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Abstract. We introduce the application of functional data analysis (fDA) on functional near-infrared spectros-
copy (fNIRS) signals for the development of an accurate and clinically practical assessment method of pain
perception. We used the cold pressor test to induce different levels of pain in healthy subjects while the
fNIRS signal was recorded from the frontal regions of the brain. We applied fDA on the collected fNIRS
data to convert discrete samples into continuous curves. This method enabled us to represent the curves
as a linear combination of basis functions. We utilized bases coefficients as features that represent the
shape of the signals (as opposed to extracting defined features from signal) and used them to train a support
vector machine to classify the signals based on the level of induced pain. We achieved 94% of accuracy to
classify low-pain and high-pain signals. Moreover applying hierarchical clustering on the coefficients, we
found three clusters in the data which represented low-pain (one cluster) and high-pain groups (two clusters)
with an accuracy of 91.2%. The center of these clusters can represent the prototype fNIRS response of that pain
level. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole

or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.21.10.101411]
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1 Introduction
During the past two decades, neurophysiological techniques
that measure cerebral metabolism and circulation changes have
been widely employed to open a window into human cerebral
responses to pain with a long-term goal of obtaining a more
direct measurement of pain perception. Different functional
modalities and brain imaging techniques—especially noninva-
sive methods such as functional magnetic resonance imaging
(fMRI)—have been used to study brain reactivity to pain in
both normal subjects and patients with clinical pain conditions.
There has been shown a relation between subjects' report of an
ongoing pain and blood oxygen level dependent (BOLD) signal
acquired by fMRI.1 Similar relation has been reported between
subjects' self-report and functional near-infrared spectroscopy
(fNIRS) parameters.2–8 For example, Lee et al.4 reported that
as the intensity of the noxious pressure stimuli increases, the
HbO2 in the frontal cortex increases as well, consistent with
an increase in the perceived pain.

Moreover, applying machine-learning techniques on neuro-
imaging data in the field of pain assessment has shown prom-
ising results in recent years. Marquand et al.9 showed that using
fMRI data from an individual, one could train a support vector
machine (SVM) to predict the same individual’s pain. Their

SVM model had an accuracy of 68% for distinguishing pain
perception level (low pain) from pain tolerance level (high
pain) and an accuracy of 91% for distinguishing heat perception
level (no pain) from pain tolerance level (high pain).

Furthermore, Brown et al.10 developed a model that was not
individual-based and therefore could be used on different groups
of subjects. In this study, whole-brain patterns of activity were
used to train a SVM to distinguish painful from nonpainful
thermal stimulation. They have reported an accuracy of 81% at
distinguishing painful from nonpainful stimuli.

In another important fMRI study, Wager et al.11 used a
machine-learning–based regression technique to identify a pat-
tern of fMRI activity across brain regions in response to heat-
induced pain. They first identified the brain regions activated by
painful thermal stimuli as the dorsal posterior insula, the secon-
dary somatosensory cortex the anterior insula, the ventrolateral
and medial thalamus, the hypothalamus, and the dorsal anterior
cingulate cortex. Using data from these regions, a model has
been developed and then tested on a separate dataset which
resulted in an accuracy of 94% to discriminate between painful
heat and nonpainful warmth. This study was a strong demon-
stration of the existence of a universal pain signature in
fMRI data.

These studies show that some features from neuroimaging
data—such as BOLD signal change in fMRI—are sufficiently
consistent between individuals to train a pain classifier that per-
forms accurately when trained on one group of subjects and
tested on another. In other words, it might be a universal pattern
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of pain activation (neurological signature) across individuals
that could be used to detect pain objectively across other
subjects.

Despite these advances in medical imaging technology that
significantly help basic science, there remains an unmet clinical
need for a practical, inexpensive tool for the reliable and objec-
tive assessment of human response to pain. fNIRS is a noninva-
sive technique with a short set-up time which makes it more
clinic friendly for applications such as pain measurement or
management in the clinic.

