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Abstract. We have developed the ultrasound (US)-guided diffuse optical tomography technique to assist US
diagnosis of breast cancer and to predict neoadjuvant chemotherapy response of patients with breast cancer.
The technique was implemented using a hand-held hybrid probe consisting of a coregistered US transducer and
optical source and detector fibers which couple the light illumination from laser diodes and photon detection to
the photomultiplier tube detectors. With the US guidance, diffused light measurements were made at the breast
lesion site and the normal contralateral reference site which was used to estimate the background tissue optical
properties for imaging reconstruction. However, background optical properties were affected by the chest wall
underneath the breast tissue. We have analyzed data from 297 female patients, and results have shown sta-
tistically significant correlation between the fitted optical properties (μa and μ 0

s) and the chest wall depth. After
subtracting the background μa at each wavelength, the difference of computed total hemoglobin (tHb) between
malignant and benign lesion groups has improved. For early stage malignant lesions, the area-under-the-
receiver operator characteristic curve (AUC) has improved from 88.5% to 91.5%. For all malignant lesions,
the AUC has improved from 85.3% to 88.1%. Statistical test has revealed the significant difference of the
AUC improvements after subtracting background tHb values. © 2017 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JBO.22.3.036004]
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1 Introduction
Diffused optical spectroscopy and tomography (DOS and DOT)
techniques have been investigated extensively in the past two
decades for their utility in breast cancer diagnosis and treatment
monitoring.1–8 One critical parameter in breast tissue characteri-
zation is the normal tissue optical properties. Different DOS or
DOT systems using continuous-wave (CW), frequency-domain
(FD), and time-resolved (TR) methods have been used to mea-
sure bulk tissue optical properties of normal breast. Depending
on the experimental set-up, patients were measured in three
positions: (1) a supine or sitting position with a hand-held
probe placed on top of the examined breast, referred to as FD
reflectance or TR reflectance measurement;9–12 (2) a prone posi-
tion with source and detector fibers distributed around the exam-
ined breast, referred to as mixed CW, FD, or TR reflectance and
transmittance measurement or ring geometry;3,13,14 and (3) a
prone or a standing position with the examined breast sand-
wiched between source and detector plates, referred to as FD
transmittance or TR reflectance or transmittance measure-
ment.15–21 In these studies, the measured breast tissue bulk optical
absorption coefficient μa and the reduced scattering coefficient μ 0

s

were reported (see Table 1). In some studies, the patients’ race,
which affects measured optical or physical properties, was also
investigated.2,13,22

Using the CWmethod with a ring geometry, Jiang et al. mea-
sured the breast tissue background optical properties (μa and μ 0

s)
of three healthy volunteers and the normal breast tissue adjacent
to a lesion in six patients.13 The patients’ race was not found to

affect measured optical properties. The μa and μ 0
s measured from

breast tissue adjacent to the lesion were 0.072 to 0.110 cm−1

and 7.5 to 10.7 cm−1, which were comparable to those from the
healthy volunteers of μa ¼ 0.035 to 0.085 cm−1 and μ 0

s ¼ 9.0 to
10.5 cm−1. Using an FD reflectance with patients in a supine
position, Shah et al. measured breast tissue optical properties
of 14 healthy subjects.9 A significant difference was found
between the pre- and postmenopausal subjects (premenopausal:
μa ¼ 0.048 to 0.150 cm−1 and μ 0

s ¼ 8.3 to 11.0 cm−1 and post-
menopausal: μa ¼ 0.016 to 0.064 cm−1 and μ 0

s ¼ 6.7 to
8.6 cm−1). Using the same technique, Cerussi et al. measured
breast optical properties of 28 healthy subjects.10 They found
the hemoglobin, water, and scatter power were on a decreasing
trend with age for subjects older than 50. They also found the
scatter power correlated with water concentration, and corre-
lated negatively with lipid. Using an FD transmittance geometry,
Durduran et al. measured the optical properties of 52 healthy
volunteers.16 Investigation was focused on the correlation of
optical properties, blood volume, and oxygen saturation (SO2)
with the body mass index (BMI) and age, and only a weak cor-
relation was found between blood volume and BMI, and μ 0

s and
BMI. By using an FD system with a ring geometry, Poplack and
Pogue et al. first measured 11 patients and later 23 healthy vol-
unteers’ breasts at five wavelengths within 660 to 808 nm.3,23

The total hemoglobin (tHb) and μa were found to be signifi-
cantly associated with the BMI and breast density, but no sig-
nificant association was found between SO2 and either BMI or
breast density. Recently, Fang et al. measured the optical proper-
ties of 68 breasts from 49 healthy volunteers and later 138
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Table 1 Comparison of reported optical parameters for normal breast at NIR.

