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Abstract. This research extends the work of Hoffman et al. to provide both sectioning and super-resolution using
random patterns within thick specimens. Two methods of processing structured illumination in reflectance have
been developed without the need for a priori knowledge of either the optical system or the modulation patterns.
We explore the use of two deconvolution algorithms that assume either Gaussian or sparse priors. This paper
will show that while both methods accomplish their intended objective, the sparse priors method provides
superior resolution and contrast against all tested targets, providing anywhere from ∼1.6× to ∼2× resolution
enhancement. The methods developed here can reasonably be implemented to work without a priori knowledge
about the patterns or point spread function. Further, all experiments are run using an incoherent light source,
unknown random modulation patterns, and without the use of fluorescent tagging. These additional modifica-
tions are challenging, but the generalization of these methods makes them prime candidates for clinical appli-
cation, providing super-resolved noninvasive sectioning in vivo. © 2017 Society of Photo-Optical Instrumentation Engineers
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1 Introduction
Advances in light sources, computational power, and molecular
tags have resulted in a renewed interest in improvements in
microscopy. In this work, we focus on four measures of micro-
scope performance: (1) resolution of smaller objects even below
the diffraction limit, (2) increased field of view (FOV) toward
gigapixel images, (3) the ability to “section” a turbid medium,
rejecting out-of-focus objects and thus providing three-dimen-
sional images, and (4) high contrast without exogenous materi-
als, which enables in vivo imaging. For example, in imaging
of skin cancers, the clinician would like to resolve subcellular
components to at least below the dermoepidermal junction
(∼100-mm deep), with as large an FOVas possible. High-numeri-
cal aperture (NA) objectives generally have high magnification,
thus limiting the FOV. Confocal reflectance microscopy1 uses a
high-NA objective to provide resolution and sectioning without
added contrast, but the high NA and consequent high magnifica-
tion determine that increased FOV requires mosaics of images.

One relatively new and practical solution to provide quick
and accurate sectioning is structured illumination microscopy
(SIM).2 By projecting a high-frequency modulation pattern
through the illumination path onto the specimen, isolation of
discrete planes is demonstrated, eliminating clutter that would
otherwise obscure useful information. Due to the high frequency
of the modulation patterns, it has been found that high-resolution
information beyond the diffraction limit, previously inaccessible,
can be recovered through innovative processing. Thus, we can
reduce the NA and increase FOV while still maintaining most
of the resolution and sectioning ability of the confocal micro-
scope. We demonstrate the use of random modulation patterns
of incoherent [light-emitting diode (LED)] light for resolution

enhancement and sectioning. The optimal solution to form an
image with high lateral resolution requires a pattern to be at the
Nyquist limit, which, after some reconstruction in the frequency
space, allows for double the resolution.3 In practice, there is a
trade-off between sectioning depth and the total resolution of the
system based on the spatial frequency of the modulation pattern.4

Original developments of super-resolution using structured
illumination required the precise movements of a sine pattern
with a discrete phase and frequency. To illuminate the image
fully, a 1∕3 period phase shift must be applied to the sine
pattern, requiring an extremely finely tuned mechanical device.
Additionally, the pattern must be rotated to a least two other
positions to provide resolution enhancement in the X- and
Y-(lateral) directions. Recently, attempts have been made to
reduce the necessity for a well-defined sine pattern. Removing
this dependency reduces the overall cost and complexity of
manufacturing and manipulating the pattern on a micron scale,
as well as removing the need for perfect phase alignment within
a turbid media.5–8 Dynamic speckle illumination microscopy
uses a speckle illumination pattern to provide sectioning at sig-
nificant depths but has been demonstrated using fluorescence
only.9,10 Instead, we use a random pattern in reflectance, com-
prised of N different samples. This method has the benefit of not
requiring exact phase shifts but also allows for in vivo imaging
without any tagging.4,11 However, without discrete frequencies
and phase shifts, the original method for super-resolution, devel-
oped by Gustafsson, cannot be applied to random patterns.
Thus, we develop two methods of providing both sectioning at
depth and resolution enhancements using a random pattern.

Two algorithms are demonstrated for producing sectioning
and super-resolution with an unknown random pattern. The
first method we will consider is the maximum a posteriori
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probability (MAP) processing technique.5 MAP processing pro-
duces a high-resolution, unsectioned image and a low-resolution,
sectioned image, which are then combined to produce a high-
resolution, sectioned image. Typically, when MAP is used in con-
junction with SIM, a sinusoidal pattern with a known frequency
and phase is required to produce sectioning. The literature does
not extend the work to sectioning at depth and makes no attempt
to demonstrate their functionality against a subsurface object.
Additionally, the transfer function of the system must be reason-
ably characterized to estimate the modulation pattern at the detec-
tor accurately. To alleviate some of these constraints, we modify
the algorithm to use random patterns that are not known ahead
of time. To validate the techniques developed above, we test and
consider the quality of sectioning and super-resolution.