Due to the ease of fNIRS measurements on the frontal region,
in this paper we pursued feasibility of employing this signal for
objective assessment of pain.

fNIRS measure data from a continuous physiological process
as discrete samples subject to observational noise. Usually,
analysis of fNIRS data has been limited to discrete-time meth-
ods and most of the fNIRS studies involve analyses on features
extracted from the hemodynamic time series.

However, the measured hemodynamic response by fNIRS is
a realization of a naturally continuous physiological phenome-
non and it is fair to assume that the true underlying trajectory is a
smooth function. Functional data analysis (fDA) is a framework
which enables us to convert the nonsmooth fluctuating discrete
samples measured by fNIRS into smooth functions using a lin-
ear combination of basis functions. Utilizing fDA approach on
fNIRS data was first introduced in Ref. 12. Here, we propose
the application of fDA method on the fNIRS signal for both
classification and clustering purposes.

The rest of the paper is organized as follows: in Sec. 2, we
shortly describe the methodology behind our measurement
system (fNIRS), the mathematical techniques that we have
employed for classification and feature selection, the fDA
framework that we have applied on the fNIRS signal and our
experiment protocol; in Sec. 3, we present the application of
fDA on the fNIRS data collected during a cold pressor test
and demonstrate both classification and clustering results.
Lastly, in Sec. 4, we summarize and discuss the results.

2 Materials and Methods

2.1 fNIRS

fNIRS is an optical imaging modality for noninvasive, continu-
ous monitoring of tissue oxygenation and regional blood flow.
fNIRS works based on the fact that brain activity is associated
with changes in optical properties of brain tissue in near-infra-
red range.

Propagated light can be absorbed or scattered by the tissue.
In the near-infrared range (NIR), 600 to 1000 nm optical win-
dow, the major absorbing components—chromophores—in the
soft tissues are water, oxyhemoglobin (HbO2) and deoxyhemo-
globin (Hb). There are also minor contributions from other
tissue chromophores, such as melanin, lipids, and so on.
Each one has a different level of absorption at each wavelength.
Components such as water, lipids, CFS, and melanin can be
assumed to keep a constant concentration during the test period
(static absorbers) and have a little contribution to the overall
attenuation in the specific window. On the other hand, concen-
tration of dynamic absorbers—oxygenated and deoxygenated
hemoglobin—changes during the experiment according to the
function and metabolism of the tissue.

When light strikes a blood vessel, some photons are absorbed
by oxyhemoglobin and deoxyhemoglobin in the blood. This

absorption changes the intensity of the light which scatters
back to the surface. So there is a direct relationship between
concentration of oxyhemoglobin and deoxyhemoglobin in the
blood and changes in the intensity of light measured on the sur-
face. The equation that governs this relationship is known as
modified Beer–Lambert law.13

The scattered light reflects back to the tissue surface mostly
within a banana-shaped optical path length. By putting a photo-
detector on the surface of the skin one can sample the amount of
absorption changes within this volume.

2.2 Classification

The classification goal is to train a model, based on the given
examples known as training set, that can predict the output
(class) of future examples based on their input (features). In
other words, in classification we want to find a decision function
that assigns the inputs from the feature space into the classes
(target space). Different methods use different strategies to
find these decision functions, boundaries, and rules.

Assume a linear decision boundary (hyperplane in n-dimen-
sion) is defined by wTxþ b ¼ 0 in the feature space x where w
is referred to as weight vector and b is called the bias term. We
can define the binary classification problem as using training
data to find w and b such that the hyperplane can separate
the data into two groups (classes). In general, many solutions
may exist for w and b which can classify the training data
exactly. However, it is desirable to find the solution that will
give the smallest generalization error (the error estimated for
future unknown samples). Therefore, the problem is to find deci-
sion rules that generate such a decision boundary that separates
the data into two groups and has the best classification
performance.

The SVM finds a solution based on the concept of margin,
which is defined as the distance between the separating hyper-
plane to the closest data point from either class. The optimal
separating hyperplane (defined by w and b) is chosen to be
the one for which margin is maximized (i.e., 1∕kwk, where
kwk is the norm of vector w).14–16

In cases that linear boundaries separation is not possible
between classes in the same space, SVM uses kernel method
as a measure of similarity between features to map the observa-
tions into a higher dimension in which the data can be separated
in Refs. 17 and 18.

