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Abstract. Rapidly rising levels of myopia, particularly in the developing world, have led to an increased need for
inexpensive and automated approaches to optometry. A simple and robust technique is provided for estimating
major ophthalmic aberrations using a gradient-based wavefront sensor. The approach is based on the use of
numerical calculations to produce diverse combinations of phase components, followed by Fourier transforms to
calculate the coefficients. The approach does not utilize phase unwrapping nor iterative solution of inverse prob-
lems. This makes the method very fast and tolerant to image artifacts, which do not need to be detected and
masked or interpolated as is needed in other techniques. These features make it a promising algorithm on which
to base low-cost devices for applications that may have limited access to expert maintenance and operation. ©
2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.12.121511]
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1 Introduction
Uncorrected refractive error is the leading cause of vision
impairment worldwide.1–3 There is a need for inexpensive sol-
utions, particularly in the developing world, which lacks suffi-
cient resources and specialists. Furthermore, the prevalence of
myopia has been rapidly increasing in recent years in Asia,4 put-
ting a strain on eyecare systems. Wavefront sensors provide one
potential avenue for automation to help address this problem.
Unlike the phoropter,5 which is a complex apparatus that
requires operation by a trained expert to determine the best sub-
jective correction, a wavefront sensor-based device can directly
measure the optical performance of the patient’s eyes. Conven-
tional autorefractors6 used older technologies and were gener-
ally unsuccessful at automating this evaluation.

The advantage of the wavefront sensor is that it also provides
measurements of higher-order aberrations (where low order
refers to defocus and astigmatic error) that have been shown
to be critical for determining an accurate correction.7,8 Given
these measurements, a more accurate correction may then be
performed with conventional spectacle lenses by optimizing a
sharpness metric that estimates the net effect on the retinal
point spread function.9 Unfortunately, wavefront sensors still
tend to be very sophisticated systems, primarily designed for
expensive applications such as refractive surgery10 when used
in ophthalmic practice; in such an application, the cost of errors
is very high and clearly an expert operator must be presumed to
be available. For the application of determining the needed
refractive correction, however, we can potentially trade off
much of the complexity and cost to address a much wider pop-
ulation. When the goal is correction of refractive errors, an esti-
mate of the full wavefront error is not needed. It is primarily a
subset of third- and fourth-order aberrations, particularly the
more central terms in the Zernike expansion such as coma
and spherical aberration, which dominate the effects of aberra-
tions on visual acuity.7,8 Furthermore, these are the largest

high-order aberrations seen in the population.11 A better reduc-
tion in complexity would, therefore, be achieved with a method
that focuses on robustly estimating just these important terms.

The most common ophthalmic wavefront sensor utilizes a
Shack–Hartmann lenslet array.10,12 This is a relatively expensive
device due to fabrication costs,13 particularly for high-density
arrays, though prices might be reduced significantly given
the development of high-volume fabrication techniques target-
ing the smartphone market.14 Indeed, higher density arrays are
desirable to improve accuracy;15 lower density arrays suffer
more from the curvature of the wavefront across each lenslet,
as well as edge effects and related distortions caused by local-
ized artifacts. A potentially cheaper high-density option15 is gra-
ting-based sensors, such as those that utilize the Talbot
effect.16,17 These can easily use grating patterns with a very
small pitch (equivalent to a high-density array), which can be
produced by simply etching the grating onto a glass slide
attached to the detector.

In addition to the sensor device, wavefront sensing requires
a specialized algorithm to estimate the wavefront from the
detected intensity pattern. Figure 1 shows an overview of
common methods utilized for Shack–Hartmann and Talbot devi-
ces. With higher density lenslet arrays (and with Talbot gra-
tings), it becomes increasingly difficult to determine the
displacements for individual elements to perform the classical
methods of Fig. 1(a), due to diffraction and reduced signal-
to-noise ratio,20 which suggests Fourier methods may be
more attractive. As depicted in Fig. 1(b), Fourier methods typ-
ically must unwrap the phase after demodulation of the grating
frequency.21 Unfortunately phase unwrapping remains an open
problem,22 as it is ill-posed and NP-hard;23 even in a noise-free
scenario, one cannot guarantee an optimal result without testing
a combinatoric number of possible combinations of 2π steps. In
practical terms, phase unwrapping algorithms are particularly
sensitive to localized image artifacts, as are the spot detection
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methods of Fig. 1(a), and common issues such as eyelashes or
corneal scars can cause catastrophic failures in reconstruction.24

