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Abstract. We present an automatic method, termed as the principal component analysis network with
composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomog-
raphy (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically
learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to
a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit
the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into
an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real
3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-
related macular degeneration), which demonstrated its effectiveness. © 2017 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.22.11.116011]
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1 Introduction
Macula is an oval-shaped pigmented area near the center of
retina, which is mainly responsible for the central vision.
Damages to the macula, such as macular edema (ME) and
age-related macular degeneration (AMD), will directly result
in the loss of central vision.1–3 Clinical diagnosis of ME and
AMD relies on the localization of macular structure abnormal-
ities (also called lesions), whose types and numbers are
important diagnostic criteria for ophthalmologists. For example,
compared with the normal macula (NM) [see an example in
Fig. 1(a)], edema and exudates are often related to diabetic
retinopathy (one type of ME)4 [see an example in Fig. 1(b)],
while drusen is a typical lesion often found in AMD eyes5

[see an example in Fig. 1(c)]. Therefore, it is essential to
investigate the macular lesions for the clinical diagnosis and
treatment of ophthalmic disease.

Optical coherence tomography (OCT) can provide in vivo
three-dimensional (3-D) cross-sectional imaging of human
tissue at micrometer resolutions;6–8 it has been widely used for
a variety of medical imaging applications.9–13 High resolution of
OCT enables the visualization of multiple retinal cell layers and
the capability of volumetric quantitative evaluation of the retinal
structures.14–16 By employing near-infrared light to image the
eye with micron resolution, subtle while valuable pathological
structures can be observed, from which many macular and
ocular diseases can be identified in their early stages.17–20

In the clinical diagnosis, ophthalmologists need to manually
identify various macular lesions at each cross section of the
OCT volume and then determine the types of disease. Such

manual analysis is time-consuming and demanding for expert
graders and often yields subjective results. Consequently, it is
urgent to develop an effective computer-assisted OCT image
analysis technique.

During the past decades, a multitude of classification
methods has been developed for the automatic analysis of
OCT images.21–28 In general, these OCT image classification
approaches mainly consist of the following two key compo-
nents: feature extraction21–27 and classifier design.22–26,28 The
feature extraction first extracts a set of representative features
to describe the original OCT images, and then the classifier
determines the type of disease by mapping the extracted features
to a category. For the feature extraction of the OCT images,
Sugmk et al.21 first segmented the retinal pigment epithelium
(RPE) layer and then computed the binary features from
the layer for the identification of AMD and diabetic macular
edema (DME). Liu et al.22 computed the multiscale local binary
pattern (LBP) features to encode the texture and shape informa-
tion of the OCT images. Srinivasan et al.23 utilized the multi-
scale histogram of oriented gradient (HOG) features, which
are useful for the detection of AMD, DME, and NM, to describe
each OCT B-scan. Hassan et al.24 used five features (three thick-
ness profiles and two cyst fluids) based on structure tensors to
detect ME and central serous retinopathy. For each specific
kind of lesion in the OCT image, the above aforementioned
works21–24 design the corresponding features and can provide
promising classification results. However, the above features
(e.g., LBP, HOG, and structure tensor) are designed based on
fixed mathematical models, which means that the features
designed for one type of lesion may be suboptimal for
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representing other kinds of lesions. Since the clinically acquired
OCT images usually contain very complex pathological struc-
tures, a more desirable strategy is to learn features from the
original OCT images. Sun et al.25 used sparse coding and a
multiscale dictionary learning method based on scale-invariant
feature transform descriptor to extract representative features
from the input images for the detection of AMD, DME, and
NM. Venhuizen et al.26 introduced an unsupervised feature
learning29 approach to distinguish AMD from normal volumes,
in which small descriptive image patches are selectively
extracted to create patch occurrence histogram features. Very
recently, in Ref. 27, a typical deep learning model called the
convolutional neural network (CNN)30–32 was utilized to extract
the very high-level features from each OCTB-scan, and it deliv-
ered very satisfactory results. In general, the CNN has many
network layers and usually contains at least millions of layer
parameters, which thus requires a very huge amount of training
datasets and computational cost to train networks.