Ref. Methoda Positionb Probec Nd

Locatione

λ (nm)

μa (cm−1) μ 0
s (cm−1)

H NC NS Mean� Std Range Mean� Std Range

Shah et al.9 FD Supine Hand-
held

14 14 647 to
956

— 0.016 to 0.150 — 6.7 to 11.0

Cerussi et al.10 FD Supine Hand-
held

28 28 672 — 0.025 to 0.125 — 6.8 to 10.5

28 28 800 — 0.025 to 0.100 — 6.0 to 9.1

28 28 806 — 0.025 to 0.100 — 5.8 to 8.7

28 28 852 — 0.040 to 0.120 — 5.7 to 8.2

28 28 896 — 0.075 to 0.160 — 5.5 to 8.0

28 28 913 — 0.075 to 0.180 — 5.6 to 7.9

28 28 978 — 0.075 to 0.310 — 5.4 to 7.8

Svensson
et al.11

TR Sitting Hand-
held

36 36 786 0.041� 0.021 — 8.0� 2.0 —

Mo et al.12 TR Sitting Hand-
held

19 19 785 0.050� 0.015 — 10.53� 1.20 —

19 19 808 0.052� 0.015 — 10.49� 1.19 —

Jiang et al.13 CW Prone Ring 9 3 6 785 — 0.035 to 0.110 — 7.5 to 10.7

Poplack et al.3 FD Prone Ring 23 23 785 0.052� 0.019 0.030 to 0.102 11.7� 2.0 7.9 to 15.5

Suzuki et al.15 TR — Plates-R 30 30 753 0.046� 0.014 0.024 to 0.078 8.9� 1.3 6.3 to 10.8

Durduran
et al.16

FD Prone Plates-T 52 52 750 0.046� 0.024 — 8.7� 2.2 —

52 52 786 0.041� 0.025 — 8.5� 2.1 —

52 52 830 0.046� 0.027 — 8.3� 2.0 5.0 to 13.5

Grosenick
et al.17

TR — Plates-T 28 28 670 0.041� 0.013 0.025 to 0.080 11.7� 2.3 7.0 to 18.0

35 35 785 0.039� 0.009 0.025 to 0.060 10.2� 1.6 6.0 to 14.0

Grosenick
et al.18

TR — Plates-T 87 87 670 0.036� 0.008 — 10.5� 1.3 —

87 87 785 0.039� 0.011 — 9.5� 1.4 —

8 8 843 0.036� 0.005 — 8.4� 0.4 —

22 22 884 0.059� 0.016 — 8.0� 1.0 —

Spinelli et al.19 TR — Plates-T 113 113 637 0.055� 0.007 — 13.4� 2.6 —

113 113 656 0.041� 0.005 — 13.5� 2.1 —

113 113 683 0.042� 0.013 — 12.9� 2.3 —

113 113 785 0.037� 0.013 — 11.3� 2.1 —

113 113 912 0.110� 0.021 — 11.4� 2.6 —

113 113 980 0.099� 0.028 — 11.7� 2.6 —

Fang and
Boas20

CW/FD Standing Plates-T 49 49 830 — — 7.5� 0.8 —

Fang et al.21 CW/FD Standing Plates-T 125 125 830 — — 7.1� 1.6 —

aMethod: Measurement techniques that were used. CW, continuous wave; FD, frequency domain; TR, time-resolved.
bPosition: Patient position in measurement.
cProbe: Probe geometry for light delivery and collection. Plates: breast is sandwiched between two plates, with source and detectors on the plates;
T, transmission; R, reflectance.
dN : Total number of subjects (healthy volunteers or patients) involved in the study.
eLocation: Location of the breast tissue that is measured: H, healthy subjects; NC, normal breast tissue of contralateral reference side of the patient;
NS, surrounding breast tissue of a lesion of the same breast.
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normal breasts from 125 subjects using a hybrid CW/FD DOT
system with a transmittance geometry. Their study was focused
on comparing the DOT measurements of hemoglobin and scat-
tering maps with coregistered x-ray images of different catego-
ries of breast tissues.20,21

By utilizing the TR reflectance method with a single wave-
length and a single source and detector pair, Suzuki et al. studied
30 healthy Japanese volunteers and found a high correlation of
the breast tissue μa and μ 0

s with age, BMI, and menstrual status.15

Later, Svensson et al. used a portable TR system to study water,
lipid, and hemoglobin concentration variations of 36 normal
subjects.11 Their results also showed that larger source and
detector separation (2 versus 1.5 cm) resulted in higher tHb and
SO2 values measured. Using a similar method, Mo et al. mea-
sured breast optical properties of 19 healthy Singapore women,
and reported high correlations of tissue μa, μ 0

s , and tHb with age,
menopausal status, and BMI.12 Grosenick et al. developed a TR
transmittance system using a single-fiber for delivery and a
single fiber-bundle for collecting setup to measure breast tissue
optical properties of 35 patients and later 87 patients with
lesions.17,18 The tHb concentration and SO2 were also studied
by comparing tumor and background tissues. Using a similar
method, Spinelli et al. reported the tHb, SO2, lipid, and water con-
centration from absorption spectrum of 113 measurements from
both breasts of 150 subjects.19,24 Correlations of these physiologi-
cal properties with age, breast thickness, and BMI were found.