Figure 2 shows examples of eyelashes occluding the pupil, a
common artifact that can result in significant difficulties.
Research on phase unwrapping continues, utilizing sophisti-
cated nonlinear optimization techniques such as total-variation
denoising,25 unscented Kalman filters,26 and sparse modeling.27

Researchers have also proposed techniques to improve or
extend other components of the Fourier methods of Fig. 1(b).
Demodulation can be performed by a fast filtering in the image
domain.28 Gradient inversion is itself a nontrivial inverse prob-
lem, and a variety of techniques have been developed29 includ-
ing fast noniterative approaches.30 If the wavefront phase is
small, it may also be extracted directly after demodulation in
the spatial frequency domain, by taking the anti-hermitian
component after centering,31 which can then be directly used
in Fourier-based inversion methods. However, this approach
requires symmetry of the signal aperture, and the small-angle
approximation leads to increasing errors for larger aberrations.

As noted earlier, there are only a limited number of major
aberration components of interest for refractive correction, so
a more specialized approach may sidestep the major difficulties
of these conventional reconstruction algorithms. This paper for-
mulates a direct approach to estimate major aberrations, gener-
ally described in Fig. 1(c), which does not need phase
unwrapping or iterative inversion. The approach uses a numeri-
cal technique mathematically similar to a spatial heterodyne, to
create a diversity of images with different aberrations. At each
polynomial order, the algorithm estimates each aberration coef-
ficient by finding the peak frequency component. This technique
is employed in a successive fashion to compute and correct for
successively lower aberrations until only the low-order terms
remain to be calculated much more accurately. Furthermore,
the fact that this approach is not reliant on high-quality estimates
of spot locations or pixel phase allows us to take advantage of
higher pitch gratings, which reduces the relative effect of edges
and localized artifacts, and also allows for a very compact and
easily produced sensor. We will demonstrate the performance of

(a) (b) (c)

Fitting Fitting
zernike

conversion

Fig. 1 (a) In classical Shack–Hartmann methods,18 focal spot displacements are estimated to get sam-
ples of the wavefront x - and y -gradients; the wavefront is computed from these gradients via an inversion
algorithm, and Zernike coefficients can be computed from the reconstructed wavefront. (b) Fourier-based
methods19 replace the spot detection step with a demodulation that directly extracts components con-
taining the x - and y -gradients in their phase; the phase values are modulus 2π, however, so phase
unwrapping is required. (c) The proposed method operates directly on the demodulated signal compo-
nents, by estimating the peak locations of products of signals; no phase unwrapping or inversion is
needed.

Fig. 2 Examples of eyelash shadows partly occluding pupil signal; the bright regions are reflections of
the laser source from the cornea and subsequent structures.
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the method with simulations depicting the robustness against
severe artifacts, as well as over a range of realistic aberration
magnitudes.

2 Method
An ophthalmic wavefront sensor typically utilizes a monochro-
matic laser source scattered from a point on the subject’s retina.
Viewing this as a point source, the scattered light passes through
the eye’s optics in reverse, and deviations of the resulting signal
from a planar wavefront provide an estimate of the eye’s optical
aberrations. Most commonly, the returning signal is reimaged
from the eye onto a wavefront sensor, such as in Fig. 3, which
depicts a sensor utilizing the Talbot effect (a) and a Shack–
Hartmann array (b). The resulting image at the camera may
be described as the intensity of a interference pattern of the fol-
lowing equation:

EQ-TARGET;temp:intralink-;e001;63;313sðx;yÞ¼
X
n;m

Cn;m cos

�
m
2π

P
½x−αðx;yÞ�þn

2π

P
½y−βðx;yÞ�

�
;

(1)

where Cn;m are the amplitudes for the different spectral compo-
nents; P is the pitch of the device array (e.g., the lenslet spac-
ing); and αðx; yÞ and βðx; yÞ are proportional to the horizontal
and vertical gradients, respectively, of the wavefront incident on
the sensor, wðx; yÞ

EQ-TARGET;temp:intralink-;e002;63;197αðx; yÞ ¼ d
∂
∂x

wðx; yÞ; (2)

EQ-TARGET;temp:intralink-;e003;63;157βðx; yÞ ¼ d
∂
∂y

wðx; yÞ; (3)

where d is a constant that depends on the type of sensor.
Neglecting magnification for simplicity for a Shack–Hartmann
sensor,21 we have d ¼ f, the focal length of the lenslets. For
a Talbot sensor,17 d ¼ zT ¼ 2P2∕λ, the Talbot distance for
the sensor, where λ is the wavelength of the light (assuming

the detector is at the first Talbot plane, otherwise incorporate
an appropriate integer for the plane used). Figure 4 shows a
simulated example depicting the result of a Talbot sensor
with a sinusoidal grating pattern, as well as a Shack–Hartmann
sensor with an equal pitch. The primary difference is the scalars
Cn;m for the harmonics.

