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Abstract. The lung is one of the most common sites of metastases, with approximately 50% of patients with
extrathoracic cancer exhibiting pulmonary metastases. Correct identification of the metastatic status of a lung
lesion is vital to therapeutic planning and better prognosis. However, currently available diagnostic techniques,
such as conventional radiography and low dose computed tomography (LDCT), may fail to identify metastatic
lesions. Alternative techniques such as Raman spectroscopy (RS) are hence being extensively explored for
correct diagnosis of metastasis. The current ex vivo study aims to evaluate the ability of a fiber optic-based
Raman system to distinguish breast cancer metastasis in lung from primary breast and lung tumor in animal
models. In this study, spectra were acquired from normal breast, primary breast tumor, normal lung, primary
lung tumor, and breast cancer metastasis in lung tissues and analyzed using principal component analysis
and principal component-linear discriminant analysis. Breast cancer metastasis in lung could be classified
with 71% classification efficiency. Approximately 6% breast metastasis spectra were misclassified with breast
tumor, probably due to the presence of breast cancer cells in metastasized lungs. Test prediction results show
64% correct prediction of breast metastasis, while 13% breast metastasis spectra were wrongly predicted as
breast tumor, suggesting the possible influence of breast cancer cells. Thus, findings of this study, the first of
such explorations, demonstrate the potential of RS in classifying breast metastasis in lungs from primary lung
and primary breast tumor. Prospective evaluation on a larger cohort with better multivariate analysis, combined
with LDCT and recently developed real-time in vivo probes, RS can play a significant role in nonsurgical screen-
ing of lesions, which can lead to individualized therapeutic regimes and improved prognoses. © 2015 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20.8.085006]
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1 Introduction
Lung cancer causes the highest cancer-related mortality world-
wide. The number of deaths due to lung cancer is as high as the
combined deaths caused by next four most fatal cancers such as
breast, prostrate, colon, and pancreas. Approximately 1.8 million
lung cancer cases and 1.59 million lung cancer-related deaths
were estimated in 2012.1 The latest report estimated 2,21,200
and 1,58,040 new cases and deaths, respectively, in the
United States during 2015.2 Most of the lung cancer cases
are detected at advanced stages of the disease, resulting in a
5-year survival rate as low as 16%. Studies have shown better
prognosis with the early detection of lung cancer.3 Lung cancer
screening using sputum cytology and chest radiography did not
result in a reduction of advanced lung cancer cases or deaths.4,5

The current US Preventive Services Task Force guidelines rec-
ommend annual screening for lung cancer with low-dose com-
puted tomography (LDCT) in adults.6 Randomized studies have
significantly indicated fewer lung cancer deaths in a cohort
screened using LDCT compared to the control group.7 One
of the disadvantages of LDCT is the difficulty in a confident
diagnosis of pulmonary metastasis.8 Conventional radiography

also fails to distinguish primary from metastatic lesions in two-
third of the cases.9 Differential diagnosis between primary lung
lesion and breast metastatic lesion in lung has been reported to
be especially difficult.10–21 These lesions are histopathologically,
morphologically, and radiographically similar. Further, both
stain positively for cytokeratin (CK) 7 and negative for
CK20.1. In addition, many lung carcinomas do not stain for thy-
roid transcription factor-1, a known strategy to identify lung
malignancy and on the other hand, some breast cancers do
not stain for estrogen receptor, an indicator for the presence
of breast cancer cells. This further compounds the problem
of distinguishing primary lung lesions from breast metastatic
lesions. It is pertinent to note that a differential diagnosis is
vital for effective therapeutic intervention and favorable progno-
sis. Hence, there is a need for sensitive, rapid, objective, and
cost-effective alternate tools for diagnosis of metastasis.