We have developed an ultrasound (US)-guided FD-DOT
technique using a hybrid hand-held probe for breast cancer diag-
nosis and treatment assessment within the wavelength range
used by other groups as summarized in Table 1.7,8,25 From mea-
sured light reflectance, lesion optical absorption maps at four
optical wavelengths were reconstructed and the hemoglobin
concentration maps of tHb, oxygenated hemoglobin (HbO2),
and deoxygenated-hemoglobin (Hb) were calculated.26 Results
have shown higher sensitivity and specificity in diagnosing early
stage (Tis-T1) breast cancers from benign lesions.26 Compared
with the systems developed by other groups, our system using a
hand-held probe with patients imaged in a supine position can be
easily incorporated into a conventional US pulse-echo scanning
with no need to adjust the probe size to fit a patient’s breast.
However, to probe breast lesions in the depth range of 1 to 4 cm,
the source-to-detector separation of 3 to 8 cm is needed. At this
range of source-to-detector separations, the chest wall affects
measurements of background tissue optical properties.27,28

We have developed several methods to minimize the chest
wall effect, including a two-layer modeling29 and a two-layer
reconstruction method,30 and a two-step fitting and reconstruc-
tion with a dual-probe measurements (a small probe for the first
layer and a larger probe for both layers).31 Despite the promising
results, the clinical application of these methods is limited due to
their intense computation and a slower convergence rate.29,31

In a recent paper, Yoshizawa et al. reported the effect of chest
wall on light reflectance measurements using their TR-DOS sys-
tem with a 3 cm source-to-detector distance, and showed a func-
tion characterizing the tHb concentration in terms of chest wall
depth.32 Based on their measurements, they reported the tHb
concentration ranging between 10 and 90 μM, and this range
reduced to 10 to 30 μM by taking out cases whose chest wall
depths were smaller than 2 cm. In this study, we have evaluated
the correlation between the fitted background tissue optical
properties and the chest wall depth from 297 patients measured
with our FD-DOT system. The background optical properties

were measured from the contralateral reference breast at the mir-
ror position of the lesion. To the best of our knowledge, our
study has the largest patient population and diverse lesion
types and the results will be a valuable reference for the research
community in DOS and DOT breast imaging field. We have also
developed an automated chest wall depth detection algorithm
from coregistered US images to compute the chest wall depth
for each patient and validated the depth by an expert with US
images. This algorithm not only allows us to automatically esti-
mate the chest wall depth of this large patient database but also
provides a valuable tool to guide operators to match the chest
wall depth from both lesion and reference breast to produce the
best imaging reconstruction results. Since chest walls appear as
linear structures in coregistered breast US images, a Hough
transform based on structure segmentation using a Gabor filter
is applied together with simple edge detection and denoising
techniques to automatically detect chest wall depth.33–37 Using
the lesion tHb values reported in Ref. 26, we have subtracted the
background hemoglobin level from each patient’s tHb to
improve the diagnosis between malignant and benign lesions.

2 Materials and Methods

2.1 Study Subjects

A total of 297 female patients were evaluated in this study. All
patients signed the informed consent and the protocol was
approved by local Institution Review Boards. The data reported
in this study were deidentified according to the institution
approved protocols. The characteristics of study subjects can be
found in Ref. 26. Briefly, from the total of 300 female patients
included for analysis in the referenced study, three patients were
further excluded because digital coregistered US images were
not available. Of the 297 patients used for analysis in this
study, 12 individuals with no US identifiable lesions at the
time of the DOT study were taken as a control. Of the rest,
six patients have two lesions. Thus we have total 285 patients
and 291 lesions for analysis (the mean age is 50 years, ranging
from 17 to 94 years). Of the investigated lesions, 232 were diag-
nosed to be benign and 59 were malignant. The patients with
benign lesions were further subcategorized into seven groups
including: proliferative lesions (Prolif.), fibroadenoma (FA), fat
necrosis and inflammatory changes (FN), fibrocystic changes
(FC), cystic changes (Cyst), lymph node (LN), breast tissue,
and other benign categories. Among the 297 patients, 18 had
US images revealing deep chest walls beyond 5 cm and
could not be estimated accurately. These patients were not used
for analysis of the chest wall effect on background tissue optical
property measurements. 225 had disclosed their race (black
n ¼ 45, Asian n ¼ 4, Hispanic n ¼ 42, and white n ¼ 134),
of which three white patients have two measurements each at
two different normal reference locations because their two breast
lesions were in different quadrants. Thus, we have a total of 303
measurements from 297 subjects analyzed for lesion diagnosis,
285 measurements from 280 subjects analyzed for chest wall
effect, and 228 measurements from 225 subjects analyzed for
skin color effect on reflectance measurements.