The two-dimensional Fourier transform of the detected
image is

EQ-TARGET;temp:intralink-;e004;326;403s̃ðkx; kyÞ ¼
ZZ

expf−i2πðkxxþ kyyÞgsðx; yÞdxdy: (4)

The frequency content of the image is depicted in Fig. 5. The
important information can be retained with just the first-linear
harmonic terms where ðn;mÞ ¼ ð1;0Þ and (0,1) denoted by the
boxes in Fig. 5. For a plane wave, the peaks of the first terms
will be located at ð0;�k0Þ and ð�k0; 0Þ, where k0 ¼ ð1∕PÞ.
Assuming the information is sufficiently concentrated near
these points, we can extract the subimages depicted in Fig. 6,
where the origins correspond to the ð0; k0Þ and ðk0; 0Þ points,
respectively, from the original spatial frequency image. By tak-
ing the inverse Fourier transform of these subimages, we get
complex images modulated by the phase gradients

EQ-TARGET;temp:intralink-;e005;326;238

sαðx; yÞ ¼ C1;0 exp

�
−
2πi
P

αðx; yÞ
�
;

sβðx; yÞ ¼ C0;1 exp

�
−
2πi
P

βðx; yÞ
�
: (5)

2.1 Low-Order Aberrations

In the absence of high-order aberrations, we can immediately
calculate the defocus and astigmatism based on the peak loca-
tions, via a relatively simple and well-known Fourier transform
technique. A purely quadratic surface can be written using
Zernike basis functions as

Fig. 3 Wavefront sensor: (a) employing grating with pitch P at appropriate distance from a camera to
utilize Talbot effect and (b) employing lenslet array with pitch P at appropriate distance from camera to
produce focused spot pattern.
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EQ-TARGET;temp:intralink-;e006;63;168wðx;yÞ¼ c32
ffiffiffi
6

p
xyþc4

ffiffiffi
3

p
ð2x2þ2y2−1Þþc5

ffiffiffi
6

p
ðx2−y2Þ:

(6)

The derivatives of this wavefront form linear functions,
yielding

EQ-TARGET;temp:intralink-;e007;63;109

αðx; yÞ ¼ dðc32
ffiffiffi
6

p
yþ c44

ffiffiffi
3

p
xþ c52

ffiffiffi
6

p
xÞ;

βðx; yÞ ¼ dðc32
ffiffiffi
6

p
xþ c44

ffiffiffi
3

p
y − c52

ffiffiffi
6

p
yÞ; (7)

and so the Fourier transforms of Eq. (5) have the form of delta
functions (presuming infinite continuous functions for clarity)
EQ-TARGET;temp:intralink-;e008;326;329

s̃αðkx; kyÞ ¼ δ½2πðx − XαÞ; 2πðy − YαÞ�;
s̃βðkx; kyÞ ¼ δ½2πðx − XβÞ; 2πðy − YβÞ�; (8)

with peak locations as labeled in Fig. 6. Solving for the Zernike
coefficients based on the peak locations gives the following
estimate:
EQ-TARGET;temp:intralink-;e009;326;250

c3 ¼ −
P

4
ffiffiffi
6

p
d
ðXβ þ YαÞ;

c4 ¼ −
P

8
ffiffiffi
3

p
d
ðXα þ YβÞ;

c5 ¼ −
P

4
ffiffiffi
6

p
d
ðXα − YβÞ: (9)

For some applications, such as system calibration or deter-
mining the amount of compensation to use, this simple estimate
may suffice. In the presence of high-order aberrations, however,
this approach will become increasingly inaccurate.

2.2 High-Order Aberrations

To address high-order aberrations, we will take advantage of
the fact that ophthalmic wavefronts are dominated by a small

Fig. 4 Simulated grating (top row) and Shack–Hartmann (bottom row) result; detector image (left) and
spatial-frequency image (right). Detector images are 1024 × 1024 pixels covering 10 mm, with a pitch of
42 μm and a magnification of 2.0; here images are zoomed to central 200 × 200 pixel region for visibility
of pattern.