Raman spectroscopy (RS), a sensitive, rapid, objective tech-
nique, has shown promising results in the diagnosis of cervix,
gastrointestinal, brain, oral, skin, lung, breast, and several
other cancers.22–34 The technique has also been explored to
study metastasis. Oliveira et al. have shown the feasibility of dif-
ferentiating primary and metastatic cutaneous melanoma, while
Terentis et al. have demonstrated discrimination of live human

*Address all correspondence to: C. Murali Krishna, E-mail: mchilakapati@
actrec.gov.in, pittu1043@gmail.com 1083-3668/2015/$25.00 © 2015 SPIE

Journal of Biomedical Optics 085006-1 August 2015 • Vol. 20(8)

Journal of Biomedical Optics 20(8), 085006 (August 2015)

http://dx.doi.org/10.1117/1.JBO.20.8.085006
http://dx.doi.org/10.1117/1.JBO.20.8.085006
http://dx.doi.org/10.1117/1.JBO.20.8.085006
http://dx.doi.org/10.1117/1.JBO.20.8.085006
http://dx.doi.org/10.1117/1.JBO.20.8.085006
http://dx.doi.org/10.1117/1.JBO.20.8.085006
mailto:mchilakapati@actrec.gov.in
mailto:mchilakapati@actrec.gov.in
mailto:mchilakapati@actrec.gov.in
mailto:mchilakapati@actrec.gov.in
mailto:pittu1043@gmail.com


metastatic melanoma cells from skin fibroblasts using Raman
microspectroscopy.27,35 Another Raman microspectroscopic
study has shown a distinction between metastatic and nonmeta-
static cell lines.36,37 A similar approach has been employed by
Fullwood et al. to study metastatic brain tumors and has explored
the possibility of identifying primary sites of origin.38 Stone et al.
have studied lymph node metastasis in breast cancer using fiber-
optic and Raman microscopic techniques.33,39,40

Recently, Short et al. have reported the development of a
probe to collect real-time in vivo lung spectra and have success-
fully acquired spectra of lungs.41 This may prove to be an invalu-
able nonsurgical adjunct to LDCT, wherein lesions detected by
LDCT may be categorized into primary lung cancer and pulmo-
nary metastases using RS. In light of this, the current ex vivo
study aims to evaluate the ability of a fiber optic-based Raman
system to distinguish metastatic lesions from primary lung
tumors in animal models. Breast cancer metastasis to lungs is
the most common of several exthoracic cancers that metastatize
to lungs. Moreover, as discussed earlier, differential diagnosis
between lung cancer and breast metastasis in lung has been
reported to be very difficult, but very necessary from a therapeu-
tic and prognostic point of view. Therefore, in this study, exper-
imental breast cancer metastasis in the lungs was implemented.
To the best of our knowledge, this is the first study to attempt
classification of metastatic breast lesions in lung from primary
lung as well as breast tumors using fiber-optic based-RS.
Spectra were acquired from breast metastatic lesions in lung,
primary lung tumor, and normal lung. For robust analysis, spec-
tra from normal breast and primary breast tumor were also incor-
porated in the study. Spectra from all five groups were analyzed
using principal component analysis (PCA) and principal com-
ponent-linear discriminant analysis (PC-LDA). The findings of
the study are reported in this manuscript.

2 Materials and Methods
Animals: tumors from mouse mammary tumor virus-(MMTV)
induced spontaneous tumorogenesis model, C3H Jax mouse

were harvested after sacrificing the mouse by cervical disloca-
tion and used to acquire spectra of primary breast tumor (n ¼ 4,
where “n” is the number of animals). Use of these models has
been extensively reported.42,43 Briefly, the female mice of this
strain contain MMTV virus in their milk, which gets transferred
into pups. The viral DNA gets integrated into their breast cells
and acts as an oncogene resulting in spontaneous tumors at a
later age. Lung adenoma was induced by intraperitoneal injec-
tion of benzo[a]pyerene (B[a]P) and 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanone (NNK) once a week for 8 weeks in
AJ mice.44 Mice were sacrificed after 28 weeks by cervical dis-
location and excised lungs were used to acquire spectra of pri-
mary lung tumor (n ¼ 4). Spectra were also acquired from
normal breast (n ¼ 5) and normal lung tissues (n ¼ 6). Breast
metastasis in lung was induced by intravenous injection of C3H
Jax tumor single cell suspension (4 × 106 cells) into new 8 week
old C3H Jax mice. After 3 weeks, the mice were sacrificed by
cervical dislocation, the lungs were harvested (n ¼ 8) and used
for spectroscopy. The study was approved by Institutional
Animal Ethics Committee, ACTREC endorsed by the Commit-
tee for the Purpose of Control and Supervision of Experiments
on Animals, Government of India guidelines. All animals were
housed under standard laboratory conditions, fed a diet of in-
house-prepared pellets containing natural ingredients such as
wheat, roasted bengal gram, casein, skimmed milk powder, vita-
mins, minerals, probiotics, and ground nut oil and provided with
water ad libitum.