2.3 Feature Selection

Feature selection is defined as process of selecting a subset out
of the feature space which minimizes a predefined criterion, usu-
ally classification error in case of supervised learning and cluster
detection error in case of unsupervised learning.19

In this paper we do not define or extract commonly used
fNIRS features (such as average, extremum, or slope) from
the signal. Instead, we use fDA to represent each signal with
a number of coefficients. Although these coefficients may not
fit in the classic definition, however, for the sake of convenience
we use the term “feature” for them.

Among all the benefits of feature selection techniques two of
them are of most interest to us. First of all it improves the pre-
diction performance of our classifier by avoiding overfitting;
second, it will result in a faster and more cost-effective
model by reducing dimension of predictors.

Journal of Biomedical Optics 101411-2 October 2016 • Vol. 21(10)

Pourshoghi, Zakeri, and Pourrezaei: Application of functional data analysis in classification. . .



Here, we used recursive feature elimination-SVM (RFE-SVM)
method which is a wrapper feature selection technique.20Wrapper
methods (also known as classification-guided feature selection)
use the classifier as a black box to rank subsets of features
based on their predictive performance. In the most general formu-
lation, wrapper methods use the prediction performance of a given
classifier to assess the relative usefulness of subsets of features (as
opposed to filter methods, which select subsets of features as a
preprocessing step and independent of the classifier performance;
in filtermethods, featuresare rankedbasedonapredefinedcriterion
such as correlation coefficients).

The RFE-SVM method is based on a backward elimination
selection meaning that the algorithm starts with all features and
repeatedly removes the least promising feature at each step
until all variables have been ranked. In order to find the
least promising feature at each step RFE-SVM utilizes SVM
and finds w and b. The removed feature is the one whose
removal minimizes the variation of kw2k. In other words,
the removed variable is the one that has the least influence
on the weight vector norm. The feature selection procedure
at each step can be summarized as

1. Train the classifier.

2. For each feature i, compute the ranking criterion w2
i

where wi is the ith component of w.

3. Remove the feature with smallest ranking criterion.

2.4 Cross Validation

The leave-one-out cross validation procedure consists of
removing one example from the training set, constructing
the predictor on the basis only of the remaining training
data, then testing on the removed example. In this fashion,
one tests all examples of the training data and averages the
results. In this study, we used subject-level leave-one-out
cross validation meaning that we set aside all trials of a subject
prior to feature selection and training and we repeat this proc-
ess for all the subjects.

2.5 Functional Data Analysis

Medical devices measure data from a continuous physiological
process as discrete samples subject to observational noise. We
want a mathematical description of the curve or data distributed
over time (in general form it can be any other types of con-
tinuum, e.g., space). Considering only one recorded sample
path we can write

EQ-TARGET;temp:intralink-;sec2.5;63;223yi ¼ xðtiÞ þ ei for i ¼ 1;2; : : : ; N;

where yi is the observed sample at time point ti, xðtÞ is the
underlying continuous process that we want to determine and
ei is the noise or measurement error of the sample at time
point ti. fDA tries to find a function—or better to say, a linear
combination of basis functions—that best describes the data
recorded at discrete times as a smooth function, in the sense
of possessing a certain number of derivatives. In other words,
we assume the existence of a smooth function x given rise to
the observed data vector y ¼ ðy1; : : : ; yNÞ 0. This falls under
the general class of approximation theory. The philosophy
behind fDA is “to think of observed data functions as single

entities, rather than merely as a sequence of individual
observations.”21 The advantages of using such representation
is twofold: (1) it provides a computational platform to reduce
dimension of data especially in cases where there are a huge
number of measurements on a small number of subjects,
known as large p small n problem and (2) smooth functions
allow study of the dynamics of the underlying processes through
their derivatives.12

2.5.1 Basis functions

In a functional domain, we study functional objects rather
than sample points; therefore the discrete data need to be con-
verted to a smooth functional object. However, before we can
convert raw discrete samples into a functional data object,
we must specify a system of basis functions that is a system
of simple smooth functions that are combined linearly to
approximate actual functions with an arbitrary level of
accuracy. Here, we replace observations y1; y2; : : : ; yN (N ¼
number of datapoints) with xðt1Þ;xðt2Þ; : : : ;xðtNÞ where xðtÞ
is a smooth function formed by a linear combination of basis
functions ∅j.