Fig. 5 Example of s̃ðkx ; ky Þ, two-dimensional spatial Fourier trans-
form of sensor image, depicting locations of subimage selection
about harmonic terms of interest.
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number of Zernike terms, while retaining the robustness
and simplicity of Fourier-transform-based methods such as in
Sec. 2.1. We address high-order terms by numerically comput-
ing shifted products of the demodulated images and their con-
jugates, and thereby convert higher-order terms to lower orders
by a process similar to differentiation. This will allow us to sub-
sequently utilize a low-order estimation method like that of
Sec. 2.1. While the approach appears quite involved mathemati-
cally, the derivation only requires manipulations of small matri-
ces, and the implementation consists of phase adjustments and
fast Fourier transforms (FFTs) of the relatively small subimages
around the peaks.

The first step is to process the subimages as follows, for both
the sα and sβ subimages,
EQ-TARGET;temp:intralink-;e010;63;413

sðxÞα ðx; yÞ ¼ sαðx − Δ; yÞsαðxþ Δ; yÞ�;
sðxxÞα ðx; yÞ ¼ sðxÞα ðx − Δ; yÞsðxÞα sαðxþ Δ; yÞ�;
sðyÞα ðx; yÞ ¼ sαðx; y − ΔÞsαðx; yþ ΔÞ�;
sðyyÞα ðx; yÞ ¼ sðyÞα ðx; y − ΔÞsðyÞα ðx; yþ ΔÞ�;
sðxyÞα ðx; yÞ ¼ sðyÞα ðx − Δ; yÞsðyÞα ðxþ Δ; yÞ�: (10)

Recall that the demodulated subimages are complex, unlike
the original detected image. We will label the phase of these
subimages with α for those derived from the (1,0) term and
β for those derived from the (0,1) terms. For example, the
phase of sðxÞα is αðxÞ, and the phase of sðxÞβ is βðxÞ. The parameter
Δ is similar conceptually to the distance used in a finite-differ-
ence differentiation estimate (instead of first and second deriv-
atives, we refer to them as first and second products). The
precise choice is not critical, except that a large Δ discards
more information (as depicted in Fig. 7), while a smaller Δ
will result in a smaller frequency shift for our subsequent cal-
culation, making the result more susceptible to noise and quan-
tization errors. Section 3 gives a simulation demonstrating that
the output is relatively insensitive to Δ except for extreme
values.

The result of such combinations is most easily understood in
terms of transformations of monomials. Recall that a vector z of
Zernike coefficients describing all aberrations up to some order
can be described equivalently by a vector p of coefficients for
monomial terms.32 The vector p is related to z by a simple linear
transformation (i.e., z ¼ Mm2zp). A fourth-order wavefront can
be described as the monomial expansion

EQ-TARGET;temp:intralink-;e011;326;395wðx; yÞ ¼
X4
i¼0

X4−i
j¼0

pi;jxiyj; (11)

for which the coefficients may be easily visualized in the matrix
form (using base-zero indexing)
EQ-TARGET;temp:intralink-;e012;326;334

P ¼

0
BBBBBB@

p0;0 p0;1 p0;2 p0;3 p0;4

p1;0 p1;1 p1;2 p1;3 0

p2;0 p2;1 p2;2 0 0

p3;0 p3;1 0 0 0

p4;0 0 0 0 0

1
CCCCCCA
; (12)

with p ¼ vecðPÞ using the vectorization operator, an operator
that reforms matrix elements into a vector (purely for conven-
ience of notation). In matrix form, separable linear operations
may be performed using a matrix M, such as MTP to transform
the x-coordinate and PM to transform the y-coordinate. See
Ref. 32 for a more thorough introduction.

The coefficients of the gradient wavefronts αðx; yÞ and
βðx; yÞ can be computed using a differentiation matrix MD,
to get

EQ-TARGET;temp:intralink-;e013;326;148

Pα ¼ MT
DP ¼

0
BBBBBB@

p1;0 p1;1 p1;2 p1;3 0

2p2;0 2p2;1 2p2;2 0 0

3p3;0 3p3;1 0 0 0

4p4;0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
; (13)

Fig. 6 Subimages ~sα and ~sβ extracted from Fig. 5, depicting peak locations resulting from aberrations.