2.1 Spectra Acquisition

Approximately 8 to 10 spectra were acquired from normal
breast, normal lung, primary breast tumor, and primary lung
tumor tissues; while approximately 16 to 22 spectra were
recorded from metastatic breast lesions. All spectra were
acquired using Raman spectrometer as described elsewhere.26

Briefly, this system consists of a diode laser (PI-ECL-785-
300-FC, Process Instruments) of 785-nm wavelength as the
excitation source, a high efficiency spectrograph (HE-785,

Fig. 1 Methodology for tissue sectioning and H&E staining.
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Jobin-Yvon-Horiba, France) with a fixed 950 gr/mm grating
coupled with a charge-coupled device (CCD) (CCD-
1024X256-BIDD-SYN, Synapse). The spectrograph has no
movable parts and the spectral resolution is ∼4 cm−1. A com-
mercial RamanProbe (RPS 785/ 12-5, In Photonics Inc., Downy
Street) consisting of an excitation and a collection fiber (NA-
0.40) of diameters 105 and 200 μm, respectively, was used to
couple the excitation source and detection system. This probe
utilizes a backscattering (θ ¼ 180 deg) sampling geometry.
The estimated spot size and depth of penetration as per the man-
ufacturer’s specifications is 105 μm and 1 mm, respectively.
Spectral acquisition parameters were: λex ¼ 785 nm, laser
power-80 mW, spectra were integrated for 15 s and averaged
over three accumulations.

2.2 Sectioning and H&E Staining

The tissues were cut into small pieces. One spectrum was
acquired from each piece. Immediately after spectra acquisition,
the spot where the laser hits the tissue was marked with India ink
and fixed with 2% glacial acetic acid. Paraffin embedded blocks
were prepared using established protocols. Sections were
obtained from the marked spot and H&E staining was carried
out for these sections. These were then evaluated by a patholo-
gist. Since sections were obtained from the region where the
laser interacted with the tissue, the pathology and spectra can
be directly correlated (Fig. 1).

2.3 Spectral Preprocessing

Raman spectra from all samples were corrected for CCD
response with a National Institute of Science and Technology
certified Standard Reference Material 2241 (SRM 2241) fol-
lowed by the subtraction of background signals from optical ele-
ments and substrate. Background spectra were acquired by
removing the sample and keeping everything else constant.
These signals were acquired before collecting spectra from
each sample. The subtraction was performed in LabSpec. To
remove interference of the slow moving background, first deriv-
atives of spectra (Savitzky–Golay method and window size 3)
were computed.26 Spectra were interpolated in 1200 to
1800 cm−1 region, vector-normalized, and used as input for
multivariate analysis. The utility of this spectral range in distin-
guishing normal from malignant tissues of oral,26 cervix45 and
breast46 cancers, discrimination of anatomical sites,46 study of
physiological conditions such as pregnancy, lactation47 and age-
ing,48 as well as prediction of tumor appearance49 has been dem-
onstrated earlier. The range also helps to avoid fiber spectral
artifacts.

2.4 Multivariate Analysis

First derivative, vector normalized spectra were subjected to
multivariate unsupervised PCA and supervised PC-LDA.

First derivatives of preprocessed spectra were subjected to
supervised PC-LDA. PCA is a routinely used method for
data compression and visualization. It describes data variance
by identifying a new set of orthogonal features, which are called
principal components (PCs), that are linear combinations of
original data variables. These PCs are calculated by identifying
eigenvectors for the covariance matrix of the mean-centered
data. Because of their orthogonal characteristics, the first few
PCs are enough to represent maximum data variance. For visual

discrimination, we project each of the spectra in the newly
formed co-ordinate space of these selected PCs. Although
PCA aims to identify features that represent variance among
complete data, LDA provides data classification based on an
optimized criterion, which is aimed for more class separability.
LDA is a method of choice when input data have higher within
class variance that could lead to the development of PCs, which
are inappropriate for visual discrimination. The classification
criterion is identified using the scatter measure of within
class and between class variances. LDA transformations are