Second, we consider a different technique of deblurring that
relies on sparse priors.12 Due to the fact that the point spread
function (PSF) will vary as a function of depth, deblurring
a thick specimen can often be tedious and a source of errors
as it requires multiple estimations of the PSF to correctly
reconstruct the image. By sectioning the image using SIM
first, we can account for the depth dependency of the PSF.
When this sectioned image is deblurred, we show that the
results for thick specimens are significantly better than deblur-
ring alone. Sparsity makes the assumption that the object is
comprised mostly of sharp edges, allowing us to deconvolve
a generic PSF with excellent results. Throughout this paper,
we will use the same nomenclature as Levin et al.,12 referring
to this technique as one of sparse priors. To our knowledge,
these two techniques described above have not been used for
subsurface imaging in biological specimens and provides a very
promising technique for extracting both axial and lateral informa-
tion about a specimen, even within turbid medium.

The deblurring techniques leveraged in this paper fall under a
class of algorithms known as deconvolution, where an estimated
PSF is decoupled from a signal in the presence of noise.13 Each
algorithm requires multiple iterations to converge on a solution,
which are constrained to their respective regularization func-
tions. To further simplify these methods, we implement all
methods using an incoherent light source (reducing cost and
increasing safety) and take all images without fluorescent tag-
ging, making extension to most in vivo applications extremely
practical. Mainstream techniques typically rely on fluorescent
tagging, alleviating many signal-to-noise constraints but limiting
the use in in vivo applications. The methods described throughout
this paper are applied to images taken in reflectance only. It is
understood that less information will be obtained using reflec-
tance. However, given the limited number of available exogenous
labels, a label-free technique is of great value. By using a 1951
Air Force Resolution Chart (AFT), we are able to demonstrate the
resolution, and sectioning improvements are robust at the surface
as well as within a turbid, semiopaque media.

In short, this paper demonstrates an MAP-based algorithm
that produces both sectioning and super-resolution without cap-
turing data about the patterns a priori. Further, we show that this
MAP processing algorithm benefits from the use of a random
pattern for sectioning, as three-phase sectioning does not section
well within a turbid media. Second, we use a sparse priors algo-
rithm against a sectioned image. We demonstrate that this pro-
vides superior sectioning against targets than deconvolution
alone and does not require the adjustment of the PSF for
variations in depth, as previous algorithms required.

2 Data Collection and Processing

2.1 Image Construction

In all cases, we make the assumption that the measurements are
constructed in the following manner:

EQ-TARGET;temp:intralink-;e001;326;573In ¼ h ⊗ ðMnxÞ þ n; (1)

where In is a single image out of N total images (set to 80 for
this paper), x is the unknown high-frequency image, which has
been modulated by our random pattern Mn, convolved with the
PSF of the microscope h, and added to random white noise n.
Given this construction, the resolution is limited in large part
due to the PSF, h, or its Fourier transform, H, known as the
optical transfer function (OTF). Removal of h from the measure-
ments In to retrieve x is called deblurring or deconvolution. This
is a nontrivial task, which, with the correct assumptions, can be
optimized for the problem of super-resolution in microscopy.14

Further, without knowledge of h a priori, any errors can be
exacerbated when estimating the sharp image x. Selection of
the proper regularization parameters will be critical to achieve
the best results. Given the ill-posed nature of deconvolution
(i.e., numerous possible solutions), regularization provides a
constraint on our algorithm to ensure that any final result does
not vary significantly from the original image. For all experi-
ments, a regularization value was selected empirically to provide
the best resolution without over smoothing the image or deviat-
ing drastically from the wide-field image. The exact values of
these are described further in their respective sections. Beyond
deblurring, structured illumination is used to isolate a particular
plane of interest, as is done in confocal microscopy,15 known as
optical sectioning. Optical sectioning in structured illumination
is achieved by modulating an X − Y plane, at a discrete z-axis
position (focal plane), with a high-frequency illumination
pattern. Locations where the illumination pattern is not in
focus, i.e., above and below the focal plane, blurring occurs.
Typically, the modulated or AC portion of the signal is isolated
from the unmodulated portion or DC, through the use of the
differencing scheme2,3,5

EQ-TARGET;temp:intralink-;e002;63;180IAC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI0 deg − I120 degÞ2 þ ðI0 deg − I240 degÞ2 þ ðI120 deg − I240 degÞ2

q
; (2)

where the demodulated image IAC is constructed from three
separate frames, where the modulation pattern in each frame
has been phase shifted by 120 deg each.