(b)(a) (c)

Fig. 7 An excessively large Δ parameter reduces the amount of pupil
information utilized (a) by 2Δ for the first product sðyÞ [and similar for
sðxÞ], (b) by 4Δ for the second products sðyyÞ [and similar for sðxxÞ], and
(c) by 2Δ in both directions for the remaining second product sðxyÞ. So,
a smaller Δ is desirable to retain the most pupil area.
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EQ-TARGET;temp:intralink-;e014;63;752

Pβ ¼ PMD ¼

0
BBBBBB@

p0;1 2p0;2 3p0;3 4p0;4 0

p1;1 2p1;2 3p1;3 0 0

p2;1 2p2;2 0 0 0

p3;1 0 0 0 0

0 0 0 0 0

1
CCCCCCA
: (14)

In this section, we will assume the device constants P ¼ d ¼
1 to simplify the notation; the scale factor P∕d may be applied
when done, the same as it appears in Sec. 2.1 for low-order coef-
ficient estimates. Note that the locations (row and column,
counting from zero) in the matrix Pα and Pβ give the power
of the new term via an expansion similar to Eq. (11) for αðx; yÞ
and βðx; yÞ, respectively. Hence we can easily see that the wave-
fronts are now third order, as would be expected from differen-
tiation, since the highest row or column index (when counting
from zero) for a nonzero element is three.

To determine the effect of the shifts by Δ, we use translation
matrices of the form

EQ-TARGET;temp:intralink-;e015;63;534

MΔ ¼

0
BBB@

1 0 0 0

Δ 1 0 0

Δ2 2Δ 1 0

Δ3 3Δ2 3Δ 1

1
CCCA: (15)

So, e.g., to determine the monomial coefficients for αðxÞðx; yÞ ¼
αðx − Δ; yÞ − αðxþ Δ; yÞ given Pα we would simply compute
MT

−ΔPα −MT
ΔPα. The resulting coefficients are

EQ-TARGET;temp:intralink-;e016;63;422

PαðxÞ ¼

0
BBB@

4Δp2;0 þ 8Δ3p4;0 4Δp2;1 4Δp2;2 0

12Δp3;0 12Δp3;1 0 0

24Δp4;0 0 0 0

0 0 0 0

1
CCCA:

(16)

A similar computation for αðxxÞðx; yÞ ¼ αðxÞðxþ Δ; yÞ −
αðxÞðx − Δ; yÞ gives
EQ-TARGET;temp:intralink-;e017;63;304

PαðxxÞ ¼

0
BBB@

24Δ2p3;0 24Δ2p3;1 0 0

96Δ2p4;0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA: (17)

The wavefront described by these coefficients is linear.
Writing out the polynomial gives

EQ-TARGET;temp:intralink-;e018;63;202

αðxxÞðx; yÞ ¼
X4
i¼0

X4−i
j¼0

½PαðxxÞ �i;jxiyj

¼ 24Δ2p3;0 þ 96Δ2p4;0xþ 24Δ2p3;1y: (18)

Hence, the processed image will be of the form (where, again,
we assume P ¼ d ¼ 1)

EQ-TARGET;temp:intralink-;e019;326;752

sðxxÞα ðx; yÞ ¼ C1;0 exp½−2πiαðxxÞðx; yÞ�
¼ C1;0 exp½−2πið96Δ2p4;0xþ 24Δ2p3;1yÞ�;

(19)

and its two-dimensional Fourier transform will have a peak at a
location

EQ-TARGET;temp:intralink-;e020;326;671ðkx; kyÞ ¼ ð96Δ2p4;0; 24Δ2p3;1Þ: (20)

So by finding the location of this peak, we can estimate the p4;0
and p3;1 coefficients of wðx; yÞ. With similar logic applied to the
other processed images, we are able to estimate all fourth-order
terms, to get

EQ-TARGET;temp:intralink-;e021;326;599

p4;0 ¼
1

96Δ2
X½sðxxÞα �;

p3;1 ¼
1

72Δ2
fY½sðxxÞα � þ X½sðxyÞα � þ X½sðxxÞβ �g;

p2;2 ¼
1

64Δ2
fY½sðxyÞα � þ X½sðyyÞα � þ Y½sðxxÞβ � þ X½sðxyÞβ �g;

p1;3 ¼
1

72Δ2
fY½sðyyÞα � þ Y½sðxyÞβ � þ X½sðyyÞβ �g;

p0;4 ¼
1

96Δ2
Y½sðyyÞβ �; (21)

where the terms that appear in multiple images are averaged, and
the coordinates for the peak of the Fourier transform of an image
s are denoted as ½XðsÞ; YðsÞ�.