2.2 US-Guided DOT Imaging and Data Processing

The specifications of our US-guided FD-DOT system are
described elsewhere.26,38 Briefly, the coregistered US images
and optical measurements were acquired simultaneously first
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from a lesion breast and then from the contralateral normal
breast at the mirror position of the lesion [Fig. 1(a)]. For each
patient, the measurement location at the lesion side was chosen
so that the lesion was located in the middle of the US image in
the lateral dimension [Fig. 1(c)]. Four laser diodes sequentially
delivered four optical wavelengths of 740, 780, 808, and 830 nm
to the tissue and the reflected light was detected by 10 optical
fiber bundles which coupled detected light to 10 parallel photo-
multiplier tube detectors. The measurement procedure and
geometry of the US probe and optical source and detector fibers
are shown in Figs. 1(a) and 1(b). The source powers measured at
fiber tips were: 14 to 18 mW (740 nm), 17 to 23 mW (780 nm),
17 to 23 mW (808 nm), and 24 to 28 mW (830 nm). The wave-
lengths 785, 808, and 830 nm are often used in DOS and DOT
systems (see Table 1) because of the need for deep tissue pen-
etration. 740 nm provides more robust estimation of deoxygen-
ated hemoglobin in the NIR spectrum.

Background tissue μa and μ 0
s were fitted from the reflectance

measurements made at the contralateral normal breast using a
semi-infinite analytical solution.39 For each wavelength, the
absorption μa and reduced scattering coefficients μ 0

s are fitted as
39

EQ-TARGET;temp:intralink-;e001;63;521μa ¼
ω

ν

�
tan

�
2 tan−1

kr
ki

��
−1
; (1)

EQ-TARGET;temp:intralink-;e002;63;478μ 0
s ¼

k2i þ k2r
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa þ ðω∕νÞ2

p ; (2)

where ω is the modulation frequency and ν is the speed of light.
kr and ki are the fitted slopes of amplitude (logarithmic scale) and
phase versus source and detector distance [Fig. 1(d)].

About 4 to 6 data sets were acquired at the lesion breast first
and then 4 to 5 data sets at the contralateral normal breast (refer-
ence). The average μa and μ 0

s obtained from 4 to 5 measurements
made at the contralateral breast were used to characterize each
patient’s background tissue optical properties. Reconstruction of
an absorption (μa) map of a lesion at each wavelength is based
on the Born approximation and conjugate gradient search for
optimization.25

The tHb map of a lesion was directly computed by summa-
tion of HbO2 and Hb from reconstructed μa maps given from40

EQ-TARGET;temp:intralink-;e003;326;642 2
6664
μaλ1

μaλ2
μaλ3

μaλ4

3
7775 ¼ 2.303

2
6664

εHbO2λ1 εHbλ1

εHbO2λ2 εHbλ2

εHbO2λ3 εHbλ3

εHbO2λ4 εHbλ4

3
7775
�
HbO2

Hb

�
: (3)

For each lesion, the average of maximum values of 4 to 6
computed tHb maps was used to characterize the lesion. Bulk
tissue or background tissue tHb concentration was calculated
from fitted μa values at four optical wavelengths. To minimize
the chest wall effect, the lesion tHb was subtracted from the
background hemoglobin level, which represents a relative tHb
concentration.

2.3 Chest Wall Depth Detection

We defined chest wall depth as the distance from the skin to the
top layer of chest wall muscle. An automated chest wall depth
detection method was developed and applied to the coregistered
US images. Detection of the chest wall is based on the fact that
chest wall muscles appear as line structures in US images [see
Fig. 2(a)].41 Therefore, line detection algorithms could be used

Fig. 1 An example of measurement procedure and geometry (a) and (b). The coregistered hybrid probe
was placed on a lesion first and 4 to 6 measurements were taken. Then, the probe was placed on the
contralateral mirror position of the lesion, which was used as reference, and 4 to 5 measurements were
taken. The US transducer or probe was located in the middle and optical source and detector fibers were
surrounding the US probe. (c) Typical coregistered US image taken at a normal breast (left) and lesion
breast (right). A scale bar indicating 1-cm mark shows similar chest wall depth for both lesion and normal
reference sites. (d) Reference measurement at 780 nm, amplitude (logarithmic scale, left) and phase
(right) versus source, and detector distance. Fitted slopes were k i and kr which were used for computing
bulk tissue μa and μ 0

s.
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for automatic detection. We chose Hough transform as a line
detection method because it is simple and robust when com-
bined with any edge detection method.42 In Hough transform,
the Cartesian position of a pixel transforms into a parametric
ðr; θÞ plane where it appears as a sinusoidal curve. Each pixel
obtains their corresponding curve and intersects with other
curves if they are on the same line. The more the number of
pixels on a line, the brighter that specific spot in the ðr; θÞ
plane. Based on the user set threshold or automatic voting pro-
cedure, low amplitude spots are discarded to avoid unwanted
detections.