On the other hand, numerous researchers have attempted
to design various classifiers [e.g., support vector machines
(SVMs),22–25 random forest,26 and sequential minimal optimiza-
tion (SMO)28] for the OCT image classification task. In
Refs. 22–25, the extracted features were considered feature
vectors in the SVM classifier, which identifies the presence of
NM and each of the pathologies. In Ref. 26, a supervised
random forest classifier was trained using the aforementioned
feature vectors for category discrimination. Wang et al.28

systematically evaluated these classifiers and demonstrated that
the SMO tended to achieve the best performance. However,
all the classifiers in the works are only designed for the classi-
fication of single B-scan, without considering the correlations
among B-scans of the 3-D OCT images.

To address the above issues, we propose a feature learning-
based classification algorithm called the principal component
analysis network with composite kernel (PCANet-CK) for the
automatic diagnosis of AMD, ME, and NM in OCT images.
First, a PCANet model33 is used to automatically extract multi-
ple level features from each B-scan of the 3-D OCT images.
Compared with the CNN, the PCANet has a simple network
structure and much less parameters, which can be more effi-
ciently trained. Second, a set of the most important features
of each volume are carefully selected to construct multiple ker-
nels, which are then combined together to create a composite
kernel. Finally, the composite kernel34 is fed into an extreme
learning machine (ELM)35,36 classifier for the classification of
3-D OCT images. Such a composite kernel-based classification
strategy can jointly exploit the correlations among features of

the 3-D OCT images while still reducing the computational
cost for classifying the 3-D OCT images.

The rest of this paper is organized as follows. Section 2
briefly reviews the PCANet feature extraction method and
ELM classifier. Section 3 introduces the proposed PCANet-
CK model. Experimental results on two clinically acquired
datasets and related discussions are detailed in Sec. 4. Section 5
concludes this paper and suggests some future works.

2 Review

2.1 PCANet Feature Extraction

As a modified version of the typical deep CNN, the PCANet
method33 adopts a series of PCA convolution filters to extract
the features from an input image. A commonly used PCANet
model consists of two PCA filter convolution stages and one
output stage. Figure 2 shows the typical architecture of the
PCANet method, as also described in the following.

In the first convolution stage, given H training images
Xh ∈ RM×N , h ∈ f1;2; : : : ; Hg, we convolve each image with
L1 PCA filters in a patch-based pattern to obtain L1 ×H feature
maps X1;l

h , l ∈ f1;2; : : : ; L1g. Specifically, we first extract the
patches xih (of size n1 × n2) for each image Xh and remove
the mean for each patch. Then, the extracted patches of each
image Xh are vectorized and can be combined into a matrix
Ph ¼ ½P1

h; : : : ; P
i
h; : : : P

M�N�
h �, where Pi

h ∈ Rn1n2×1 is a vector
for the related patch, M� ¼ M − dn1∕2e, N� ¼ N − dn2∕2e,
and dne gives the smallest integer greater than or equal to n.
The matrices of all the training images are also constructed
as a matrix:

EQ-TARGET;temp:intralink-;e001;326;248P ¼ ½P1; P2; : : : ; PH�: (1)

After that, we compute the eigenvectors of PPT and select
the first L1 principal eigenvectors as the L1 PCA filters W1

l ,
l ¼ 1;2; : : : ; L1. Finally, L1 filters are separately applied to
each training image Xh:

EQ-TARGET;temp:intralink-;e002;326;171X1;l
h ¼ Xh �W1

l ; l ¼ 1;2; : : : ; L1; (2)

where the operator * denotes the two-dimensional convolution.
So, for a given input image Xh, L1 feature maps X1;l

h can be
obtained.

For each feature map X1;l
h from the first stage, the second

stage convolves this map with L2 PCA filters to obtain L2

feature maps X2;l
h , l ∈ f1;2; : : : ; L2g. Similar to the first stage,

Fig. 1 Examples of (a) OCT image with NM: clear subretinal boundaries; (b) OCT image with ME:
swollen retina, edema, and exudates around the macula; and (c) OCT image with AMD: RPE layer
interrupted by drusen of various sizes.
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we also first extract the mean-removed patches from all L1 ×H
maps X1;l

h and use the vector version of patches to construct the
matrix U. Then, we compute the eigenvectors of UUT , and
select the first L2 principal eigenvectors as the L2 PCA filters
W2

l , l ¼ 1;2; : : : ; L2. As in Eq. (2), by applying the L2 PCA
filters on each feature map X1;l

h from the first stage, we can
obtain L1 × L2 ×H feature maps. Given an input image Xh,
the first stage has L1 feature maps, and the second stage can
create L1 × L2 feature maps.