EQ-TARGET;temp:intralink-;sec2.5.1;326;513xðtÞ ≈
XK
j¼1

cj∅jðtÞ:

When these basis functions ∅j are specified, then the conver-
sion of the data into a functional data object involves comput-
ing the coefficient of the expansion cj.

Based on the choice of basis functions, different methods
have been developed: Fourier series (suitable for periodic phe-
nomenon), wavelet (suitable for sharp local features phenome-
non like heart rate), and B-spline (suitable for smoother
and slower phenomenon like hemodynamic response or body
temperature).21

As explained above, the choice of basis functions depends on
the nature of the signal, and for a physiological signal like hemo-
dynamic response B-spline is the best option.

Spline functions are formed by joining polynomials together
at fixed points called knots. The order of the polynomial (m) is
defined as the number of coefficients defining the polynomial,
and degree of polynomial is the highest power of the polynomial
which is one less than its order (m − 1).

A spline system can be defined by (1) the order m of the
polynomial and (2) the location and number of the knots.22

Location of knots can be distributed equally over the data or
more knots can be assigned to the parts of data which have
more variability.

A much better representation of splines for computation is a
linear combination of a set of basis functions called B-splines.
These splines have an attractive feature known as compact sup-
port (meaning that any given basis function is nonzero over a
span of at most five distinct knots), which has been shown to
have more stable numerical properties than methods employing
other bases.23

We use penalized least-square estimation procedure,
described later, for smoothing based on B-spline bases.

In our model we have

EQ-TARGET;temp:intralink-;sec2.5.1;326;110yi ¼ xðtiÞ þ ei:

And we want to estimate xðtÞ as

Journal of Biomedical Optics 101411-3 October 2016 • Vol. 21(10)

Pourshoghi, Zakeri, and Pourrezaei: Application of functional data analysis in classification. . .



EQ-TARGET;temp:intralink-;sec2.5.1;63;752xðtÞ ≈
XK
j¼1

cj∅jðtÞ:

The goodness of fit is measured by the least-squares criterion
as

EQ-TARGET;temp:intralink-;sec2.5.1;63;688SSE ¼
X
j

½Yj − xðtjÞ�2:

In a regular regression we try to minimize this cost function.
However, here we add an extra term to the least-square criterion
to measure roughness of xðtÞ. This term is defined as

EQ-TARGET;temp:intralink-;sec2.5.1;63;612PEN2 ¼
Z �

d2xðtÞ
dt2

�
2

;

where PEN2 measures the curvature and smoothness of the
function. A smaller PEN2 implies a less variable function,
whereas a larger PEN2 indicates a rougher curve.

The new penalized squared error cost function can be written
as

EQ-TARGET;temp:intralink-;sec2.5.1;63;511PENSSE ¼
X
j

½Yj − xðtjÞ�2 þ :
Z �

d2xðtÞ
dt2

�
2

;

where λ is smoothing parameter that controls the trade-off
between the closeness to the observed values and the smooth-
ness of the function. If λ is close to zero, we obtain an estimate
too close to the data and if is too large, we obtain an estimate
equivalent to the linear regression estimate of the data.

In this study, knots were equally spaced and the number of
knots was determined based on trial-and-error methods suggest
by Ref. 24 in which we start with 5, 10, 15, 20, and so on until
we obtain the right amount of smoothing for the data.