The next step is to remove these components from the lower
order images, which we achieve by applying a phase adjustment
based on the quantity of the term that exists in each (see
Appendix). For example, from Eq. (16), we see that there are
quadratic components resulting from the fourth-order terms
of w, namely, 24Δp4;0 in the (2,0) entry, 12Δp3;1 in the (1,1)
entry, and 4Δp2;2 in the (0,2) entry. As a result we would apply

EQ-TARGET;temp:intralink-;e022;326;345δðxÞα ðx; yÞ ¼ exp½2πiΔð24p4;0x2 þ 12p3;1xyþ 4p2;2y2Þ�
(22)

to sðxÞα ðx; yÞ. Similarly for the other three quadratic images, we
would apply

EQ-TARGET;temp:intralink-;e023;326;275

δðyÞα ðx; yÞ ¼ exp½2πiΔð6p3;1x2 þ 8p2;2xyþ 6p1;3y2Þ�;
δðxÞβ ðx; yÞ ¼ exp½2πiΔð6p3;1x2 þ 8p2;2xyþ 6p1;3y2Þ�;
δðyÞβ ðx; yÞ ¼ exp½2πiΔð4p2;2x2 þ 12p1;3xyþ 24p0;4y2Þ�:

(23)

Now we can calculate the cubic terms from wðx; yÞ using the
peaks of the Fourier transform of these corrected images, as
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EQ-TARGET;temp:intralink-;e024;63;752

p3;0 ¼
1

12Δ
X½δðxÞα sðxÞα �;

p2;1 ¼
1

12Δ
fY½δðxÞα sðxÞα � þ X½δðyÞα sðyÞα � þ X½δðxÞβ sðxÞβ �g;

p1;2 ¼
1

12Δ
fY½δðxÞβ sðxÞβ � þ X½δðyÞβ sðyÞβ � þ Y½δðyÞα sðyÞα �g;

p0;3 ¼
1

12Δ
Y½δðyÞβ sðyÞβ �: (24)

Finally, we correct the third- and fourth-order terms in the
original gradient subimages, to accurately compute the sec-
ond-order aberrations, by forming
EQ-TARGET;temp:intralink-;e025;63;614

δαðx; yÞ ¼ exp½2πiΔð4p4;0x3 þ 3p3;1x2yþ 2p2;2xy2

þ p1;3y3 þ 3p3;0x2 þ 2p2;1xyþ p1;2y2Þ�;
δβðx; yÞ ¼ exp½2πiΔðp3;1x3 þ 2p2;2x2yþ 3p1;3xy2

þ 4p0;4y3 þ p2;1x2 þ 2p1;2xyþ 3p0;3y2Þ�: (25)

With these, we can calculate
EQ-TARGET;temp:intralink-;e026;63;523

p2;0 ¼
1

2
XðδαsαÞ;

p1;1 ¼
1

2
½YðδαsαÞ þ XðδβsβÞ�;

p0;2 ¼
1

2
YðδβsβÞ: (26)

Finally, we form the vector of monomial coefficients that can
be transformed to Zernike coefficients for application

EQ-TARGET;temp:intralink-;e027;63;413p¼
ðp2;0;p1;1;p0;2;p3;0;p2;1;p1;2;p0;3;p4;0;p3;1;p2;2;p1;3;p0;4ÞT:

(27)

To summarize, we have the following algorithm:

1. Demodulate detected image, producing complex sub-
images: sα and sβ.

2. Compute first product images: sðxÞα , sðyÞα , sðxÞβ , sðyÞβ .

3. From first product images, compute second product

images: sðxxÞα , sðxyÞα , sðyyÞα , sðxxÞβ , sðxyÞβ , sðyyÞβ .

4. From FFT peaks of second product images, compute
fourth-order coefficients: p4;0, p3;1, p2;2, p1;3, p0;4.

5. Using fourth-order coefficients, generate phase correc-
tions: δðxÞα , δðyÞα , δðxÞβ , δðyÞβ .

6. From FFT peaks of first product images with phase
corrections applied, compute third-order coefficients:
p3;0, p2;1, p1;2, p0;3.

7. Using third-order coefficients, generate phase correc-
tions: δα, δβ.

8. From FFT peaks of original subimages with phase cor-
rections applied, compute second-order coefficients:
p2;0, p1;1, p0;2.