In the output stage, we first binarize the L1 × L2 feature maps
of the second stage using a Heaviside step function and apply
the hashing encoding to convert them into L1 integer-valued
images Zl

h, l ∈ f1;2; : : : ; L1g.33 Then, each integer-valued
image Zl

h is partitioned into B blocks (of size nB1 × nB2), in
which the local histogram (overlapping or nonoverlapping) is
calculated. After that, all B histograms are concatenated into
a vector BhistðZl

hÞ. Finally, the feature vector of the one input
image Xh can be extracted as

EQ-TARGET;temp:intralink-;e003;63;389fh ¼ ½BhistðZ1
hÞ;BhistðZ2

hÞ; : : : ;BhistðZL1

h Þ�T: (3)

The extracted feature vector can be fed into a classifier
(e.g., SVM or ELM) for the classification.

2.2 ELM Classifier

ELM is a very efficient supervised learning model, and its
objective is to find a decision rule for the classification.35,36

To be specific, let fxi; yigHi¼1 be the training set.
fx1; x2; : : : ; xHg ∈ Rm×1 denote the H input training samples
and yi ¼ ½0; : : : ; 1; : : : ; 0�T ∈ RG×1 represent the corresponding
class labels, which are a vector with one for the true label and
zero entries for the others. G denotes the number of training
classes. In general, the ELM aims to simultaneously minimize
the training error and the norm of output weights of the objective
function

EQ-TARGET;temp:intralink-;e004;63;182

min
β;ξ

�
1

2
kβk2 þ C

2

XH
i¼1

kξik2
�

s:t: βTϕðxiÞ ¼ yi − ξi; ∀ i ¼ 1;2; : : : ; H; (4)

where ϕð•Þ is a feature mapping function determining the hid-
den layer output. β ∈ Rjϕð•Þj×G are the output weights, ξ ∈ RG×H

is the training error matrix, and jϕð•Þj represents the element
number of the vector ϕð•Þ. C is a regularization parameter

balancing the norm of output weights and training errors. Based
on the Lagrange multiplier method and the Karush–Kuhn–
Tucker optimality conditions,35 the solution of Eq. (4) can be
analytically obtained as

EQ-TARGET;temp:intralink-;e005;326;552β̂ ¼ ΦT

�
I
C
þΦΦT

�
−1
YT; (5)

where Φ ¼ ½ϕðx1Þ;ϕðx2Þ; : : : ;ϕðxHÞ�T ∈ RH×jϕð•Þj, Y ¼ ½y1;
y2; : : : ; yH� ∈ RG×H, and I is an identity matrix.

As described in Refs. 34 and 37, kernel can further transform
the features into a higher dimensional feature space and thus
improve the discriminative capacity for the features. Since the
mapping ϕð•Þ in the ELM learning is represented by the inner
function, a kernel function K can be defined by

EQ-TARGET;temp:intralink-;e006;326;428Kðxi; xjÞ ¼ hϕðxiÞ;ϕðxjÞi: (6)

Then, we can establish a liner ELM by the kernel function,
without considering the mapping ϕð•Þ explicitly. The most
widely used kernel is the linear kernel, which can be calculated
as follows:

EQ-TARGET;temp:intralink-;e007;326;355Kðxi; xjÞ ¼ xTi xj: (7)

Finally, by incorporating Eq. (6) into Eq. (5), the decision
rule of the ELM for any test sample x is determined by

EQ-TARGET;temp:intralink-;e008;326;301fðxÞ ¼ β̂TϕðxÞ: (8)

3 Proposed PCANet-CK Method
In this paper, we propose a PCANet-CK method, which com-
bines PCANet with composite kernel models for the classifica-
tion of 3-D OCT images. The PCANet-CK method mainly
consists of two parts: (1) apply the PCANet on each B-scan
to automatically extract the features and (2) use the composite
kernel to exploit the correlations among features of B-scans in
each volume for the classification. The outline of the proposed
PCANet-CK algorithm is shown in Fig. 3.