2.2 Experimental Setup

Our experimental setup is specifically designed to allow for
manipulation of the pupil on both the transmit (before the

specimen) and receive (after the specimen) side of the illumi-
nation path. Knowing that the pupil plane contains the Fourier
transform of the image, a simple aperture can be used in each
pupil to band limit the spatial frequency of the microscope.16

Constricting the aperture changes, the diffraction limit of the
system. This adjustment allows for the raw, high-NA images
to be compared to the processed low NA counterpart. The
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following sections will show how each processing technique is
conducted and how well they compare to the ground truth.

In all experiments, 80 random, unknown patterns are used to
thoroughly illuminate the entire specimen. The random patterns
are binary in nature using the rand() function in MATLAB® with
uniform distribution and adjusted to a 25% fill factor. Using
a random pattern, the frequency of the pattern spans the entire
bandwidth of the system and is limited only by NA ¼ 0.25.
This fill factor was selected to ensure that the specimen was
adequately illuminated and that we were able to achieve strong
contrast at depth. This contrast will be demonstrated in Sec. 2.2
as we show objects can still be resolved even through a semi-
opaque media. Using a lower fill factor allows us to achieve
deeper sectioning but requires additional images.17 The number
of samples used, 80, was selected empirically. There is a trade-
off between image contrast and processing time, which both
increase as the number of images increases. Previous work
has shown that in vivo sectioning is possible in as little as 30
frames.4 However, here, the higher number of samples is chosen
to best demonstrate the processes developed in this paper.

A 635-nm incoherent LED with a linewidth of 17 nm was
used as the light source. The patterns were projected onto the
specimen using a TI Lightcrafter digital micromirror device
(DMD). The images were then captured using an Allied Vision
Guppy PRO F-125 CCD camera with a sampling rate of 22 Hz,
providing all 80 samples in just over 3.5 s. All data were proc-
essed in MATLAB® R2013a, using an Intel Core i7-2675QM
CPU at 2.20 GHz. The objective has a nominal magnification
of 10× in air with an NA of 0.25. During the experimentation,
by adjusting the apertures in the pupil planes, the NA of the
system was significantly lowered to test for super-resolution.
A layout of the microscope is shown in Fig. 1. Before constrict-
ing the apertures, the maximum resolution of the system was
measured as ∼1.8 μm in agreement with Zemax simulations
of the system. All images are compared to their wide-field
equivalent that is constructed by taking the average of all
images as described by

EQ-TARGET;temp:intralink-;e003;63;345IWFðx; yÞ ¼
1

N

XN
n¼1

Inðx; yÞ: (3)

This sum represents the image that one would expect to see
through the eyepiece of the microscope without any additional
processing or modulation. Figure 1 provides a graphical repre-
sentation of the microscope. For the structured illumination
processing to work properly, the pattern projected by the
DMD must be conjugated with the focal plane, as well as detec-
tion plane. The dashed lines in the image planes (labeled with an
“I”) denote the location of the pattern in space. All other sec-
tions labeled with an “F” denote the pupil plane, which contains
the Fourier transform of the image. In F1 and F4, an aperture is
added to low-pass filter the frequency content of both pattern
and specimen before it arrives at the camera.

2.3 Sectioning Techniques

Many different sectioning techniques have been developed
to provide sectioning from three phases.8,18–21 However, as
shown by Hoffman and DiMarzio,11 the susceptibility of phase
misalignment in turbid media renders most images useless.
Using a random pattern, rather than one of discrete phase
changes, ensures that sectioning at depth produces nominally

artifact-free images.4 To decouple the modulated and unmodu-
lated portions of light, the following pair-wise comparison
[Eq. (4)] is applied and results in uniformly sectioned images
when using multiple, random, modulated patterns. This is just
an extension of the typical differencing scheme from Eq. (2) but
ensures that all 80 images are subtracted from one another

EQ-TARGET;temp:intralink-;e004;326;364Isecðx; yÞ ¼
�XN−1

j¼1

XN
k¼jþ1

½Ijðx; yÞ − Ikðx; yÞ�2
�1∕2

: (4)