Fig. 2 Mean spectra interpolated in 1200 to 1800 cm–1 region of
(a) breast control, (b) primary breast tumor, (c) breast cancer meta-
stasis in lung (d) lung control, and (e) primary lung tumor.
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further identified as an eigenvector matrix of this classification
criterion. With the help of this LDA transform matrix, any test
spectra can be classified to a class by iteratively calculating the
Euclidean/RMS or Mahalanobis distance of transformed test
spectra and the mean of the transformed input dataset. In this
study we have employed Mahalanobis distance for class predic-
tion, since it handles nonlinearity well.22 LDA can be used in
companion with PCA (PC-LDA) to further increase the perfor-
mance efficiency of classification. For this, PCA scores obtained
using a set of few PCs with a maximum variance among data are
used as input data for LDA-based classification. The advantage
of doing this is to remove or minimize noise from the data and
concentrate on variables important for classification. In our
analysis, PC-LDA models were further validated by leave-
one-out cross-validation (LOOCV).

LOOCV is a type of rotation estimation mainly used for
smaller datasets, i.e., a technique useful for assessing the per-
formance of a predictive model with a hypothetical validation
set when an explicit validation set is not available. LOOCV
builds a model based on all observations but one, and tests
the left out observation against the model built; this is repeated
until all observations are left out once. The performance is esti-
mated in terms of classification efficiency, which is the percent-
age of spectra from each group that is correctly classified.

The results of PC-LDA are depicted in the form of a confu-
sion matrix, where all diagonal elements are true-positive pre-
dictions and ex-diagonal elements are false-positive predictions.
The confusion matrix is generated to understand separation

between the groups obtained by taking the contribution of all
factors selected for analysis. These results can also be depicted
in the form of scatter plots, generated by plotting combinations
of scores of factors. Plotting different combinations of factor
scores gives a visual understanding of the classification pattern
in the data.50–52 Algorithms for these analyses were imple-
mented in MATLAB® (Mathworks Inc.) based software
using in-house codes.26

Mean spectra were computed from the background sub-
tracted spectra prior to derivatization for each class by averaging
Y-axis variations and keeping X-axis constant for each class,
and were baseline corrected by fitting a fifth-order polynomial
function. These baselines corrected spectra were vector normal-
ized and then used for computing the mean spectra. Difference
spectra were also calculated by subtracting the mean spectra of
breast and lung tumors from breast control and lung control,
respectively, and by subtracting the mean breast metastasis spec-
trum from mean spectra of control breast, breast tumor, control
lung, and lung tumor.

3 Results and Discussion

3.1 Spectral Analysis

Mean spectra: the spectral features of themean control breast spec-
trum [Fig. 2(a)]—1743 cm−1 (C═O ester); 1653 cm−1 (amide I);
1440 cm–1 (δCH2); 1301 cm–1 (τCH2); and 1271 cm–1—can be
attributed to lipids. The mean breast tumor spectrum [Fig. 2(b)]

Fig. 3 Difference spectra (a) i—breast control–breast tumor, ii—breast control–breast metastasis,
iii—breast tumor–breast metastasis, (b) i—lung control–lung tumor, ii—lung control–breast metasta-
sis, iii—lung tumor–breast metastasis, and (c) i—breast control–lung control, ii—breast control–lung
tumor, iii—breast tumor–lung control, and iv—breast tumor–lung tumor.
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shows broad amide I and features in the 1200 to 1400 cm–1 region,
suggesting dominance of proteins and DNA in tumor. Normal
breast consists of mammary epithelium and lipid rich mammary
fat pad.53 This explains lipid dominance in normal breast.
Tumor is characterized by changes in protein profiles, breast archi-
tecture, and increase in cell proliferation.54 Thismay explain varia-
tion in protein, increase in DNA, and loss of lipids in tumor. These
findings corroboratewellwith earlier studies.55,56Themeancontrol
lung spectrum [Fig. 2(d)] exhibits features at 1650 cm–1 (amide I),
1311 cm–1, 1335 cm–1, 1450 cm–1 (δ CH2), 1301 cm–1 (τCH2),
and 1590 cm–1 as reported earlier.57 The 1590 cm–1 band has been
suspected to be carbon particles since the mice were sacrificed
using CO2 asphyxiation in the reported study. However, since in
this study, cervical dislocation was used to sacrifice mice, the
1590 cm–1 along with 1311 cm–1 may be attributable to cyto-
chrome.58 Cytochromes are abundantly present in lungs since
the organ is involved with the oxygen transfer process. Mean
lung adenoma spectrum [Fig. 2(e)] shows a loss of 1590 cm–1