Canny edge detection method is first applied to generate a
binary image as shown in Fig. 2(b).43 Canny edge detection is
a very robust and popular edge detection technique. Along with
the intensity gradient on the image, it applies Gaussian noise
filtering, edge thinning, and hysteresis tracking using a double
threshold to obtain better edge detection. The goal of the edge
detection in an image is to determine the boundaries of struc-
tures. It is expected that chest wall boundaries will be visible
after edge detection. However, in typical breast US images,
edge detection provides chest wall boundaries along with boun-
daries of other structures.

It is clear from Fig. 2(b) that if Hough transform is applied to
the edge detected image without any restriction, it will detect
several unnecessary structures. For example, due to subcutane-
ous fat and breast tissue interfaces some linear structures are
appeared at the top of the US image. There are other linear struc-
tures also visible in the image. Hough transform detects all these
linear structures. To avoid these unnecessary detections, we
modeled the chest as a linear structure which is mainly horizon-
tal with a small slope and it should appear at the lower half of the
image. To find the structure that agrees with this model, the
search area for the chest wall was defined at the lower half of
the US image and lines which have more than a 20-deg slope
were discarded. Finally, lines consisting of less than 30% of the
number of pixels in the longest detected line are discarded since
linear structures associated with the chest wall should have the

highest number of pixels. After applying Hough transform and
the above-mentioned restrictions, the surviving linear structures
are marked in green lines as shown in Fig. 2(c). Finally, the
mean value of all the points of these detected lines is considered
as the chest wall depth. A flow diagram of the entire procedure is
given in Fig. 3.

In order to estimate the accuracy of this method, we mea-
sured the chest wall depth both by algorithm and manually by
an experienced US breast imager, refereed as an operator. We
quantified the error as

EQ-TARGET;temp:intralink-;e004;326;642Error ¼ jManual − Autoj
Manual

× 100%: (4)

Empirically for cases with errors <15% which correspond to
2 to 4 mm for the average chest wall depth of 2 to 3 cm, we used
automatically detected values. For cases with errors >15%, the
operator re-evaluated the chest wall depths and reassigned or
confirmed the values.

2.4 Statistical Analysis

Pearson correlation method was used to examine the correla-
tions of the fitted μa and μ 0

s with the chest wall depth. A two-
sample t-test was also performed to compare the mean differ-
ence of tHb between the malignant group and each benign sub-
group (Table 5, p-values). In order to evaluate the diagnostic
performance of tHb levels in classification of malignant and
benign lesions, the tHb levels were used as the predictor variable
and the responding variable is a binary corresponding to the sta-
tus of the tumor diagnosis based on biopsy. For analysis #1, the
respond variable is unity for early stage malignant tumors (Tis-
T1) and zero for benign lesions; for analysis #2, the responding
variable is unity for all malignant tumors including Tis-T1 and
late stage cancers (T2-T4) and zero for benign lesions. The
false-positive rate (1-specificity) and true-positive rate (sensitiv-
ity) were computed in MATLAB® to generate the receiver

Fig. 2 (a) Breast US image with chest wall marked with arrows. (b) Edge detected binary image from (a).
(c) Detected chest wall location on the original input image. The yellow and red stars indicate the sep-
aration points between line pieces. Green lines indicate the detected linear structures after restriction
applying.

Fig. 3 Flow diagram of the chest wall detection method.
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operating characteristic curve (ROC). In each ROC plot, the area
under the ROC (AUC) and the corresponding 95% confidence
interval were calculated using R package pROC.44 The statistical
difference of ROCs with and without subtracting background
was evaluated by two tests in pROC: (1) the Venkatraman’s test
on two ROC curves and (2) the bootstrap test on AUCs as
opposed to the actual ROC curves. The Venkatraman’s method
evaluates the integrated absolute difference between ROCs at all
operating points with a test statistics (corresponding to statistics
E in pROC), whose null distribution is generated by permuting
the pooled ranks of two predictor variables within a study
subject.45 In our study, the permutation was executed 2000
times as a default. The Bootstrapping method tests the equality
of AUCs for two diagnoses.44 It defines a statisticsD by dividing
the difference of the original two AUCs with a standard
deviation (s), which is the standard deviation of the AUCs’ dif-
ference and is computed 2000 times with bootstrap replicates. In

each replicate, original diagnostic measurements are resampled
with replacement. As the statistics D follows a normal distribu-
tion, p-value is calculated based on the observed D score. For
both tests, the p-value was computed by a two-tailed paired test
and statistical significance was considered at p < 0.05.

3 Results
We compared an operator manually and an algorithm automati-
cally detected chest wall depths. Using an error measure defined
in Eq. (4), the percentage of cases with error <15% was 67%.
For cases with error >15% (33%), the operator re-evaluated the
chest wall depths and reassigned or confirmed the values. For all
cases, the average algorithm detection error was 14%, which
corresponds to 2 to 4 mm for the average chest wall depth of
2 to 3 cm.