Additionally, we rely heavily on the use of a random modu-
lation pattern, as this ensures that we are working at the limits of
the OTF. The use of random patterns increases the amount of
data required for sectioning but simplifies the hardware and
characterization of the system required for proper functioning.
An experiment is run to quantify the axial resolution of this sec-
tioning technique. The random pattern is projected onto a mirror
at a focal plane where the pattern is completely in focus. The
location of the mirror relative to the focal plane is adjusted
by increments of 0.5 μm. The results are plotted in Fig. 2.
At 1.0 μm, there is a drop in amplitude across all frequencies
of about 1 to 4 dB, enough to blur the pattern, but not likely to
significantly impact the sectioning. However, around 1.5 μm
difference from the focal plane, the amplitude drops by 5 to
15 dB throughout the spectrum. With this much loss in signal,
there is no longer a detectable signal from the modulation
pattern, thus, all light from these depths will be rejected by
our sectioning algorithm. From this, we should expect a strong
drop in signal outside of �1.5 μm (above and below the focal
plane) yielding a sectioning thickness of about 3.0 μm.

Another advantage of a random broadband pattern is that the
maximum frequency present will always be limited by the OTF

Fig. 1 Layout of the microscope. Each image plane is labeled with an
“I” and each pupil plane is labeled with an “F .” A beam splitter is
located just before the objective lens to relay the light toward the
CCD device. Placing an aperture in F1 and F4 gives the ability to
artificially lower the NA of the system.
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of the system. This ensures that the image will always be modu-
lated at the Nyquist limit of the system. This can be visualized in
Fig. 3. Here, we show experimentally the frequency spectrum of
three patterns projected onto a mirror. Figure 3(a) contains a
low-frequency discrete square pattern well within the limits
of the OTF (first-order side bands are shown with white arrows).
Because this is a square wave, we note the higher order harmon-
ics make up the diagonal line in the figure. The black circle in
the figure represents the approximate OTF of this system.
Figure 3(b) is a high-frequency square pattern much closer to
the edge of the OTF. This setup will provide much better res-
olution enhancement during reconstruction. As demonstrated
by Gustafsson,3 a total of 2× resolution improvement can be
obtained when the frequency of the pattern exists at the edge
of the OTF. Should the OTF shrink, this may begin to alias,
no longer providing sectioning or super-resolution. However,
the random pattern in Fig. 3(c) conforms to the OTF continuing
to provide both sectioning and super-resolution at any OTF
size. This feature obviates the need to characterize the system
before developing the projection patterns. Ultimately, there is
a trade-off between resolution and depth of sectioning. For

a high-resolution modulation pattern, we are able to get close
to the full 2× improvement as demonstrated by Gustafsson.
However, within a turbid media, contrast is rapidly lost, produc-
ing poor sectioning. In contrast, a low-frequency pattern pro-
vides much better sectioning at depth but limited resolution
improvement.

2.4 Super-Resolution Techniques

2.4.1 Maximum a posteriori probability

The first technique that we explore is known as MAP process-
ing. The MAP processing algorithm is outlined in Fig. 4.
Previous implementations of MAP processing required the pat-
tern to be known a priori; however, our research will show that
we can still perform sectioning and super-resolution, even with-
out prior knowledge of the patterns. Starting with 80 samples
modulated with a random pattern [Inðx; yÞ], a wide-field image,
IWF, is produced using Eq. (3), and a sectioned image, Isecðx; yÞ,
is produced using Eq. (4). The wide-field image is then sub-
tracted from each sample to produce an estimate of the random
modulation pattern as follows, M�

nðx; yÞ ¼ Inðx; yÞ − IWFðx; yÞ.
This operation is completed in the image domain and ideally
removes the specimen component of the image (IWF) from
the pattern + image, returning on an estimation of the pattern
only. The results from this process can be seen in Fig. 5. The
MAP processing then attempts to minimize the mean square
error between the estimated high-resolution images and the
observed images; Inðx; yÞ and M�

nðx; yÞ, finding the most prob-
able high-resolution image required to produce the sampled
array of low-resolution images. As described by Lukeš et al.,5

a gradient decent algorithm is applied to iteratively minimize
the following equation:

EQ-TARGET;temp:intralink-;e005;326;396IHR ¼ arg minx

�XN
n¼1

kIWF − h ⊗ M�
nxk2 þ λΓðxÞ

�
: (5)

Here, we are solving for the high-resolution image IHR from the
constructed image in Eq. (1), where λΓðxÞ is a regularization
function, composed of first-order derivatives at each pixel.
To minimize noise in the image, MAP processing applies
Gaussian priors, slightly smoothing out the image. From this,

Fig. 2 Comparing the signal strength of the pattern at various distan-
ces from the focal plane. The same pattern is projected on a mirror at
different relative distances. As the distance increases, the strength
drops off significantly.