band with respect to the control. Broad amide I and amide III
with respect to control breast, breast tumor, control lung, and
lung tumor mean spectrum [Fig. 2(c)] is observed in mean breast
metastasis spectra.

Difference spectra: to elucidate the spectral variations among
groups, difference spectra were computed. Subtraction of mean
spectra is one of the conventional ways of looking at spectral
differences. It provides differences over a selected spectral
range, thus understanding of the moieties that may have been

modified is facilitated. The prominent bands of the difference
spectra have been used to infer from the difference spectra.

The breast control–breast tumor [Fig. 3(a), i] were computed
by subtracting the breast tumor mean spectrum from the breast
control mean spectrum. In this difference spectrum, the positive
peaks are due to breast control, whereas the negative peaks are
due to breast tumor. Thus, a positive 1740 cm–1 indicates higher
lipid content in the control compared to tumor, while a negative
1340 cm–1 indicates a lower DNA content in the control com-
pared to tumor. Thus, breast control–breast tumor [Fig. 3(a), i]
suggest a lower amount of proteins (negative peaks at 1671,
1456, and 1471 cm−1) and DNA (negative peaks at 1480,
1340 cm−1) and higher lipid content (positive peaks at 1743,
1440 cm−1) in breast control compared to tumors, which cor-
roborate previous reports.32,46 Control breast–breast metastasis
difference spectra [Fig. 3(a), ii] suggest a higher lipid content
(positive peaks at 1740, 1440 cm−1) and lower DNA content
(negative peaks at 1340, 1480 cm−1) in control with respect
to metastasis. Breast tumor–breast metastasis difference spectra
[Fig. 3(a), iii] suggest decreased DNA (negative peaks at 1340,
1470 cm−1) in breast tumor compared to metastasis.

Lung control–lung tumor difference spectra [Fig. 3(b), i] sug-
gest lower lipid content (negative peaks at 1740, 1440, and
1301 cm−1) in lung control compared to lung tumor. The
same has been demonstrated in other studies.57 The loss of
the 1311 cm–1 band is another characteristic of lung tumor spec-
tra. Lung control–breast metastasis [Fig. 3(b), ii] and lung

Fig. 4 Principal component analysis (PCA): (a) variance plot, (b) loading factors 1, 3, and 4, and (c) scat-
ter plot.
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tumor–breast metastasis difference spectra [Fig. 3(b), iii] sug-
gest lower DNA content (negative peaks at 1340, 1470 cm−1)
in lung control and lung tumor compared to metastasis.

Breast control–lung control difference spectra [Fig. 3(c), i]
suggest lipid dominance in breast control, while 1590 cm–1

characterizes the lung control. Breast control–lung tumor differ-
ence spectra [Fig. 3(c), ii] suggest decreased DNA content in
breast control compared to lung tumor (negative peaks at
1480, 1340 cm−1). Breast control–lung control difference spec-
tra [Fig. 3(c), iii] also highlight the characteristic 1590 cm–1

band of lungs. Breast tumor–lung tumor spectra [Fig. 3(c),
iv] suggest decreased DNA content in breast tumor compared
to lung tumor. The spectral assignments are based on the avail-
able literature.58

Overall, protein and DNA content are least in control tissues,
comparatively higher in primary tumors and highest in meta-
static lesions. Lipid content is highest in control breast, compa-
ratively lesser in lung tumor and is least in control lung, primary
breast cancer and metastatic lesions. The 1590 cm–1 band is
characteristic of control lung, but it disappears in lung tumor.