3.1 Feature Extraction with PCANet

Since OCT images have large variations in intensity ranges, we
first conduct the intensity normalization on each B-scan of the
training and testing OCT volumes, which linearly rescales the
intensity values to [0, 1]. Then, as in Ref. 23, for training and
testing OCT images, we adopt the BM3D algorithm38 to remove
the noise of each B-scan and use the flattening to reduce
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Fig. 2 Illustration of the PCANet architecture with two convolution stages and one output stage.
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the variations for imaged retinas in their angles of inclination,
positions, and natural curvatures among B-scans. After the
above preprocessing steps, the PCANet feature extraction con-
sists of training and testing phases. Specifically, in the training
phase, we first input T 3-D OCT volumes V train

t ∈ RM×N×Ht ,
t ¼ 1;2; : : : ; T into the PCANet training model. Each volume
contains Ht B-scans Xtrain

h ∈ RM×N , h ¼ f1;2; : : : ; Htg.
As described in Sec. 2.1, the PCANet will take all B-scans
of all training OCT volumes together as input. Then, we
decompose the B-scans into patches and use the patches to
train L1 PCA filters W1

l , l ¼ 1;2; : : : ; L1 and L2 PCA filters
W2

l , l ¼ 1;2; : : : ; L2, in the first and second stages, respectively.
Finally, after the binary quantization and calculating the block-
wise histogram in the output stage, for each B-scan Xtrain

h ,
one feature vector ftrainh is obtained. For each volume V train

t ,
its extracted features can be constructed as a matrix Ftrain

t ¼
½ftrain1 ; ftrain2 ; : : : ; ftrainHt

�.

In the testing phase, given an input 3-D OCT volume
V test

t ∈ RM×N×Ht , we apply the PCA filters W1
l , l ¼ 1;2; : : : ; L1

andW2
l , l ¼ 1;2; : : : ; L2 from the training phase on each B-scan

of this OCT volume. Then, after the binary quantization and
computation of the block-wise histogram, we obtain one feature
matrix Ftest

t ¼ ½ftest1 ; ftest2 ; : : : ; ftestHt
�.

Figure 4 shows two examples of the extracted feature maps
from different layers on the AMD and ME OCT images, respec-
tively. As can be observed, for the input AMD image, the drusen
regions will have high responses in the different feature maps of
different layers [see the zoomed rectangle regions in Fig. 4(a)],
while the edema is also very prominent in feature maps extracted
from the ME image [see the zoomed rectangle regions in
Fig. 4(b)]. Therefore, the learned PCA filters tend to capture
meaningful pathology structure information, and the extracted
feature maps can be used to achieve an effective classification,
even without quantifying the size of the lesions.
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Fig. 3 Outline of the proposed PCANet-CK algorithm.

Fig. 4 Two examples of feature maps extracted by PCANet from OCT images on subjects (a) AMD and
(b) ME.
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3.2 Classification with Composite Kernel

As described above, given an OCT volume, the PCANet can
extract one feature vector for each single B-scan in both the
training and testing phases. Since the nearby B-scans of the
3-D OCT images are very similar, high correlations should
also exist in their extracted features, which can be utilized to
enhance the classification.39 One possible way for exploiting
the correlations among features within one 3-D OCT volume is
to fuse them together. As described in Ref. 40, using the kernel
to map the features into the higher dimensional feature space
and then combining them as a composite kernel can better utilize
the correlations and differences among different features. In
addition, the parameters of different features are integrated into
the composite kernel function and jointly optimized during the
training process,37 which can also effectively combine the infor-
mation of different features for classification. Specifically, for
each feature fh of a 3-D OCT volume, we use the linear kernel
function in Eq. (7) to compute the corresponding kernel Kh. As
introduced in Refs. 41 and 42, directly stacking these kernels or
a linear combination of them can exploit the correlations among
them. Since stacking these kernels will greatly increase the
dimension and computational cost, we create the composite
kernel by a linearly weighted combination of these kernels

EQ-TARGET;temp:intralink-;e009;63;492Kcomp ¼
XH
h¼1

μhKh; (9)

where μh is the weight for the kernel Kh. Note that the kernel
weights are the same for all the training and testing OCT volumes.
In the training phase, for T training volumes, we can create T
composite kernels Ktrain;t

comp , t ¼ 1;2; : : : ; T. Then, we replace
the kernel in Eq. (6) with these composite kernels to train an
ELM decision rule. In the testing phase, for each input OCT
volume, we create one composite kernel Ktest

comp and apply the
decision rule on this kernel to assign the class label to the volume.