Fig. 3 Comparison of three different modulation patterns, magnitude in dB. Aperture stop superimposed
with a black circle. (a) Low-frequency square wave pattern projected on top of mirror target. First-order
harmonics (arrows in white) is within aperture stop providing sectioning at depth but limited resolution
improvement. (b) High-frequency square wave pattern projected on a mirror closer to the limits of the
spatial resolution of the system, providing limited sectioning but increased resolution improvement.
(c) Random modulation pattern on a mirror, spanning the entire allowable frequency space, providing
both sectioning and resolution improvement at the cost of additional data samples.
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a high-resolution, unsectioned image is produced. This high-
resolution is first high-pass filtered and then combined with
a low-passed version of the sectioned image. By combining
the two in the frequency domain, a high-resolution, sectioned
image is produced.21,22 This process is completed by extracting
the low- and high-frequency components of their respective
images and adding the two together as described by

EQ-TARGET;temp:intralink-;e006;326;752IHR-SIM ¼ F−1
�
ð1 − βÞFfIsecg exp

�
−

f2

2ρ2

�

þ βFfIHRg
�
1 − exp

�
−

f2

2ρ2

���
; (6)

where Isec is spectrally filtered by a Gaussian function of stan-
dard deviation ρ at frequency f, weighted by β and combined
with an inversely filtered version of IHR. The two filtered images
are combined in the frequency domain, which after taking the
inverse Fourier transform (F−1) produces the final high-resolu-
tion, sectioned image IHR-SIM.

Typical implementations of MAP expect that the modulation
pattern is known a priori.8 In the case of imaging in turbid
media, the exact position of the pattern will not be consistent
from specimen to specimen. Thus, to remove this constraint,
we estimate the modulation after the data have been collected.
This removes the necessity of characterizing the system ahead
of time, whose positions will change within turbid media, as
required in previous implementations of MAP. The MAP
processing algorithm that is implemented throughout the rest of
this paper is based on a modified version of the SIMToolbox,
developed by the Multimedia Technology Group, Czech
Technical University, Prague.22 The algorithm has been modi-
fied using the pattern estimation technique described above.
On average, the MAP processing took ∼5 iterations to converge
on a solution in a total time of 35 s. We note that all experiments
going forward will use our modified version of the MAP
processing algorithm, which allows for the use of blind modu-
lation patterns. All experiments use no a priori knowledge of the
pattern and are integrated into the MAP algorithm. The above
equations describe the modifications applied in this paper, but
we refer readers to the original paper for additional details.

2.4.2 Sparse priors

Next, we apply a deconvolution technique that relies on sparse
priors. In sparse reconstruction, images are assumed to be
mostly binary in nature and their details of interest are expected
to have sharp edges. These assumptions allow for high-quality

Fig. 4 Flow chart outlining the MAP processing.

Fig. 5 For a single frame captured, which is comprised of the specimen modulated by the random pat-
tern, above demonstrates the isolation of the pattern from the specimen (here, the target is an air force
resolution chart). This is achieved by subtracting (a) the wide-field image producing an estimation of
the pattern, as shown in (b). White bar represents a distance of 50 μm.
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reconstruction against small point scatters and thin lines, such as
fibers. Objects such as these, which are beyond the working dif-
fraction limit, typically reconstruct nicely. The deconvolution
processing is based on the algorithm developed by Levin et al.12

and implemented as described. To estimate the super-resolution
image, we minimize the following:
EQ-TARGET;temp:intralink-;e007;63;686

IHR-SIM ¼ arg minxjh⊗ x− Isecj þ
X
ij

ρ½xði; jÞ− xðiþ 1; jÞ�

þ ρ½xði; jÞ− xði; jþ 1Þ�; (7)

where ρ is a heavy tailed function, where ρðzÞ ¼ jzj0.8 while
iteratively solving for x, which represents an intermediary,
sharp, image until convergence is achieved.12 In previous imple-
mentations, this algorithm relied on varying the PSF to account
for depth. Our research shows that, with sectioning, this depth
dependency can be removed, requiring only a single PSF esti-
mation for deconvolving the image. Additionally, within turbid
media, the deconvolution process is far less effective without
sectioning first.

