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Abstract. A practical algorithm for estimating the wavelength-dependent refractive index (RI) of a turbid sample
in the spatial frequency domain with the aid of Kramers–Kronig (KK) relations is presented. In it, phase-shifted
sinusoidal patterns (structured illumination) are serially projected at a high spatial frequency onto the sample
surface (mouse scalp) at different near-infrared wavelengths while a camera mounted normally to the sample
surface captures the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength
are converted to spatial absorption maps by logarithmic function, and once the absorption coefficient information
is obtained, the imaginary part (k ) of the complex RI (CRI), based on Maxell’s equations, can be calculated.
Using the data represented by k , the real part of the CRI (n) is then resolved by KK analysis. The wavelength
dependence of nðλÞ is then fitted separately using four standard dispersion models: Cornu, Cauchy, Conrady,
and Sellmeier. In addition, three-dimensional surface-profile distribution of n is provided based on phase
profilometry principles and a phase-unwrapping-based phase-derivative-variance algorithm. Experimental
results demonstrate the capability of the proposed idea for sample’s determination of a biological sample’s
RI value. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.3.035007]
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1 Introduction
The complex refractive index (CRI), which reflects a sample’s
intrinsic properties, is composed of real (n) and imaginary (k)
parts as: CRI ¼ nþ ik. n and k are the positive real functions
reflecting the phase velocity (C∕V) of light waves propagated
and its attenuation, respectively.1–3 In addition to that, CRI is
frequently utilized to solve boundary questions at the interfer-
ences when modeling light migration within heterogeneous
samples, such as biological tissues.4 In the context of biomedical
optics, n is related to the scattering coefficient (μs),

5 whereas the
imaginary part (k) is connected to absorption coefficient (μa) as
given by: k ¼ λμa∕4π.6,7 Therefore, exploiting the changes in
CRI parameters can provide useful information regarding the
sample’s physiological properties during diagnostic or treatment
procedures. Overall, the independent derivation of n and k val-
ues, as well as the determination of scattering and absorption as
functions of wavelength, can provide a comprehensive battery
of biochemical, morphological, and histochemical parameters of
biological tissue. Along this line, once the spectral data of k are
obtained, n can be deduced via Kramers–Kronig (KK) relations
and vice versa. The KK relations, dispersion relations well-
known in the context of optical spectroscopy, connect between
these variables as follows:8

EQ-TARGET;temp:intralink-;e001;63;170nðλÞ ≈ no þ
2

π
P
Z

λn

λ1

kðλ 0Þλ 0

λ2 − ðλ 0Þ2 dλ
0; (1)

where λ is the wavelength of radiation, P denotes the Cauchy
principle value, and no is the high-wavelength refractive index
(RI),9 approximately no ≈ 1.38 at 650 nm for biological tissue.10

Over the past decades, several approaches have been devel-
oped to determine the RI of dense random media, such as bio-
logical tissue, each method possessing its advantages and
disadvantages. In this work, we suggest the application of spa-
tially modulated near-infrared (NIR) illumination [also known
as modulated imaging (MI)] to derive sample RI. MI is a
recently developed, noncontact, scan-free, and wide-field imag-
ing approach, which is well-suited for quantitative spatial map-
ping of optical properties and biochemical composition (such as
hemoglobin, lipid, water, etc.) of highly scattering media, such
as biological tissue.11 The key advantage of this platform stems
from its use of structured illumination (i.e., stripes of light) in at
least two spatial frequencies and phase offsets to decouple light
scattering upon absorption and performing sample optical sec-
tioning. In general, lower spatial frequency patterns are pri-
marily sensitive to absorption, whereas scattering strongly
dominates the higher frequencies.12–14 In turn, tissue absorption
is typically linked to metabolic properties, such as perfusion,
oxygenation, and chemical content,15 whereas tissue scattering
is more related to structural properties, such as cell density or
tissue type.16 In our setup, sinusoidal light patterns at three dif-
ferent offset phases (0 deg, 120 deg, and 240 deg) at a single
high spatial frequency (0.27 mm−1) are serially projected onto
the sample surface at six discrete NIR wavelengths. Next, the
diffusely reflected light (spatial-modulated reflected images)
is captured by a CCD camera fixed normally to the sample sur-
face and stored for offline analysis wherein recorded images at
each excitation wavelength (λi, i ¼ 1 to 6) are processed and
converted to spatial absorption coefficient maps ½μaðx; y; λiÞ�.
Once the values of μaðx; y; λiÞ are obtained, the discrete kðλiÞ