We then analyzed the correlation between fitted background
μa and μ 0

s and the chest wall depth of the reference side which

Fig. 4 Fitted μa and μ 0
s versus chest wall depth at different wavelengths measured at normal reference

side.

Table 2 Correlation coefficient (r ) between fitted μa and μ 0
s with chest wall depth of entire population and different races (total n ¼ 285, black

n ¼ 45, Asian and Hispanic n ¼ 46, white n ¼ 137).

Background properties Race Chest wall depth (cm)

Wavelength

740 nm 780 nm 808 nm 830 nm

μa (cm−1) All patients 2.57� 0.66 0.6656 0.6733 0.6739 0.6652

Black 2.58� 0.68 0.6998 0.7164 0.7046 0.6593

Asian and Hispanic 2.49� 0.70 0.6777 0.6594 0.6765 0.6596

White 2.53� 0.62 0.7752 0.7773 0.7800 0.7803

μ 0
s (cm−1) All patients 2.57� 0.66 0.3311 0.3109 0.2721 0.2702

Black 2.58� 0.68 0.2972 0.3203 0.1975 0.2022

Asian and Hispanic 2.49� 0.70 0.1746 0.2223 0.0927 0.2727

White 2.53� 0.62 0.3845 0.3389 0.3719 0.3213
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does not have known lesions at the time of the study based on
the evaluations of the attending radiologists from available
mammograms, US, and or magnetic resonance imaging. The fit-
ted μa and μ 0

s at four optical wavelengths are correlated with the
chest wall depth as shown in Fig. 4 and Table 2 with p-values
less than 0.0001. At each wavelength, the fitted μa has a much
higher correlation coefficient than that of the fitted μ 0

s . Analysis
of different races shows that as the skin color gets lighter (the
skin color was based on a patient’s race as disclosed at the time
of the consent), the correlation coefficient between μa and the
chest wall depth is higher, while the correlation between μ 0

s

and the chest wall depth does not change much with skin
color. This is likely caused by the deeper penetration of the dif-
fused light when the skin color is lighter. There is no significant
difference of chest wall depth between the white and black race
groups and between the white and Asian and Hispanic groups;
however, the correlation coefficients at four wavelengths for
the white group is significantly larger than for the black (p ¼
0.0055) and Asian and Hispanic groups (p ¼ 0.0001), but no
significant difference was found on the correlation coefficients
between the black and Asian and Hispanic groups (p ¼ 0.1096).

Table 3 shows the fitted μa and μ 0
s values of the entire population

and different races. No significant difference of μa or μ 0
s was

found between any two racial groups.
We further calculated the hemoglobin concentrations from

fitted bulk tissue μas at four wavelengths. The correlation
coefficients (r) and p-values between chest wall depth and com-
puted background hemoglobin values were, tHb: r ¼ 0.6775,
p < 0.0001; HbO2: r ¼ 0.6134, p < 0.0001; and Hb: r ¼
0.6017, p < 0.0001, which are statistically significant.

We have shown in a previous study that the lesion maximum
hemoglobin concentration can be used to differentiate benign
from malignant lesions.26 We have investigated the improve-
ment of using this method in differentiating benign and malig-
nant lesions by subtracting the corresponding background
hemoglobin concentration. Figure 5 shows the differences with-
out and with subtraction of the corresponding background from
each patient between malignant group (both Tis-T1 and T2-T4)
and benign subgroups of Prolif., FA, FN, FC, Cyst, and LN.
Numerical differences, standard deviations (std), and p-values
were computed between malignant and benign subgroups and
are shown in Table 4. The error bars in Fig. 5 and std values

Table 3 Breast tissue bulk optical properties (mean� std) measured at four optical wavelengths of entire population and different races (total
n ¼ 285, black n ¼ 45, Asian and Hispanic n ¼ 46, white n ¼ 137).

Background properties Race Chest wall depth (cm)

Wavelength

740 nm 780 nm 808 nm 830 nm

μa (cm−1) All patients 2.57� 0.66 0.033� 0.020 0.032� 0.022 0.034� 0.023 0.039� 0.023

Black 2.58� 0.68 0.034� 0.022 0.033� 0.022 0.034� 0.023 0.039� 0.025

Asian and Hispanic 2.49� 0.70 0.035� 0.020 0.036� 0.025 0.039� 0.027 0.042� 0.027