The algorithm is outlined in Fig. 6. After the 80 modulated
images are collected, the sectioned image is produced. The
sectioned image is then deconvolved from an estimated PSF.
The PSF is iteratively refined until the algorithm converges. An
assumption of sparse priors is applied in this technique. There
are two reasons why sectioning first is necessary in this algo-
rithm: first, the PSF will vary as a function of depth. By section-
ing first (isolating a single depth plane), the PSF should be
approximately uniform across the entire image, greatly simpli-
fying the deconvolution procedure. Second, the use of sparse
priors will constrain the edges of single point objects. In our
case, the modulation pattern itself contains many point objects.
By sectioning first, the pattern is nominally removed, leaving
only the specimen to be processed. Similar to the MAP
processing, this algorithm is run iteratively until convergence,
continuously updating the PSF. For our application, we run

this process about 200 times in 28 s, including sectioning,
which provides a reasonable trade-off between overall conver-
gence and minimal processing time. Adjustment of the total
number of iterations or increasing the size of the PSF will
have a dramatic effect on how long it takes to complete the
processing. The process has been shown to work well in other
microscopy techniques in various biological specimens.23–25

For this experiment, a PSF is modeled as an Airy disk26 and
then the Fourier transform is taken to produce the OTF estima-
tion

EQ-TARGET;temp:intralink-;e008;326;642OTFðfÞ ¼ 1

π

�
2 cos−1

�jfj
fc

�
− sin

�
2 cos−1

�jfj
fc

���
; (8)

where fc is the cutoff frequency of the OTF. For this paper, all
PSF values are selected empirically to get the best results.
However, this technique can be improved by creating a smarter
selection criterion for the PSF, producing higher quality images
and faster convergence time. For these experiments, the amount
of blur for any given pixel is modeled by a symmetrical 2-D
function that smears any single pixel across 12 pixels in the
x- and y-directions, resulting from Eq. (8). Again, the reader
is referred to the original paper by Levin for details about
the algorithm that go beyond our modifications.

3 Results
A 1951 USAF resolution test chart (AFT) is used to evaluate and
compare the two algorithms. For the experiments going forward,
we will define the resolution as the distance between two black
lines on the chart, regardless of the thickness of the line. Figure 7
compares the full-resolution image at full NA, 0.25 (a), to low-
resolution image when the aperture in the detection path is con-
stricted (b). At full resolution, the elements can be resolved, with
the smallest lines ∼2.2 μm in width (group 7, element 6). The
aperture is then closed making the smallest resolvable line
∼6.2 μm in width (group 6, element 3), corresponding to an
NA of ∼0.07. It is found that both the MAP (c) and sparse
processing (d) provide a resolution improvement. The MAP
processing reveals elements with a linewidth of 4.4 μm
(group 6, element 6), increasing the resolution by ∼1.4×. The
sparse prior processing reveals elements with a linewidth of
∼3.9 μm (group, 7 element 1), increasing the resolution by
about ∼1.6×. With respect to total resolution improvement, it
can be seen that the sparse processing produced an image
that more accurately reflected the pattern seen in the ground
truth image (a). However, it is found that both techniques intro-
duce a few artifacts in very low-frequency regions. These arti-
facts can be seen in the background, as well as the black box
between the 7 and 6. The cause of these artifacts is likely non-
uniform illumination from the random patterns that are used.
These artifacts can also be seen in the wide-field image (b),
where there is still some structure present in the image.
Further, we see that relative to the MAP processing, the sparse
deconvolution overregularizes the location of the three lines,
reconstructing the lines as slightly thinner than those seen in
the ground truth image. Cross sections from two elements of
the AFT have been plotted in Fig. 8(a); group 6 element 5
and Fig. 8(b); group 7, element 1. Here, it is clear how well
the three elements are resolved, as well as the contrast improve-
ment provided by each of the techniques.

Next, microbeads, made of polystyrene, ∼2 mm in diameter
are placed on top of a mirror, as shown in Fig. 9. The resolutionFig. 6 Flow chart outlining the sparse priors processing.
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Fig. 7 Comparison of the AFT before and after processing, using 80 random patterns. Here, we give an
“effective NA” where we calculate the approximate NA based on the smallest resolvable object. (a) The
full-resolution target as a ground truth, with the aperture in the pupil fully dilated (NA ¼ 0.25, resolution
∼2 μm: group 7, element 6), (b) the resolution target after the aperture has been closed (NA ¼ 0.07,
resolution ∼5.5 μm: group 6 element 3), (c) after MAP processing (effective NA ∼ 0.1, resolution
∼3.9 μm: group 6, element 6), and (d) after sparse processing (effective NA ∼ 0.13, resolution
∼3.1 μm: group 7, element 1). Black scale bar in bottom right corner of each image represents a distance
of 50 μm.