3.2 Multivariate Analysis

Preprocessed interpolated spectra in the 1200 to 1800 cm−1

range were subjected to PCA for delineating trends in the data-
set. PCA variance plot and loadings are shown in Figs 4(a) and
4(b). As seen in Fig. 4(a), the cumulative variance covered by
factors 1, 3, and 4 are 82.3%, 92.7, and 94.6% respectively. A
scatter plot of the PCA factors [Fig. 4(c)] shows distinct clusters

of control breast, breast tumor, control lung, and breast meta-
stasis. The lung tumor cluster lies in the center and is close
to the control lung cluster and the breast metastasis cluster.
The ability of RS to distinguish normal breast and breast cancer
has been reported earlier.55,56 Earlier studies in mouse model
have shown that ex vivo spectra of lung and breast differ con-
siderably.57 The distinct spectral identity of breast from several
anatomical sites in vivo has also been demonstrated.46 Thus,
results of this study corroborate with earlier studies. Results
also suggest that breast metastasis can be distinguished from
normal breast and breast cancer using RS. Thus, PCA suggests
the possibility of distinguishing breast cancer metastasis in lung
from both breast and lung primary tumors.

To further explore the feasibility of classifying these different
groups, PC-LDA was used. To avoid over fitting, three factors50

contributing ∼85% of correct classification were used [Fig. 5(a)].
The plot of PC-LDA factors 1, 2, and 3 [Fig. 5(b)] shows a clus-
tering pattern similar to PCA. The results of PC-LDA can be
depicted in the form of a confusion matrix, where all diagonal
elements are true-positive predictions and ex-diagonal elements
are false-positive predictions. The confusion matrix is generated
to understand the separation between the groups obtained by tak-
ing the contribution of all factors selected for analysis. The con-
fusion matrix for PC-LDA model building is shown in Table 1(a).
In this analysis, 59 out of 62 spectra were correctly classified as
breast control, while 1∕62 and 2∕62 spectra were misclassified
with breast and lung tumors, respectively. 38∕40 breast tumor
spectra were correctly classified, while 2 were misclassified as
breast control. In the case of breast metastasis in lungs, 45∕63

Fig. 5 Principal component-linear discriminant analysis (PC-LDA): (a) scree plot and (b) scatter plot.
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spectra were correctly classified, 3∕63 were misclassified with
breast tumor, and 15∕63 spectra were misclassified with lung
tumor. 44∕49 lung control spectra were correctly classified as
lung control, whereas 4∕49 were misclassified with lung
tumor and 1/49 were misclassified with breast tumor. 25∕34
lung tumor spectra were correctly classified, while 2∕34 were
misclassified with lung control, 3∕34 were misclassified with

breast cancer metastasis, and 4∕34 were misclassified with breast
tumor.

LOOCV was carried out to evaluate the results obtained by
PC- LDA. In analysis of LOOCVas shown in Table 1(b); 59 out
of 62 spectra were correctly classified as breast control, while
1∕62 and 2∕62 spectra were misclassified with breast and lung
tumors, respectively. Correct classification of breast spectra sug-
gests the distinctness of breast spectra. Misclassification of
breast control and breast tumor may be due to the heterogeneity
of breast tumor. As mentioned earlier and observed in difference
spectra, there is an increase in lipids in lung tumor compared to
control lung. Since control breast predominantly consists of lip-
ids, a misclassification between control breast and lung tumor is
possible. 38∕40 breast tumor spectra were correctly classified,
while 2 were misclassified as breast control. The heterogeneity
of tumors may explain the misclassification with normal breast.
In the case of breast metastasis in lungs, 45∕63 spectra were
correctly classified, 4∕63 were misclassified with breast
tumor, and 14∕63 spectra were misclassified with lung tumor.
Misclassification of breast metastasis in lungs with breast tumor
may be due to signals from breast tumor cells lodged in lungs.
High misclassification with lung tumor may be due to the archi-
tectural similarity of primary and metastatic tumor. 44∕49 lung
control spectra were correctly classified as lung control, whereas
4∕49 were misclassified with lung tumor and 1∕49 were mis-
classified with breast tumor. Misclassification between lung
control and lung tumor may be attributed to the heterogeneity
of lung tumors. As explained earlier, misclassification between
lung control and breast tumor may be due to their low lipid con-
tent. 24∕34 lung tumor spectra were correctly classified, while
2∕34 were misclassified with lung control, 4∕34 were misclas-
sified with breast cancer metastasis, and 4∕34 were misclassi-
fied with breast tumor. The heterogeneity of lung tumor may
explain misclassification with lung control. The architectural
similarity among tumors may explain misclassification between
lung tumor, breast cancer metastasis, and breast tumor. After
LOOCV, breast metastasis in lung could be identified with
∼71% sensitivity and ∼96% specificity [Table 1(c)].