White 2.53� 0.62 0.033� 0.020 0.032� 0.022 0.034� 0.022 0.039� 0.022

μ 0
s (cm−1) All patients 2.57� 0.66 4.5� 1.3 4.1� 1.2 3.7� 1.1 4.6� 1.1

Black 2.58� 0.68 4.7� 1.6 4.4� 1.4 4.0� 1.3 4.2� 1.3

Asian and Hispanic 2.49� 0.70 4.6� 1.3 4.1� 1.2 3.8� 1.1 4.1� 1.1

White 2.53� 0.62 4.5� 1.2 4.0� 1.2 3.7� 1.1 4.1� 1.1

Fig. 5 Total hemoglobin difference (ΔtHb) and std between the malignant group (n ¼ 59) and benign
subgroups (Prolif n ¼ 33, FA n ¼ 75, FN n ¼ 29, FC n ¼ 44, Cyst n ¼ 38, tissue and other benign n ¼ 7,
and LN n ¼ 6), and all benign group (n ¼ 232). P-values were computed by comparing ΔtHb (difference
between malignant and benign subgroup) with and without background subtraction using Welch’s t-test,
for all benign groups except for two (tissue and other benign and LN), due to smaller sample sizes result-
ing in large p-value.
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in Table 4 indicate the standard deviations of the difference
between the malignant group and each benign subgroup. They
were computed using the stds and sample sizes (n) of two

groups under comparison as std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
std12

n1 þ std22

n2

q
. An increased

difference was found between the malignant group and 6 of the 7
benign groups in a range of 2 to 7 μM, except for the tissue and
other benign group, because of the small sample size. The larg-
est difference after subtraction was found from fibroadenoma
(FA) due to the relatively young patients with dense breast tissue
and a shallower chest wall depth in this group. The mean age
for the benign subgroups were: 55� 13, 41� 12, 55� 18,
49� 12, 49� 11, 51� 13, and 47� 14 years for Prolif.,
FA, FN, FC, Cyst, tissue and other benign, and LN, respectively.
Their average chest wall depths were 2.64� 0.54, 2.44� 0.75,

2.53� 0.70, 2.59� 0.72, 2.42� 0.62, 2.71� 0.48, and
2.49� 0.67 cm, respectively.

The ROC curves (sensitivity versus specificity) using a
threshold of tHb level for predicting early stage malignant
lesions (Tis-T1) and all malignant lesions (Tis-T1 and T2-T4)
from the benign cases are given in Fig. 6. 64 μM was chosen
as the optimal threshold for diagnosis using relative lesion tHb
after subtracting the background values, and 80 μM was used as
the optimal threshold for diagnosis using the reconstructed tHb
without subtracting the background values. We compared both
ROCs and AUCs in R package pROC44 using tHb levels before
and after subtracting the background. When comparing the ROC
curve after background subtraction against the one before sub-
traction, we obtained p ¼ 0.0025 for Tis-T1 diagnosis and p ¼
0.1010 for all malignant lesion diagnosis. As shown in Fig. 6,

Fig. 6 ROC curves for (a) Tis-T1 and (b) all malignant cases (Tis-T1 and T2-T4) using the lesion tHb with
and without subtracting background values. The 95% confident intervals of AUC were given in the
figures.

Table 4 Total hemoglobin differences (ΔtHb), standard deviations (Std) and p-values between the malignant and benign sub-groups with and
without subtracting the background.

Subtraction bg. Computed values Prolif. FA FN FC Cyst Tissue and others LN Benign

With ΔtHb 30.9 37.6 29.8 43.9 47.1 44.6 46.0 38.9

Std 5.5 4.2 5.9 4.5 4.4 8.1 13.6 3.7

p-Value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0004 0.0159 <0.0001

Without ΔtHb 28.5 29.4 26.4 40.3 40.0 46.0 43.9 33.6

Std 5.5 4.1 6.0 4.4 4.6 9.1 16.3 3.6

p-value <0.0001 <0.0001 0.0001 <0.0001 <0.0001 0.0011 0.0396 <0.0001

Table 5 Sensitivity, specificity, PPV, and NPV of malignant tumor diagnosis by using threshold of tHb before (th ¼ 80 μM) and after (th ¼ 64 μM)
subtracting background value.

Subtraction bg. Parameter Sensitivity (%) Specificity (%) PPV (%) NPV (%)

With Tis-T1 87.5 92.6 66.0 97.8

Tis-T1 and T2-T4 74.6 92.6 71.0 93.8

Without Tis-T1 85.0 90.2 58.6 97.4

Tis-T1 and T2-T4 72.9 90.2 64.2 93.2
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we observed a significantly higher AUC for Tis-T1 diagnosis
with an increased AUC of 3.0% (p ¼ 0.0016) and all malignant
lesion diagnoses with an increased AUC of 2.8% (p ¼ 0.0159).
The above results have demonstrated that background subtrac-
tion method has consistently improved diagnostic performance
for early breast lesions.

Table 5 shows the sensitivity, specificity, positive predictive
value (PPV), and negative predictive values (NPV) in diagnos-
ing malignant tumor from the benign lesions using tHb data with
and without subtracting the background data. Results show an
improvement of 1.7% to 2.5% in sensitivity and specificity,
6.8% to 7.4% improvement in PPV, and around 0.4% to 0.6%
improvement in NPV after subtracting the background values.