Once the number of knots is determined, other methods can
be used to determine the smoothing parameter (λ). An appropri-
ate smoothing parameter may be chosen subjectively by visual
judgment and prior knowledge of the process generating the
data. An objective, data-driven method is also developed
using the generalized cross validation (GCV) measure25

EQ-TARGET;temp:intralink-;sec2.5.1;63;297GCVðλÞ ¼
�

N
N − dfðλÞ

��
SSE

N − dfðλÞ
�
;

where N is the number of observations, SSE is the mean square
error, and dfðλÞ is the trace of the smoothing matrix.26 In
this study, we used GCV method for choosing smoothing
parameter (λ).

2.6 Participants

Nineteen healthy, right-handed individuals (10 females) from
the Drexel University community participated in this study
after giving the informed consent form approved by the
Institutional Review Board. Subjects were instructed to avoid
smoking and drinking any caffeinated or alcoholic beverages
for at least 3 hours prior to the experiment.

2.7 Protocol

The collected data8 includes 76 dataset of hand immersion in
cold water in four different temperatures (1 deg, 5 deg,
10 deg, and 15 deg; 19 dataset for each temperature). These tem-
peratures have been used to generate low-, moderate-, and high-
pain levels. After a baseline recording for 30 s, subjects were
asked to immerse their hand in the tepid water for 2 min for
adaptation. Then, an experimenter asked them to put their
hand in a constant temperature bath which is kept at a certain
temperature for as long as they can tolerate the stimulated pain
but no more than 5 min (Fig. 1). First 90 s of hand immersion in
cold water is used in this study. During each experiment numeric
pain rating scores from a 0 to 10 scale—where zero means
no pain and ten means an intolerable pain—was recorded
every 15 s.

2.8 Measurements

A continuous wave fNIRS system designed and developed at
Drexel University was used in this study. The principle and instru-
mentation of fNIRS are described elsewhere.27–29 Throughout the
procedure, two fNIRS sensors (Fig. 2) were positioned symmet-
rically on the left and right sides of a subject’s forehead proximate
to the anterior median line and were secured using a medical
bandage and a Velcro strap. The fNIRS sensors consisted of
one light source with two light-emitting diodes (LEDs) at 730-
and 850-nm wavelengths and three photodetectors. Two detectors
were placed at 2.8 cm from the LED making the “far” channels to
investigate the hemodynamic response at intracranial layers and
one detector was located at 1 cm from the LEDmaking the “near”
channel to measure the hemodynamic changes within the super-
ficial extracranial tissues (Fig. 2).

The sampling rate of raw optical intensity measurements was
2 Hz. The optical density parameters for 730- and 850-nm wave-
lengths were calculated by taking the logarithm of the ratio of
the detected light intensity during baseline to the detected
light intensity during the task. The optical density time series
were converted to changes in oxyhemoglobin (HbO2) and deox-
yhemoglobin (Hb) concentrations using the modified Beer–
Lambert law.

Fig. 1 The block diagram of tolerance test protocol.
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2.8.1 Reported pain scores

Experiment was designed in four different temperatures (0°C, 5°
C, 10°C, and 15 °C) to generate different levels of pain. Subjects
were asked to report their pain in a numeric 0 to 10 scale (NRS-
1130) every 15 s. In this study, reported pain scores in the first
90 s of the experiment are averaged for each subject and
assigned as subject’s self-reported pain. Figure 3 shows the
histogram and boxplots of these self-reported pain scores.

In order to reduce the subjective nature of self-reported pain
scores and minimize ambiguity between painful and nonpainful
data we decided to group pain scores equal and higher than 8 as
high pain and equal and lower 6.5 as low pain. Using these cri-
teria, we had an almost even number of trials in each category
(55% painful, 45% nonpainful) and trials that were in the gray
area in between high pain and low pain were excluded from the
dataset. The final dataset that has been used includes 61 trials.