Note that, since PCANet extracts many feature vectors (e.g.,
more than 30 in our test) from each volume, a number of cor-
responding weights μh, h ¼ 1;2; : : : ; H in Eq. (9) are required to
be set, and searching the optimal values for so many weights
would be very hard. In addition, different OCT volumes may
consist of different numbers Ht of B-scans; thus, the number
of kernel weights for different volumes is also varied. To address
this issue, before the construction of multiple kernels, we
employ the PCA transform43 to reduce the number of features
and create the same number of kernel weights for each volume.
Specifically, the PCA transform maps the feature matrix
Ft ¼ ½f1;; f2;; : : : ; fHt

� to a new set of principal components
(PCs): FPCA

t ¼ ½fPC1; fPC2; fPC3� using the SVD technique on
the covariance matrix of Ft, where several eigenvectors are cal-
culated as the optimal projection axes. In this paper, we only
retain the first three PCs, which account for the most informa-
tion in the feature matrix Ft. After such a feature selection strat-
egy, only three kernels (see Fig. 3) are generated, which are then
fused as a composite kernel.

4 Experimental Results

4.1 Datasets

To evaluate the effectiveness of the proposed PCANet-CK
method, we tested it on two real OCT datasets acquired from
Duke University and First Affiliated Hospital of Hunan

University of Chinese Medicine (HUCM), respectively. The
Duke dataset was acquired using the spectral domain (SD)-
OCT imaging system (Heidelberg Engineering Inc., Heidelberg,
Germany) by Duke University, Harvard University, and the
University of Michigan, which was publicly available in
Ref. 44. The Duke dataset consists of 45 SD-OCT volumes
from 45 patients (15 AMD, 15 DME, and 15 normal), and
each volume contains many B-scans (ranging from 31 to 97).
The original axial and lateral resolutions of the B-scans are
3.87 μm∕pixel and 6 to 12 μm∕pixel, respectively. More details
of the scanning protocols for this dataset can be found in
Ref. 23. Three examples from NM, ME, and AMD subjects
of the Duke dataset are shown in Fig. 5(a).

The HUCM dataset was captured using the spectral SD-
OCT imaging system (Heidelberg Engineering, Heidelberg,
Germany) at the First Affiliated Hospital HUCM. The HUCM
dataset is composed of 54 SD-OCT volumes (18 AMD, 18 DME,
and 18 normal) from 48 patients. All volumes are of size
768×496×31 voxels, covering 8.8×8.8×2.0mm3. Figure 5(b)
shows three B-scans from NM, ME, and AMD subjects of the
HUCM dataset, respectively. Note that only small pathological
structures (e.g., drusen) exist in some B-scans of HUCM dataset,
which are very challenging for recognition. The above two data-
sets used in our study were approved by the local Investigational
Review Board and were performed in accordance with the
tenets set forth in the Declaration of Helsinki. Written informed
consent was obtained before enrolling patients in EUGENDA.

4.2 Experimental Setting

In the proposed PCANet method, the main parameters include
the PCA filter size, the block size for local histograms, and the
filter numbers L1 and L2. In our experiment, we set the PCA
filter size n1¼ n2 ¼ 11, the block size nB1¼ nB2 ¼ 11, and
the block overlap ratio as 0.1. The effect of the PCA filter
size and block size was analyzed in Sec. 4.4. As described in
Ref. 33, L1 and L2 were set to be 8. In addition, for the
composite kernel creation, the kernel weights μ1, μ2, and μ3
for the three kernels were set as 0.85, 0.10, and 0.05, respec-
tively. The regularization parameter C in Eq. (5) for the ELM
classifier training was set to be 5.

In our experiments, we utilized the cross validation to evalu-
ate the classification performance of the proposed PCANet-CK
method. The cross validations were repeated with different
random seeds to avoid the dataset splitting bias. The accuracy,
specificity, and sensitivity were adopted to evaluate the classi-
fication performances, which were defined in a binary classifi-
cation problem:

EQ-TARGET;temp:intralink-;e010;326;228accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
; (10)

EQ-TARGET;temp:intralink-;e011;326;185sensitivity ¼ TP

TPþ FN
; (11)

EQ-TARGET;temp:intralink-;e012;326;147specificity ¼ TN

TNþ FP
: (12)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

In our three-class classification problem, the sensitivity of
a class label is also the prediction accuracy, and the specificity
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is defined in the same way for each class label, where the neg-
ative samples are the samples not in the considered class.
Therefore, the overall sensitivity (Ov-Se), overall specificity
(Ov-Sp), and overall accuracy (Ov-Acc) are averaged over
the three-class labels. If the number of samples in each class
is equal, the Ov-Se is also defined as the ratio: number of cor-
rectly predicted samples/total number of samples. In addition,
the mean and standard deviation values of the above metrics
are calculated.