4 Discussion and Summary
The fitted μa and μ 0

s measured in the reflection geometry using
larger source and detector separations are not true representa-
tions of tissue background optical properties due to the influence
of the chest wall underneath the breast tissue. This suggests that
diagnosis between malignant and benign lesions is best per-
formed by using relative hemoglobin concentrations after sub-
tracting corresponding background values computed from fitted
μas at multiple optical wavelengths. Another advantage of using
relative hemoglobin values for diagnosis is that this method
eliminates the effect due to hemoglobin level fluctuations in cer-
tain type of patients who may have anemia or be under some
drug effect. For those patients, the background blood hemoglo-
bin concentration differs significantly from the normal values.

For each patient, we typically collect 4 to 6 sets of measure-
ments from the contralateral breast at slightly different locations.
The separation between each set of measurements varies from a
few seconds to tens of seconds because of hand-held operation.
The fitted background tHb of each patient is the average of these
4 to 6 data sets. In general, the fitted tHbs for each patient are
very close with an average standard deviation of 2.0 μM.

Skin color does affect the light penetration, therefore, the fit-
ted background values from dark skin color patients are less
affected by the chest wall depth. We understood that there are
individual differences of skin color from each race group; how-
ever, our assumption that the skin color order from dark to light:
black > Asian and Hispanic > white, was based on the general
trend and our result shows an agreement with this trend. The
Asian and Hispanic group has a mixed skin color, and no sig-
nificant difference on the correlation of fitted μa with chest wall
depth was found compared with the black group. The sample
size of each group is large and it should not affect reported
results. As shown in Table 3, the fitted μa and μ 0

s for the three
groups are very similar.

The relative tHb computed with reconstructed μa was used
as the predictor for generating ROC curves for the study.
When comparing the closeness of two ROC curves with and
without background subtraction by the Venkatraman’s method
in R package pROC, we observed statistically different ROC
curves for Tis-T1 diagnosis [p ¼ 0.0025, Fig. 6(a)], but similar
ROC curves for all malignant lesion diagnosis [p ¼ 0.1010,
Fig. 6(b)]. Consistent with this, the background subtraction
method yielded a statistically higher AUC for Tis-T1 diagnosis
[p ¼ 0.0016, Fig. 6(a)]. However, we also obtained a higher
AUC for all malignant lesion diagnoses [p ¼ 0.0159, Fig. 6(b)].
The inconsistent result is likely due to differential statistics
employed in two different ROC tests. As can be seen in either
case of Fig. 6, the 95% CIs of two AUCs with and without

subtracting background overlap with each other. In general, if
confidence intervals do not overlap, it suggests a significant dif-
ference between two parameter estimates; however, the reverse
is not always true and our data might be this case. Given the
observed difference of two AUCs (Tis-T1 diagnosis: 3%; all
malignant lesion diagnosis: 2.8%), the 2000 times of bootstrap
resampling method generated small empirical standard devia-
tions, for Tis-T1 diagnosis and for all malignant cases, resulting
in large D values and significant p-values accordingly.
Nevertheless, improvement of our subtracting method for all
malignant lesion diagnosis can only be considered as marginal
and needs to be confirmed by future studies.

We also studied the distribution of tHb versus age, and found
the trend was generally in agreement with that reported by
Cerussi et al.10 However, our data were more scattered than
the results reported in Ref. 10. The chest wall effect still played
a role on our data even though we selected measurements with
the chest wall depth deeper than 2 cm. Moreover, as shown in
Table 1, the measured μa is in the range of 0.025 to 0.110 cm−1

and μ 0
s in the range of 5.0 to 15.5 cm−1, while our measured μa is

in the range of 0.0001 to 0.130 cm−1 and μ 0
s is in the range of 0.6

to 8.4 cm−1. Although μa is similar to the reported values, μ 0
s is

lower. The tHb values were measured to be in the range of 1 to
58 μM, which is similar to the range of 0 to 60 μM reported in
Ref. 10, and lower than the range of 10 to 90 μM reported
in Ref. 32.

We have tried to remove the chest wall effect by using shorter
source-detector measurements.27,29–31 Results show that although
the correlation coefficient was smaller when shorter source-
detector measurements were selected, the fitted μa was still cor-
related with the chest wall depth but not μ 0

s for the source and
detector range we have.

We have developed an automated chest wall detection algo-
rithm to mark the chest wall depth from coregistered US images.
It is also a valuable tool to guide operators to position the hand-
held probe at the matched chest wall positions of reference and
lesion breasts to achieve the best performance in computing per-
turbations and reconstructing accurate lesion optical properties.

In summary, this paper reviewed breast tissue optical proper-
ties measured by diffuse optical spectroscopy or tomography
techniques. Our measurements from 297 patients show signifi-
cant correlation between the measured optical properties and the
chest wall depth where even the background μa were similar to
those reported in the literature. By subtracting background tHb
computed from fitted background μas of all wavelengths, the
relative tHb improves sensitivity, specificity, and positive and
NPVs in breast cancer diagnosis.
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