*Address all correspondence to: David Abookasis, E-mail: davida@ariel.ac.il 1083-3668/2018/$25.00 © 2018 SPIE

Journal of Biomedical Optics 035007-1 March 2018 • Vol. 23(3)

Journal of Biomedical Optics 23(3), 035007 (March 2018)

https://doi.org/10.1117/1.JBO.23.3.035007
https://doi.org/10.1117/1.JBO.23.3.035007
https://doi.org/10.1117/1.JBO.23.3.035007
https://doi.org/10.1117/1.JBO.23.3.035007
https://doi.org/10.1117/1.JBO.23.3.035007
https://doi.org/10.1117/1.JBO.23.3.035007
mailto:davida@ariel.ac.il
mailto:davida@ariel.ac.il
mailto:davida@ariel.ac.il


data are calculated [kðλiÞ, = λiμaðλiÞ∕4π]6,7 and fitted by the
power-law equation ½kðλÞ ¼ aλ1−b�17 to cover a wide wave-
length spectrum, increasing the accuracy of the calculated
nðλÞ. Finally, the wavelength dependence of nðλÞ is fitted
according to a standard dispersion model.18,19 The steps leading
to RI reconstruction are illustrated schematically in Fig. 2 and
are elaborated in Sec. 2. As stated above, while there are several
methods to derive nðλÞ, its derivation by spatially modulated
illumination is more simple and easy, which grants additional
advantages to this technique compared to the others.

Similarly, to the MI system, structured light (fringe) projec-
tions based phase-shifting [phase-measuring profolimetry
(PMP)] approaches offer an optical metrological tool for three-
dimensional (3-D) reconstruction of object shape in many areas,
including industrial inspection, medical engineering, machine
vision, and aviation, due to its accuracy, speed, and nonrequire-
ment of contact.20–22 3-D object reconstruction is achieved via
absolute phase mapping retrieved by arctangent function calcu-
lations of the captured fringe patterns followed by an unwrap-
ping algorithm to remove phase discontinuities and obtaining
continued phase distribution. Since PMP and MI both utilize
the same working principle, they may be implemented compli-
mentarily. Thus, these two techniques may be utilized to create a
quantitative 3-D RI map, without any specialized hardware or
software. The complementary use of PMP and MI was recently
described by van de Giessen et al.23 for 3-D profiling of sample
absorption and scattering properties. Recently, the use of spatial
frequency domain imaging combined with PMP to determine
the optical properties of a sample was also demonstrated.24 In
this study, we implement a different approach to achieve the
same and to additionally calculate the RI of biological tissue.

2 Materials and Methods

2.1 Instrumentation

Figure 1 provides a schematic representation of the current opti-
cal setup, consisting of four main hardware components:
a modified commercial digital light projector (DLP) projector

(PLUS, U5-112), filter wheel (Thorlabs, FW102C), a 14-bit
CCD camera [656 ðhÞ × 494 ðvÞ pixels; 121 fps; Guppy Pro,
F-031B, AVT] equipped with a zoom imaging lens system
(Computar) positioned above the sample, and a personal com-
puter (Ipex T300). The filter wheel is equipped with six narrow
bandpass filters centered at wavelengths of 690, 780, 800, 880,
920, and 970 nm (Thorlabs, FB Series, BW �10 nm). At each
excitation wavelength, sinusoidal patterns (sine function in
MATLAB™) are sequentially projected by the projector onto
the sample surface three times at single high spatial frequency
of 0.27 mm−1 with phase offsets of 0 deg, 120 deg, and 240 deg,
respectively. We used these three demodulated images to deter-
mine the scattering and absorption coefficients and to create 3-D
surface construction. The diffuse reflected (remitted reflectance)
light that passes through the lens system is then captured by
CCD camera and saved in TIFF format for offline processing
and analysis (performed by Dell Inspiration 15, 3000 Series,
Core i5). Camera gain and exposure time were adjusted for
each illumination wavelength during the calibration process
to enable high signal-to-noise ratio while avoiding pixel satura-
tion. Each single repetition lasted up to∼1.5 min and included a
total of 18 captured images: one spatial frequency × 3 phases ×
6 wavelengths. More rapid imaging could be achieved using a
camera with higher quantum efficiency at longer wavelengths.
The entire setup is controlled by custom MATLAB™ software
(Version R2013b, MathWorks Inc., Natick, Massachusetts) such
that imaging acquisition, synchronization, and data processing
were carried out using in-house developed MATLAB™ scripts.