4.3 Results Comparisons

The performance of the proposed PCANet-CK method was first
compared with the well-known OCT classification method:
HOG-SVM.23 The 15-fold (Duke dataset) and 18-fold (HUCM
dataset) cross validations was repeated 10 times with different
random seeds. The HOG-SVM method utilizes the HOG
descriptor to extract the feature vectors and trains three binary
SVMs45 for the classification. The leave-three-out cross-valida-
tion strategy was applied on the two test datasets; this was
achieved by choosing three volumes once from each class as
the test dataset and the remaining 42 (in Duke dataset) or 51

(in HUCM dataset) volumes as the training dataset. For different
experiments, three different volumes were chosen as test
volumes, and 15 or 18 experiments were conducted to cover
all the volumes in the two datasets.

The quantitative results on the Duke and HUCM datasets are
tabulated in Tables 1 and 2, respectively. As can be observed, in
the two test datasets, the proposed PCANet-CK method consis-
tently performs better than the HOG-SVM method in terms of
all quantitative metrics. Specifically, in the Duke dataset, the
PCANet-CK can accurately classify all the test volumes of
the three classes, whereas the Ov-Acc for the HOG-SVM
method is about 96.6%. In the HUCM dataset, the Ov-Acc for
the PCANet-CK method is 96.9%, whereas the Ov-Acc for
the HOG-SVMmethod is about 90.7%. Moreover, in the classes
of AMD and NM on HUCM dataset, the gain of the mean
sensitivity of the proposed method over the HOG-SVM method
is more than 9%, which demonstrates the effectiveness of
the PCANet feature extraction and the composite kernel for
exploiting the 3-D information.

Very recently, the deep CNN method was also tested on the
Duke dataset.27 The deep CNN method first uses a pretrained
CNN model (GoogleNet) and then fine-tunes it on the Duke

Table 1 Classification results (%) on Duke dataset.

Methods Classes Sensitivity Specificity Accuracy Ov-Se Ov-Sp Ov-Acc

HOG-SVM23 AMD 100.0� 0.0 96.7� 0.0 97.8� 0.0 94.9� 1.5 97.4� 0.8 96.6� 1.0

ME 97.3� 3.4 97.0� 1.1 97.1� 1.5

NM 87.3� 2.1 98.7� 1.7 94.9� 1.5

PCANet-CK AMD 100.0� 0.0 100.0� 0.0 100.0� 0.0 100.0� 0.0 100.0� 0.0 100.0� 0.0

ME 100.0� 0.0 100.0� 0.0 100.0� 0.0

NM 100.0� 0.0 100.0� 0.0 100.0� 0.0

Fig. 5 Examples of SD-OCT images from (a) Duke dataset and (b) HUCM dataset.
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dataset to extract the features for the identification of AMD,
DME, and NM. In the experimental setting of Ref. 27, the
cross validation was also utilized by dividing the whole dataset
into 15 folds, with each fold containing three volumes (one from
each class). However, different from the above validation, each
experiment involved eight folds (24 volumes) for training and
seven folds (21 volumes) for testing. Folds were sequentially
rather than randomly chosen. Here, the proposed PCANet-CK
and HOG-SVMmethods were tested under the same experimen-
tal setting as in Ref. 27. Since only the mean sensitivity was
reported in Ref. 27, the value of the deep CNNmethod was com-
pared with those of the PCANet-CK and HOG-SVM methods,
as reported in Table 3. As can be seen, the proposed PCANet-
CK method generally performs much better than the HOG-SVM
and deep CNN methods for classifying the images of AMD and
ME subjects. In addition, for the classification of images from
NM subject, the PCANet-CK delivers better performance

than the HOG-SVM, while is very close to the deep CNN.
These results show the superiority of the feature learning strat-
egy used in PCANet-CK and deep CNN methods over the hand-
crafted HOG feature extraction strategy adopted in the HOG-
SVM method.