9. Transform monomial coefficients to Zernike coeffi-
cients: z ¼ Mm2zp.

3 Results
Next, the method was tested with a variety of simulations of a
Talbot sensor. The simulations used a pupil size of 5 mm with a
detected image size of 10 mm for 1024 × 1024 pixels. The gra-
ting pitch was 42 μm, the wavelength was 850 nm, and the mag-
nification was ms ¼ 2.0 (this simply required that a scaling be
applied to the final terms based on their order). Figure 8 shows
the estimates versus true coefficients for the example from
Fig. 4. Here, the result of the simple second-order estimation
of Eq. (9) is also demonstrated, which does not use the sub-
sequent high-order estimation and their correction. Figure 9
shows the Fourier transforms of the subimages calculated in
the method, for one of the two linear harmonic terms used [spe-
cifically for just the ðn;mÞ ¼ ð1;0Þ term]. First note that the
peak in (a), the original subimage, exhibits a large amount of
high order, as do the subimages in (b) and (c), computed from
a single-shifted product. However, the second-shifted product
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Fig. 8 True Zernike coefficients used in simulation, and result of algo-
rithm to estimate fourth-order Zernikes (Fast4), as well as a version
that stops after estimating second-order coefficients (Fast2). Net rms
error (the root of the sum of the errors for each coefficient squared) is
0.043 μm-rms for Fast4, and 2.65 μm-rms for Fast2.
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Fig. 9 Example of Fourier transforms of subimages used in process-
ing, showing aberrations of peak: (a) s̃α, (b) ~s

ðxÞ
α , (c) ~sðyÞα , (d) ~sðxxÞα ,

(e) ~sðxyÞα , (f) ~sðyyÞα , (g) δðxÞα ~sðxÞα , (h) δðyÞα ~sðyÞα , and (i) δα~sα.
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images in (d), (e), and (f) result in Airy disks, as there is no
remaining high order at this point. Similarly, the correction
of the previous subimages, depicted in (g), (h), and (i), result
in Airy disks in the Fourier transforms, as the high order has
been accurately estimated and removed. Figures 10 and 11
show results for the same case with severe artifacts intentionally
added to the image; again, the high-order coefficients are accu-
rately estimated.

The previous examples simulate a purely fourth-order wave-
front, meaning no fifth- or higher-order aberrations are present.
This presumption is the basis for the simplifications we were
able to make. To test the effect of realistic levels of higher-
order aberrations, a large set of images were simulated based
on a secondary analysis of real sixth-order Zernike coefficients
for measurements from 1500 subjects collected at multiple clin-
ics in North America and Asia utilizing multiple different aberr-
ometers. Figure 12 shows the standard deviations for each
Zernike coefficient at 5 mm diameter versus the residual (true
minus estimate), which generally agrees with the statistics found
in other studies.11 We see that the magnitude of the terms drops
off quickly after fourth order (corresponding to coefficients
above 14). Typically, values in this region are <0.02 μm-rms,
which is comparable to the repeatability of the measurement
due to biological variation. In Fig. 12, we see that the error
after correction is reduced to this range as well.

Finally, this large simulation was used to test the parameter
choice Δ. This parameter directly results in the shift of the peaks
within the processed subimages, hence larger Δ makes this

estimate more accurate. Though note also that interpolation
of the Fourier transform, peak locations will generally be needed
to accurately measure small coefficients. The choice of larger Δ
also comes at a price, however, of utilizing less data from the
subimages as described in Fig. 7. In our initial testing, a mod-
erate choice of seven pixels was sufficient, and the result was not
very sensitive to this choice until extremes were reached. This
agrees with the simulation results shown in Fig. 13, where error
was found to be small and relatively constant between the
extremes of small shifts and a maximum of about 13.

3.1 Discussion

This paper presented an approach to estimate wavefront aberra-
tions that takes advantage of the limited order of aberrations
seen in ophthalmic applications, in order to provide a measure-
ment that is simple and robust, advantages that are critical for
low-cost applications. The drawbacks of more sophisticated
methods include the need for an expert operator to achieve
the best measurement possible and visually reject images con-
taining problematic artifacts to avoid capturing images that
result in catastrophic phase-unwrapping failures. Consider the
risks of using phase unwrapping to estimate the frequency of