To ascertain the robustness of the model, test prediction using
spectra from breast metastasis tissues from four independent
animals was carried out. The results of test prediction are
shown in Table 1(d). 56 out of 88 spectra are correctly predicted
as breast metastasis in lungs, while 21∕88 and 11∕88 were
wrongly predicted as lung and breast tumors, respectively. As
mentioned earlier, prediction as lung tumor may be due to
the architectural similarity between lung tumor and breast
metastasis in lungs. Prediction as breast tumor may be due to the
presence of breast tumor cells that have metastasized into
lungs.

4 Conclusion
Differential diagnosis between primary and metastatic lesions in
lung is vital for effective therapeutic intervention and favorable
prognosis. However, this is especially difficult between primary
lung lesions and metastatic breast lesions, as reported by several
studies, due to the morphological, radiological, and pathological
similarities. Therefore, the current ex vivo study aims to evaluate
the ability of a fiber optic-based Raman system to distinguish
metastatic lesions on lung from primary lung tumors in animal
models. To subject multivariate analysis (PCA and PC-LDA) to
more complex scenario, spectra were acquired from control
breast and breast tumor along with control lung, primary

Table 1 PC-LDA Confusion matrix for (a) model building, (b) Leave-
one-out cross, (Diagonal elements are true positive predictions and
ex-diagonal elements are false positive predictions), (c) LOOCV–sen-
sitivity and specificity, and (d) independent test prediction.

(a) MODEL
(Number of animals,
Number of spectra)

Breast
control

Breast
tumor

Breast
cancer

metastasis
in lungs

Lung
control

Lung
tumor

Breast control (5,62) 59 1 0 0 2

Breast tumor (4,40) 2 38 0 0 0

Breast metastasis
in lungs (4,63)

0 3 45 0 15

Lung control (6,49) 0 1 0 44 4

Lung tumor (4,34) 0 4 3 2 25

(b) LOOCV (Number
of animals, Number
of spectra)

Breast
control

Breast
tumor

Breast
cancer

metastasis
in lungs

Lung
control

Lung
tumor

Breast control (5,62) 59 (95%) 1 0 0 2

Breast tumor (4,40) 2 38 (95%) 0 0 0

Breast metastasis
in lungs (4,63)

0 4 45 (71%) 0 14

Lung control (6,49) 0 1 0 44
(90%)

4

Lung tumor (4,34) 0 4 4 2 24
(71%)

(c) Groups Sensitivity
(%)

Specificity
(%)

Breast control 95.2 97.9

Breast tumor 95 90.8

Breast metastasis
in lungs

71.4 95.8

Lung control 89.8 98

Lung tumor 70.6 82.9

(d) Test prediction
(Number of animals,
Number of spectra)

Breast
control

Breast
tumor

Breast
metastasis
in lungs

Lung
control

Lung
tumor

Breast metastasis
in lungs (4,88)

0
(0%)

11
(12.5%)

56
(63.6%)

0
(0%)

21
(23.8%)
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lung tumor, and breast metastasis in lung tissues. Breast meta-
static lesions in lung could be classified with 71% efficiency.
Approximately 6% and 22% breast metastasis spectra were mis-
classified as breast and lung tumors, respectively, probably due
to the presence of breast cells in metastatic lesions. Test predic-
tion results show a 64% correct prediction of breast metastasis,
while 13% and 24% breast metastasis spectra were wrongly pre-
dicted as breast and lung tumors, respectively. Thus, the findings
of the study, the first of such investigations, demonstrate the
potential of classifying breast metastasis in lungs from primary
lung and primary breast tumor. Prospective evaluation on a
larger cohort with multivariate analysis, combined with LDCT
and recently developed real-time in vivo probes, may help non-
surgical screening of lesions. The technique can then aid in treat-
ment planning and improved prognosis.
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