In our experiments, the proposed PCANet-CK method was
implemented on a desktop computer with an Intel (R) Core
i7-6700K CPU and 64 GB of RAM under the environment
of MATLAB R2016b. The average time for testing one volume
requires about 7.2 and 3.1 s on the Duke and HUCM datasets,
respectively. Note that, since the training phase of the PCANet-
CK method can be an offline process, it does not need to be
considered in the testing phase. In addition, our code is not opti-
mized for speed. The processing time is expected to be reduced
significantly by more efficient coding coupled with a general
purpose graphics processing unit.

4.4 Effect of the PCA Filter Size and Block Size

In this section, the effect of the PCA filter size and the block size
on the proposed PCANet model was analyzed on the Duke and
HUCM datasets. The leave-three-out cross validation and the
Ov-Se were also used here. For the evaluation of the PCA filter
size, we varied the PCA filter size (n1¼ n2) in the first two
convolution stages from 3 to 19 and kept other parameters
(e.g., block size, overlap ratio, and kernel weights) the same
as that in Sec. 4.2. The results with different PCA filter sizes
are shown in Fig. 6(a). As can be observed, the performance
of the proposed PCANet-CK method will generally improve
as the PCA filter size increases from 3 to 11. When the PCA

Table 2 Classification results (%) on HUCM dataset.

Methods Classes Sensitivity Specificity Accuracy Ov-Se Ov-Sp Ov-Acc

HOG-SVM23 AMD 82.8� 1.8 93.3� 1.9 89.8� 1.6 86.1� 1.6 93.1� 0.8 90.7� 1.1

ME 86.1� 2.9 99.7� 0.9 95.1� 1.3

NM 89.4� 1.8 86.1� 0.0 87.2� 0.6

PCANet-CK AMD 92.2� 4.7 96.9� 0.9 95.4� 1.6 95.4� 1.6 97.7� 0.8 96.9� 1.1

ME 94.4� 0.0 98.3� 1.4 97.0� 1.0

NM 99.4� 1.8 97.8� 1.8 98.3� 1.1

Table 3 Classification performances (sensitivities in %) of different
methods on Duke dataset.

HOG-SVM23 Deep CNN27 PCANet-CK

AMD 89 89 94

ME 83 86 94

NM 90 99 98

Note: The best results among different methods are labeled in bold.
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Fig. 6 Overall sensitivities of the PCANet-CK method on Duke and HUCM datasets for different (a) PCA
filter sizes in the first two stages and (b) block sizes in the output stage.
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filter size further increases, our performance will become stable
or even worse. Since utilizing a larger PCA filter will create
higher computational cost, the PCA filter size is set to 11.
For the evaluation of block size, we varied the block size (nB1¼
nB2) in the output stage in a range from 3 to 19. Figure 6(b)
shows the classification results with different block sizes on
two test datasets. As can be seen, our PCANet-CK method is
comparatively stable and achieves the best performance with
the block sizes from of 3 × 3, 5 × 5, and 11 × 11 on two data-
sets. In this paper, we set the block size to be 11 × 11.

4.5 Comparisons of the Composite Kernel with
Single Kernel

We also conducted additional experiments using a single-kernel
ELM classifier to validate the superiority of the composite
kernel classifier. Specifically, after obtaining three PCs for
one volume, we use them to separately create three different
kernels. However, instead of fusing these kernels together, only
one of them is utilized to train the ELM classifier and test
one volume. The method using the first kernel is called the

Table 4 Classification results (%) on Duke dataset using single kernel.

