of PCs. It is not guaranteed
that the first PCs are the most important for separability; how-
ever, they carry most of the variance of the data.

The dependence on the PC number is task-dependent, i.e.,
number of classes to classify, level of classification (genus, spe-
cies, or isolates), and also the type of samples.

From Fig. 4(a) we can see that the new directions defined
by PC1 and PC2 give a good classification. Using PCA calcula-
tion, we obtained a new basis which defines new directions.55

Figure 4(b) shows PC1 and PC2 vectors in the standard basis.
The peaks which are found in PC2 and not in PC1 (labeled by
dashed lines) are suspected to be more dominant with respect to
the classification. The comparison procedure of the peaks is

Fig. 6 Identification error vs. PC No. in the lower wavenumber region.
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relatively easy when a small number (2 to 3) of the PCs have to
be compared.

Smaller numbers of PCs make it easier to relate the changes
of the PCs shape to biology, whereas this is much harder when a
larger number of PCs is used. In this study, the goal was clas-
sification, and thus we should choose the number of PCs which
provided the best classification providing that the highest PC
was still meaningful for the biological system investigated.
This choice of PC number is still not objective in our field
of spectroscopy and should be investigated more carefully.

As shown in Fig. 4(a), a good classification of Fusarium was
achieved. This is probably due to some peaks in PC1 which are
absent in PC2 [Fig. 4(b)]. These peaks which contribute mainly
to the classification of Fusarium are 1453 cm−1 (methyl groups
of proteins),40 1224 cm−1 (collagen, asymmetric, stretching of
phosphate groups of phosphodiester linkages in DNA and
RNA),41 1148 cm−1 (chitin, carbohydrates)42 and 1076 cm−1

(chitin, symmetric phosphate PO−
2 stretching).43

PC2 gives a good classification between Colletotrichum and
Verticillium. It can be seen in Fig. 4(b) that some peaks in PC2
do not exist in PC1, and this is the main contribution to the clas-
sification between Colletotrichum and Verticillium. These peaks

are 1478 cm−1 (C−N stretching and C−N−H bending N−H),45

1345 cm−1 (collagen),46 1280 cm−1 (amide III, collagen),47

1146 cm−1 (phosphate, oligosaccharides,48 and carbohydrates)42

and 1068 cm−1 (C−O ribose),49 994 cm−1 (C−O ribose, C−C),49

and 926 cm−1 [phosphodiester stretching bands region (for
absorbance due to collagen and glycogen)].50

The LDA calculation was designed applying the two meth-
ods (“leave-one-out” and 20 to 80), using different sets for pre-
diction each time, so that the test sets would be statistically
independent. The “leave-one-out” method is a common method
of cross-validation, extensively explored in machine learning,
used to estimate the error in a small sized populations. Using
it ensures the validation of results.56,57

The 20 to 80 method is used when large numbers of data
exist, thus it was used in the first phase of the study. In the sec-
ond phase of identification the “leave-one-out” was preferred
because it achieved better results, but the 20 to 80 was used
as well to validate the “leave-one-out” algorithm (Fig. 6).

Our results with a successful classification of the different
strains of each genus using the “leave-one-out” method, are pre-
sented in Table 1(a)–(c).

Table 1 Successful identification of (a) Colletotrichum (Coll), (b) Fusarium (Fus) and (c) Verticillium (Vert) isolates obtained using LDA
calculations and the “leave-one-out” algorithm in the low wavenumber region (900–1775 cm−1).

Coll 1 Coll 2 Coll 3 Coll 4 Coll 4 Coll 5

(a)

Coll 1 17 0 4 0 0 0

Coll 2 0 15 1 0 2 0

Coll 3 0 1 18 1 0 0

Coll 4 0 0 5 20 0 1

Coll 5 0 0 0 0 19 1

Coll 6 0 0 1 0 0 23

Fus 1 Fus 2 Fus 3 Fus 4 Fus 4 Fus 5

(b)

Fus1 8 0 0 1 1 0

Fus 2 0 7 1 1 1 0

Fus 3 0 0 10 0 1 0

Fus 4 0 2 0 9 1 0

Fus 5 0 0 0 1 13 0

Fus 6 0 0 0 0 0 12

Vert 1 Vert 2 Vert 3 Vert 4 Vert 4 Vert 5

(c)

Vert 1 13 1 0 0 0 0

Vert 2 1 19 0 0 0 0

Vert 3 0 0 20 0 0 0

Vert 4 1 0 0 10 0 0

Vert 5 0 3 0 0 9 0

Vert 6 0 0 0 0 0 28
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In the second phase, nine PCs were used, thus the discrimi-
nation power is the overall contribution of the whole set of PCs.
It is difficult to outline which PC contributes more to the dis-
crimination between the different isolates (strains).

It is very difficult to discuss the relevance of spectral differ-
ences of the various species or isolates, due to the high similarity
in the molecular and structural composition of these related iso-
lates, which belong to the same species. According to the FTIR-
ATR spectra, the differences are spread over the entire spectrum
and not specific to a certain band. One limitation of FTIR is that
the spectra obtained from biological samples are complex, and
difficult to interpret because it is hard to know which bands arise
from which biomolecule. For example, changes in the mem-
brane are reflected in the absorption bands of lipids; however,
spectral differences in the lipid absorption bands may not arise
solely from membranes, but may be attributed to lipids that are
not located in the cell membrane.

The applied method is objective and computerized. Enlar-
ging the database and the strain number will improve the statis-
tics and bring the method closer to reality where large numbers
of strains exist. The method shows a great potential for the iden-
tification and study of phytofungal pathogens, as far as the level
of strain identification.

This method may be useful for studying biological aspects of
the different genera as shown in Fig. 2. It shows significantly
lower intensities in the amide I and II regions for Colletotrichum
compared with Fusarim and Verticillium fungi. These differ-
ences may reflect different protein contents between these gen-
era. Certainly, small differences in their structural components
(such as lipids, proteins, and sugars) do exist, but unfortunately
the origins of these differences are yet unknown and it is very
difficult to define the exact biological origin of the observed
spectral differences. However, these difficulties do not affect
the main objective of this study, which was to examine the
potential of spectroscopic techniques for reliable detection
and discrimination between different fungi strains.

5 Conclusions
FTIR-ATR spectroscopy in tandem with PCA methods, fol-
lowed by LDA calculations, enabled the differentiation between
the fungal samples studied not only on the genus level but on the
level of strains as well (where spectral differences are minute)
with a good confidence level.

Enlarging the database to include more species and strains,
could improve the statistics and bring the method one step for-
ward toward real conditions, where tens of isolates from the
same species exist.
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