Fig. 10 Image artifact examples, with random spots or lines to demonstrate algorithm robustness.
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Fig. 11 Resulting estimates for the three artifact examples. Net rms
errors (the root of the sum of the errors for each coefficient squared)
for Fast4 are 0.056, 0.18, and 0.19 μm-rms. As compared to an error
of 0.043 μm-rms for the example with no artifacts. The net errors for
Fast2 are 2.58, 2.56, and 2.74 μm-rms for the three cases, compa-
rable to the 2.65 μm-rms error in the artifact-free case.
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Fig. 12 Standard deviations of coefficients for each Zernike term in
simulated data (top) and in residual error after estimate (bottom).
Standard deviations of true Zernike coefficients 3, 4, and 5, are
0.27, 1.40, and 0.4274, respectively.
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a noisy signal versus simply using a Fourier transform and find-
ing the peak. Sophisticated methods also require additional
expert algorithm development to further detect problematic arti-
facts that cannot be avoided by the operator, such as scars and
reflections. These expert algorithms generally require careful
tuning as with any detection and classification algorithm, and
this tends to limit the range of applicable subjects, including
certain population groups. The key to the approach presented
here is the ability of transform methods to exploit the redun-
dancy from many grating periods, which also complements
the choice of accurate and inexpensive grating-based sensor ele-
ments such as the Zernike-based sensor used in the examples. It
should also be noted that the same approach works for a Shack–
Hartmann sensor, as the subimages will be mathematically
equivalent, as depicted in Fig. 5.

A fourth-order representation was used because this captures
the majority of aberrations in most eyes, as we demonstrated
with the population data analysis, but it is straightforward to
extend the method to higher orders. The most obvious way
would be to simply continue the process of computing addi-
tional shifted products. Another tactic might be to use a hybrid
technique that takes advantage of the reductions in high order in
the shifted-product subimages to subsequently utilize a simpler
phase estimate, perhaps which no longer needs to unwrap the
phase, such as fast Fourier demodulation.31 At the very least,
it would be simple to test the quality of the Fourier transform
peak to determine when the method has succeeded.

Appendix: Coefficient Matrices
We list here all the coefficient matrices resulting from the
shifted-product operations used

EQ-TARGET;temp:intralink-;e028;63;156

PαðxÞ ¼

0
BBB@

4Δp2;0 þ 8Δ3p4;0 4Δp2;1 4Δp2;2 0

12Δp3;0 12Δp3;1 0 0

24Δp4;0 0 0 0

0 0 0 0

1
CCCA;

(28)

EQ-TARGET;temp:intralink-;e029;326;752

PαðyÞ ¼

0
BBB@

2Δp1;1 þ 2Δ3p1;3 4Δp1;2 6Δp1;3 0

4Δp2;1 8Δp2;2 0 0

6Δp3;1 0 0 0

0 0 0 0

1
CCCA;

(29)

EQ-TARGET;temp:intralink-;e030;326;670

PαðxxÞ ¼

0
BBB@

24Δ2p3;0 24Δ2p3;1 0 0

96Δ2p4;0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; (30)

EQ-TARGET;temp:intralink-;e031;326;598

PαðxyÞ ¼

0
BBB@

8Δ2p2;1 16Δ2p2;2 0 0

24Δ2p3;1 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; (31)

EQ-TARGET;temp:intralink-;e032;326;524

PαðyyÞ ¼

0
BBB@

8Δ2p1;2 24Δ2p1;3 0 0

16Δ2p2;2 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; (32)

EQ-TARGET;temp:intralink-;e033;326;452

PβðxÞ ¼

0
BBB@

2Δp1;1 þ 2Δ3p3;1 4Δp1;2 6Δp1;3 0

4Δp2;1 8Δp2;2 0 0

6Δp3;1 0 0 0

0 0 0 0

1
CCCA;

(33)

EQ-TARGET;temp:intralink-;e034;326;364

PβðyÞ ¼

0
BBB@

4Δp0;2 þ 8Δ3p0;4 12Δp0;3 24Δp0;4 0

4Δp1;2 12Δp1;3 0 0

4Δp2;2 0 0 0

0 0 0 0

1
CCCA;

(34)

EQ-TARGET;temp:intralink-;e035;326;275

PβðxxÞ ¼

0
BBB@

8Δ2p2;1 16Δ2p2;2 0 0

24Δ2p3;1 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; (35)

EQ-TARGET;temp:intralink-;e036;326;203

PβðxyÞ ¼

0
BBB@

8Δ2p1;2 24Δ2p1;3 0 0

16Δ2p2;2 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; (36)

EQ-TARGET;temp:intralink-;e037;326;132

PβðyyÞ ¼

0
BBB@

24Δ2p0;3 96Δ2p0;4 0 0

24Δ2p1;3 0 0 0

0 0 0 0

0 0 0 0

1
CCCA: (37)

5 10 15 20
Δ

0.02

0.04

0.06

0.08

0.1

0.12

0.14
STD of Error

μ m
-r

m
s

Fig. 13 Average wavefront error versus shift parameter Δ for large
population of simulated wavefronts. For this pupil size and sample
spacing, the result is relatively insensitive to choices of Δ in the
range from three to twelve.
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