Methods Classes Sensitivity Specificity Accuracy Ov-Se Ov-Sp Ov-Acc

PCANet-K 1 AMD 100.0� 0.0 99.0� 1.6 99.3� 1.1 98.2� 1.4 99.1� 0.7 98.8� 0.9

ME 98.0� 3.2 98.3� 1.8 98.2� 1.4

NM 96.7� 3.5 100.0� 0.0 98.9� 1.2

PCANet-K 2 AMD 84.0� 3.4 92.3� 2.3 89.6� 2.1 83.8� 2.1 91.9� 1.1 89.2� 1.4

ME 68.0� 2.8 97.3� 2.1 87.6� 2.2

NM 99.3� 2.1 86.0� 2.1 90.4� 1.5

PCANet-K 3 AMD 52.0� 6.9 69.3� 7.3 63.6� 5.6 43.3� 4.2 71.7� 2.1 62.2� 2.8

ME 46.7� 8.3 67.0� 7.6 60.2� 5.8

NM 31.3� 9.5 78.7� 5.7 62.9� 4.7

PCANet-CK AMD 100.0� 0.0 100.0� 0.0 100.0� 0.0 100.0� 0.0 100.0� 0.0 100.0� 0.0

ME 100.0� 0.0 100.0� 0.0 100.0� 0.0

NM 100.0� 0.0 100.0� 0.0 100.0� 0.0

Table 5 Classification results (%) on HUCM dataset using single kernel.

Methods Classes Sensitivity Specificity Accuracy Ov-Se Ov-Sp Ov-Acc

PCANet-K 1 AMD 89.4� 4.1 95.0� 1.2 93.2� 1.3 93.2� 1.3 96.6� 0.6 95.4� 0.8

ME 93.3� 2.3 98.6� 1.5 96.9� 1.3

NM 96.7� 2.8 96.1� 1.9 96.3� 1.2

PCANet-K 2 AMD 68.9� 2.9 86.9� 3.9 80.9� 2.5 72.4� 2.5 86.2� 1.3 81.6� 1.7

ME 62.8� 7.8 87.8� 1.9 79.4� 3.0

NM 85.6� 2.9 83.9� 3.7 84.4� 2.3

PCANet-K 3 AMD 36.7� 6.9 61.1� 7.8 53.0� 7.9 34.3� 5.9 67.1� 2.9 56.2� 4.0

ME 33.3� 9.4 70.0� 5.4 57.8� 6.0

NM 32.8� 8.4 70.3� 6.0 57.8� 5.4

PCANet-CK AMD 92.2� 4.7 96.9� 0.9 95.4� 1.6 95.4� 1.6 97.7� 0.8 96.9� 1.1

ME 94.4� 0.0 98.3� 1.4 97.0� 1.0

NM 99.4� 1.8 97.8� 1.8 98.3� 1.1
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PCANet-K1. The method using the second kernel is denoted the
PCANet-K2. The method using the third kernel is termed the
PCANet-K3. The results for the Duke and HUCM datasets
are tabulated in Tables 4 and 5. As can be observed, in both
the Duke and HUCM datasets, the composite kernel method
consistently performs better than the single kernel method in
terms of all quantitative metrics, which demonstrates the effec-
tiveness of the composite kernel for exploiting the correlations
among adjacent B-scans within one OCT volume. The results
also show that the composite kernel ELM can utilize comple-
mentary information of different single kernels to further
enhance classification.

5 Conclusion and Future Works
In this paper, we present a fully automatic method named the
PCANet-CK to identify AMD, ME, and NM using the 3-D reti-
nal SD-OCT images. Instead of adopting hand-crafted features,
the proposed PCANet-CK method can automatically learn
features from the input OCT images without layer segmentation.
In addition, the PCANet-CK utilizes a composite kernel to
exploit the strong correlations among features of the 3-D OCT
images for classification. Experimental results on two clinically
acquired OCT datasets demonstrate the effectiveness of the
proposed PCANet-CK method.

In this paper, an automatic retinal OCT image classification
algorithm, which can achieve high classification accuracy in
identifying AMD, ME, and NM, has been developed. The algo-
rithm may be considered an effective computer-aided diagnosis
tool for improving clinically OCT-based ophthalmic disease
diagnosis and supporting remote clinical applications.

Note that each kind of disease (e.g., AMD) has large varia-
tions on its corresponding lesions (e.g., drusen in different sizes
and shapes acquired from patients of different countries and
also affected by different illuminations and noise). To better re-
present and classify the disease, we need to collect more training
OCT datasets and then learn a more general model. This is
one of our ongoing works, and it is expected to further improve
the classification performance.

Since OCT images are 3-D volumetric data and the same
pathological structures usually exist in several adjacent cross-
sectional slices, one alternative way of feature extraction is to
adopt the 3-D-PCANet model with 3-D PCA filters, which can
be expected to better capture the main variation of all the 3-D
cubes. In addition, our future publication will extend our algo-
rithm to other retinal diseases, such as macular hole, macular
telangiectasia, and central serous chorioretinopathy.
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