Fig. 8 (a) Cross section of the AFT from group 6, element 5, measuring a resolution of 4.92 μm. Both
processing techniques match the ground truth but are otherwise lost in the wide-field image. (b) Cross
section of the AFT from group 7, element 1, measuring a resolution of 3.91 μm. Only the deconvolution
with sparse priors matches the ground truth. Each cross section is from a single line of pixels from the
image.
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of the system is reduced (NA ≈ 0.13) and the wide-field image is
shown in Fig. 9(a). The region boxed in red is shown in the
image below [Fig. 9(d)]. The MAP processed image is
shown in (b) and (e), whereas the sparse priors processed
image is shown in (c) and (f). In the low-resolution image, indi-
vidual beads cannot be discerned when they are adjacent to one
another. The MAP processing creates contrast and sharpness
around the edges. However, because the MAP processing uses
a Gaussian prior as its regularization function, it has a tendency
to smooth over edges making many beads appear as one large
blob. Although it sharpens large areas of contiguous beads,
it is incapable of segregating adjacent beads from one another.
In the sparse priors technique, the processing does an excellent
job of differentiating each bead. Arrows have been superim-
posed onto the figure, to show two regions where the resolution
has undergone marked improvement. In Fig. 10, a cross section
of the beads shows an almost a 2× resolution improvement from
the original image to that of the sparse priors processing. We
measure the full width half max (FWHM) of the low-resolution
image to be ∼4 μm as expected. After the sparse processing,
there are two well-defined beads with a FWHM of 2 μm,
demonstrating the accuracy of this procedure. As for the MAP
processing, it is apparent that the deconvolution process is
merging the individual beads in the image making it difficult
to isolate one from one another.

Given the desire to apply these techniques to in vivo appli-
cations, a biological specimen is investigated to ensure that both
the super-resolution and sectioning aspects are present in the
reconstructed image. Figure 11 shows a layer of onion cells
placed ∼30 μm above the AFT. The space in between the

two targets is filled with ultrasound gel (n ¼ 1.33). Based on
previous experiments on our sectioning technique, we have
shown that sectioning resolution of this random pattern tech-
nique is ∼1.0 μm. Therefore, we expected to remove scattered
light from the AFT at depth, as well as scattered light from the
onion cells a few microns below the surface. In the first image
(a), dark areas are seen below the onion cells due to absorption
of the light from AFT beneath the cells. Additionally, contrast
among each of the cells is reduced from scattered light through-
out the sample. The sectioning process is verified by noting that

Fig. 9 Images taken of 2-μm microbeads on a mirror (beads are in black), showing the differences
between each of the processing techniques. (a) The wide-field image where the individual beads cannot
be seen. The red box zooms in on the region shown in the image below (d). (b) and (e) The MAP process-
ing and zoomed-in region, respectively. (c) and (f) The sparse processing and the zoomed-in region,
respectively.

Fig. 10 Cross section of two adjacent beads, taken from Fig. 4.3.
Amplitude has been inverted for clarity. Using the sparse processing,
the two beads are now distinguishable from one another. The MAP
processing is incapable of isolating the two beads from one another.
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Fig. 11 Images taken of onion cells: (a) plots the wide-field image of the cells, the AFT can be seen
beneath cells. (b) The wide-field image after sparse deconvolution (no sectioning), (c) contains the
onion cells after using the MAP processing, and (d) contains the onion cells after the sparse processing.

Fig. 12 Images taken of the resolution chart ∼30 μm beneath the onions: (a) contains the wide-field
image of the AFT beneath the onion cells, (b) the wide-field image after sparse deconvolution (no sec-
tioning), (c) contains the AFT after using the MAP processing, and (d) contains the AFT after the sparse
processing.
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the dark regions have been removed in both (c) and (d), as well
as clarifying the interface between cells. In both of the processed
images, distinct lines between the cells of each pair are seen,
giving strong contrast in the image. Comparing the MAP
processing in (c) to the sparse processing in (d), many of the
point scattering objects, as well as the regions between the
cells are even further defined. To ensure that the sectioning
and super-resolution are complimentary, the deconvolution is
applied directly to the wide-field image (b). Without applying
the sectioning first, the scattered light from the onion cells
and AFT below are not rejected. As such, the super-resolution
technique actually enhances the contrast of the AFT below.
It is worth noting the contrast at the edges of the onion cells.
In the wide-field example, the regions among cells are almost
indistinguishable. Both processing techniques increase the
contrast greatly. In reviewing the sparse priors technique (d),
the edges are further narrowed, producing high-contrast, high-
frequency edges between each of the cells. In the deconvolution
only image, some of the lines are enhanced slightly, however,
they are not nearly as effective without the sectioning.