3 Results

3.1 Functional Data Analysis Results

In this study, we use fDA methodology to convert Hb and HbO2

data collected by fNIRS during the cold pressor test into smooth
functions estimated by cubic B-spline basis functions (order 4).
The effect of using different orders for B-spline basis is shown in
Fig. 4. The most popular choice is the order 4 (cubic) B-spline
basis in the literature. Since in cubic splines the segments join
with matching derivatives up to order 2 the curvature appears to
change smoothly. This is because the second derivative mea-
sures the curvature of a curve, and the curvatures match at
the breakpoints. Moreover, a cubic spline is the unique mini-
mizer of the penalized squared error cost function explained
in Sec. 2.5 (see Ref. 23 for more details).

The advantage of our method is that we use the shape of the
signal itself (as opposed to extracted features from the signal) to
classify and cluster the data. In other words, here, we do not
need to define some features from the signal and we use the
basis coefficients of fDA curves instead. We do both classifica-
tion and clustering on the fDA data. In the classification part, our
main goal is to explore the possibility of classifying high-pain
and low-pain signals based on their shapes and curvatures using
fDA coefficients. fDA provides us a statistical tool to answer
questions like, “What are the main ways in which the curves
vary from one signal to another?”

In the clustering part we specifically would like to answer:
(1) How many different types of curves exists in the data? (2) Is
there a relation between reported pain levels and the clusters in
any of Hb or HbO2 curves? (3) Is it possible to find Hb or HbO2

responses as prototype curves that represent corresponding pain
levels?

3.1.1 Data processing

Raw fNIRS data for 730- and 850-nm wavelengths were first
filtered using a finite impulse response low-pass filter with a

Fig. 3 Boxplots and histogram of subjects self-reported pain scores:
(a) boxplots in four different temperatures, and (b) histogram. We
used the thresholds 6.5 and lower for low-pain (44%) and 8 and higher
for high-pain (56%) groups.

Fig. 2 Placement of NIRS probes on a subject’s forehead. Six photo-
detectors collect the data for 6 channels. Channels 1 (right) and 4 (left)
are in near distance from the sources and channels 2, 3 (right) and 5,
6 (left) are in far distance from the sources.
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cut-off frequency of 0.14 Hz to remove high frequency noise,
respiration, and heart pulsation artifacts. Motion artifact effects
were minimized in the data by securing NIRS probes with
a medical bandage and a Velcro strap. The filtered raw data

were converted to changes in Hb and HbO2 concentrations
relative to the baseline using modified Beer–Lambert law.

All fDAs were conducted in MATLAB (R2015a,
MathWorks) using the fDA package for MATLAB.22 Hb and

Fig. 4. Effect of using different orders for B-spline bases. B-spline basis (left), a sampleHB signal estimated
by 10 bases (right): (a) B-spline order 1, (b) B-spline order 2, (c) B-spline order 3, and (d) B-spline order 4.
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HbO2 were smoothed by imposing a penalty on the roughness of
the second derivative of the data (PEN2) as described in the pre-
vious section. The smoothing parameter was chosen using the
GCV method for each dataset (Fig. 5). Having 30 bases (clus-
tering part), the lambda varies in the order of 0.1 and for 10
bases (classification part) it changes in the order of 10 to 100.

3.2 Classification of fNIRS Data Using Functional
Data Analysis

Since there are six channels of measurements, by converting Hb
and HbO2 into functional objects, each dataset will have a coef-
ficient matrix of size (n × 12) in which n is the number of bases.
We decided to use a fixed number of bases for all the trials.
Figure 6 shows a sample Hb data which is estimated with a dif-
ferent number of bases. We found that 10 bases are enough to
represent the data correctly.

The goal is to classify the data into high pain and low pain
using these coefficients. We utilize SVM with Gaussian kernel
as the classifier here Ref. 17.

Using 10 bases, we will have 120 coefficients for each
dataset which is a large number relative to number of observa-
tions (65). Therefore, we need to apply dimension reduction
techniques first. We used the recursive feature elimination
(RFE-SVM) method explained in Ref. 20 to sort the coefficients
based on their classification capability. Figures 7(a)–7(c) show
the classifier accuracy using only near channels measuring skin
responses (2 channels, 40 bases), only far channels measuring
mostly cortex and a little bit of skin responses (4 channels, 80
bases), and both near and far channels together (6 channels, 120
bases), respectively.

These results show that the classifier needs both skin and
brain responses to achieve the best performance. The maximum
accuracy achieved by using only near channels—skin responses
—is 80% while using only far channels reaches an accuracy of
88%. The best classification accuracy (94%) is achieved by
using both near and far channels. This performance happens

by using the first 15 bases ordered by RFE-SVM method (8
bases from far channels and 7 bases from near channels).

3.3 Clustering of NIRS Curves Using Functional
Data Analysis

As opposed to classification which is a supervised learning
method, here we use clustering which is an unsupervised tech-
nique. The clustering is the task of grouping a set of objects in
such a way that objects in the same group (called a cluster) are
more similar (in some sense or another) to each other than to

Fig. 5 GCV method was used to find the optimum smoothing param-
eter for each trial.

Fig. 6 The effect of choosing a different number of basis (B-spline
order 4): (a) 5 bases, (b) 10 bases, (c) 20 bases, and (d) 30 bases.
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those in other groups (clusters). Here, we want to cluster the data
based on their curves similarity estimated by fDA coefficients.

We selected the subjects from two ends of the spectrum. The
ones who reported pain scores less than five (real low pain) and
the ones who could not tolerate the test for the whole 5 min (real
high pain). We found that 10 bases are not enough to cluster the
trials accurately and more details from signal curvatures are
needed in the clustering part. Therefore, we used 30 bases to
estimate the data.

Figure 8 shows a sample of fDA curves for channel 5 and
channel 6 (far channels on left side) using 30 bases. High-
pain and low-pain signals are shown in red and blue,
respectively.

We performed a hierarchical agglomerative clustering
(bottom–up clustering) analysis using a set of dissimilarities,
for the observations being clustered. Initially, each observation
is assigned to its own cluster and then the algorithm proceeds

Fig. 7 RFE_SVM feature selection classification accuracy with FDA
data. Basis ¼ 10, (a) using only near channels, (b) using only far chan-
nels, and (c) using all channels: First 15 coefficients which resulted
in 94% accuracy are: (numbers in the parentheses show bases
numbers which can be between 1 and 10, base 1 represents first
1∕10 of the data, base 2 second 1∕10 and so on): Far_left_Hb(10),
NearleftHbO2ð10Þ, Far_right_Hb(1), FarleftHbO2ð5Þ, Far_left_Hb(1)
NearleftHbO2ð4Þ, Near_left_Hb(3), Far_right_Hb(7), NearleftHbO2ð2Þ,
FarrightHbO2ð4ÞNearrightHbO2ð7Þ, Far_left_Hb(9), FarrightHbO2ð5Þ,
NearleftHbO2ð1Þ, Near_left_Hb(2).

Fig. 8 HBO2 and HB curves for channel 5 and channel 6 (far chan-
nels on the left side) using 30 bases. First 30 numbers are coefficients
for Channel 5 HbO2 signal, 31 to 60 are coefficients for Channel 5 Hb
signal, 61 to 90 are coefficients for Channel 6 HbO2 signal, and 91 to
120 are coefficients for Channel 6 Hb signal. Low-pain and high-pain
signals are shown in blue and red, respectively.

Fig. 9 Clustering of painful (P) and not-painful signals (N) based on
their HBO2 fDA curves.
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iteratively, at each stage joining the two most similar clusters
(according to the Ward’s minimum variance method), continu-
ing until there is just a single cluster.

The created dendrogram for channel 6 HBO2 curves is
shown in Fig. 9. Dendrogram is a graph with clusters on
x-axis and height (distance) on y-axis. The height of each

node (parent) is proportional to the value of the intergroup dis-
similarity between its two subnodes (daughters).31 Then by cut-
ting the tree at different heights (distance threshold) we can have
a different number of classes. It is up to the user to decide which
level (if any) actually represents a “natural” clustering in the
sense that observations within each of its groups are sufficiently
more similar to each other than to observations assigned to
different groups at that level.