To further verify the technique, the focus is adjusted to
a depth below the onion cells, as demonstrated in Fig. 12.
The lines are distorted as a result of an index of refraction
change from the air objective to the onion cells. Use of an
index matching material would likely mitigate this distortion,
greatly improving the results. It can be seen that the sparse priors
technique gives additional, albeit, modest resolution improve-
ment, which is consistent with previous results. Specifically,
three lines in group 8 element 6 (lower-right side) are now
resolvable, which are not visible in the other three images.
There are some air bubbles between the onion cells and the
resolution chart, which is present in the ultrasound gel. Due
to the index of refraction change, in some areas, the modulation
pattern does not focus on the correct plane. As a result, there are
some dark lines and spots in the image. However, on the whole,
the sectioning has removed much of the scattered light from
the cells above the resolution chart, providing better contrast.

Last, we compare these methods to two other common
deconvolution techniques without any sectioning. We apply a
Lucy–Richardson and maximum likelihood deconvolution algo-
rithm. Each method was implemented in MATLAB® 2013a by
MathWorks, using a template PSF, similar to the one applied in

the sparse deconvolution method. These results are plotted in
Fig. 13. This plot looks at cross sections from the resolution
bars of Fig. 12, group 6, element 6 (bottom-right section of
the imaged resolution chart). The plot on the left side of
Fig. 13 plots a cross section of the vertical bars. Both the sparse
method and MAP processing methods greatly increase the
contrast of these bars. The other two methods produce results
similar to no processing at all. The right graph plots the cross
section of the horizontal bars. The sparse method succeeds in
producing contrast between the lines while the MAP processing
improvement is modest at best. However, the other two decon-
volution methods, without sectioning, again do not appear to
produce quality results. This experiment agrees with the original
hypothesis that applying the sectioning first allows for superior
deconvolution and better overall results.

4 Conclusion
Random patterns of incoherent light can be used in SIM to pro-
vide resolution enhancement and sectioning. These experiments
demonstrate that even with limited a priori knowledge of the
pattern and the optical system we can, with the right processing,
achieve both optical sectioning and spatial resolution beyond the
diffraction limit. Because the algorithm is robust with respect to
variations in the pattern, the severe alignment constraints of
many structured illumination approaches are eliminated. Given
that traditional three-phase SIM and super-resolution SIM do
not work at depth, we are able to show that random patterns
are capable of providing both. Recognizing that only a few
fluorescent probes are approved for in vivo imaging, we have
chosen to test our system and algorithms with reflectance
imaging, which requires no exogenous materials. In this work
we achieved a transverse resolution enhancement of a factor of
1.4 using the MAP algorithm with Gaussian priors and 1.6
with sparse priors.

Considering the particular application of imaging skin, to
obtain results comparable to conventional laboratory examina-
tion of hemotoxylin-and-eosin-stained biopsy specimens, we
need resolution of about 1 mm to match the laboratory micro-
scope resolution and sectioning of about 5 mm to mimic the
typical microtome sections. Using this approach to SIM, we
can reduce the NA and magnification of the objective to improve

Fig. 13 Comparison of MAP and sparse methods against Lucy–Richardson and maximum likelihood
method. These plots compare the resolution bars of group 6, element 6 (4.38 μm). In (a) cross section
of the vertical bars is plotted. In (b) cross section of the horizontal bars is plotted.

Journal of Biomedical Optics 116003-10 November 2017 • Vol. 22(11)

Hoffman and DiMarzio: Super-resolution structured illumination in optically thick specimens. . .



the FOV while recovering much of the resolution and sectioning
ability.

The sparse priors approach is particularly suited to isolated
point objects, such as the subcellular organelles, and provides
resolution enhancement of a factor of 1.6, even without knowl-
edge of the random patterns or the PSF of the microscope.
For less sparse objects, the Gaussian priors algorithm provides
resolution enhancement of a factor of 1.4. We have demon-
strated a particularly useful technique for producing high-
quality sectioned images at resolutions and FOVs greater than
conventional microscopy, with minimal knowledge about the
system a priori. This advance should prove to be extremely
useful in the context of low-cost, low-maintenance microscopy
in in vivo applications.
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