It can be seen in Fig. 9 that one observation (shown by a red
circle) appears high in the tree structure that can be a cluster by
itself or play the role of an outliers. One needs further study and
more subjects to verify that. Other than that there are three major
clusters in the data. One cluster overlaps with not-painful data
completely while two other clusters cover the painful signals
with an accuracy of 91.6%. In other words, it seems that
there are two types of painful curves (63% of painful responses
fall into pain cluster 1 and 37% into pain cluster 2) and one type
of not-painful curve in the HbO2 data.

Figure 10 shows the mean and variance of each cluster. The
cluster mean can be seen as a prototype curve that represents the
cluster. In other words, if HbO2 curve of a new subject is more
similar to Figs. 10(a) or 10(c) it can be considered as painful and
if it is more similar to Fig. 10(b) it can be considered as
nonpainful.

4 Conclusion
Despite the advances in medical imaging technology that sig-
nificantly help basic science, there remains an unmet clinical
need for a practical, inexpensive tool for the reliable and objec-
tive assessment of human response to pain. Advanced functional
imaging modalities such as fMRI and PET scans deliver supe-
rior spatial information which comes at a high equipment and
maintenance price. Therefore, they are not readily accessible for
routine clinical use.

On the other hand, techniques such as fNIRS are not only
noninvasive and safe but also portable, affordable and with a
short set up time which makes it more clinic friendly for appli-
cations such as pain measurement or management in the clinic.
Due to the ease of fNIRS measurements on the frontal region, in
this paper we pursued feasibility of employing this signal for
objective assessment of pain. Using fDA we found parts of
the fNIRS signals that correlate to the pain and could be
used to train a machine-learning system to classify signals
based on different level of pains with a high accuracy.
Moreover, using hierarchical clustering techniques we found
that three different types of curves existed in the fNIRS
HbO2 responses in which two of them related to the high-
pain stimuli and the other one related to the low-pain stimuli.
This produced two prototype curves of fNIRS response to
high-pain stimuli and one prototype response to low-pain
stimuli.

Feature-based approaches need some features to be defined
and extracted from the data prior to classification. Obviously, the
accuracy and results depend on howwell the features are defined
and extracted. As opposed to them, we aimed another approach
which tried to classify and cluster the data based on the shape of
the smooth curves obtained from the data. In other words, there
is no need for an expert opinion to define features prior to the
classification. We used fDA procedure to convert discrete mea-
sured samples of data into continuous functions explained by
a linear combination of some basis functions. This method,

Fig. 10 Mean and error bars for channel 6 (far left) HbO2 curves:
(a) painful stimuli cluster 1, (b) nonpainful stimuli, and (c) painful
stimuli cluster 2.
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combined with an RFE-SVM model selection algorithm,
reaches an accuracy of 94% using an SVM classifier.

In addition to classification, we were able to cluster high-pain
and low-pain signals correctly based only on the shape of their
HBO2 signals. We observed two different clusters of high-pain
signal and one cluster of low-pain signal.

We used subject-level leave-one-out cross validation, mean-
ing that we set aside all trials of a subject prior to feature selec-
tion and training and we repeat this process for all the subjects.
Although the leave-one-out cross validation is known to have
the least bias in estimating the true error of the model, however
its effect on the generalizability of the results should be consid-
ered for new datasets.

We believe that our proposed approaches here are one step
toward the goal of establishing a clinical method for objective
assessment of pain because:

1. Our approach provided trial-by-trial predictions of
pain level from fNIRS measurement meaning that
each data was collected only once from the subject
as opposed to averaging trials over repeated measure-
ments. Moreover, all the subjects’ data are used indi-
vidually to evaluate the classifier accuracy through
leave-one-out cross validation.

2. In addition to the inherent advantages of fNIRS for
clinical applications, we used fNIRS measurements
only from the forehead which makes the process of
data collection very fast, easy, and clinical friendly.

Further refinement of proposed methods, including incorpo-
rating more datasets and employing other noxious stimuli (e.g.,
electrical and mechanical), is required to make the fNIRS tech-
nique a powerful clinical tool for pain assessment.
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