2.2 Imaging Procedure and Processing

Throughout the experiments, raw reflected light image data of
the sample were recorded by CCD camera while projecting spa-
tially modulated NIR light onto the sample surface. Each image
spanned a 10 mm × 10 mm field of view (FOV) using the cen-
tral 656 pixels × 494 pixels of the sensor and was composed
from 30 consecutive frames/second averaged into a single
reflected image. Image sets from each of the six wavelengths
were acquired at the high spatial frequency of 0.27 mm−1.
Complete data sets were acquired every ∼1.5 min; each repeti-
tion including 18 consecutive images: 3 phase shifts each at 6
wavelengths. Overall, 10 repetitions were performed for each
wavelength and then were averaged to increase the image sig-
nal-to-noise ratio, which underwent preprocessing using the
“fspecial” function in MATLAB™ to improve image quality.
A region-of-interest (ROI) (150 × 150 pixels) was selected
using the “imfreehand” MATLAB™ function. No other
processing has been applied to the images. The absorption coef-
ficient of the selected ROI image at wavelength, λi, was then
derived by taking the negative logarithm of the uniform illumi-
nation as

EQ-TARGET;temp:intralink-;e002;326;195μaðλiÞ ¼ kaðλiÞ × f−log10½RDC
d ðλiÞ�g; (2)

where RDC
d ðλiÞ represents the reflectance of uniform illumina-

tion (fx ¼ 0 mm−1) obtained by averaging of three recorded
spatially phased images: IoðλiÞ, I120ðλiÞ, and I240ðλiÞ. From
the obtained RDC

d ðλiÞ image, the mean and standard deviation
(“mean2” and “std2” functions) values of the absorption are
derived at each wavelength.

Fig. 1 Schematic diagram of the experimental system: DLP, digital
light projector; FW, filter wheel; LS, lens system; and CCD, charge-
coupled device.
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2.3 Calibration

The calibration process made use of tissue simulating phantoms
as a reference standard with known optical properties similar to
those of biological tissue over the NIR range in order to deter-
mine kaðλiÞ of sample absorption coefficient using Eq. (2) and to
correct for any system response. kaðλiÞ factor is applied later to
divide Eq. (2) for future validation of unknown sample optical
properties. This calibration procedure was performed immedi-
ately before and after each of the experiments in order to mon-
itor system reliability and robustness.

2.4 Refractive Index Evaluation

Once the absorption image is recovered [Eq. (2)], a transforma-
tion to the imaginary part of the CRI is employed6

EQ-TARGET;temp:intralink-;e003;63;583kðx; y; λiÞ ¼
λi
4π

μaðx; y; λiÞ: (3)

In this manner, we have a calibrated imaginary CRI cube
with dimensions of x × y × 6, where x × y is the two-dimen-
sional (2-D) image pixel size and 6 stands for the number of
the wavelengths used. By scanning individual columns (xi) at
each single row (yi) of the cube, followed by data fitting
using the power-law equation17

EQ-TARGET;temp:intralink-;e004;63;476kðxi; yi; λiÞ ¼ aλ1−bi ; (4)

a 2-D spatial map of the real RI at different wavelengths is built
concomitantly using the computation in Eq. (1). By averaging
each of the obtained nðλiÞ maps, the mean and standard
deviation values are derived. Then, the spectral dependence
of n can be fitted to the data using one of the following
dispersion schemes:18,19

EQ-TARGET;temp:intralink-;e005;63;378

Cornu∶ nðλÞ ¼ Aþ B · ðλ − CÞ−1
Cauchy∶ nðλÞ ¼ Aþ B · λ−2 þ C · λ−4

Conrady∶ nðλÞ ¼ Aþ B · λ−1 þ C · λ−3.5

Sellmeier∶ nðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

X
i

Bi · λ2

λ2 − Ci

s
; (5)

where λ is the wavelength in nanometer. The above fitting coef-
ficients of each equation (A, B, C, a, and b) are determined
using the least-squares principle.

2.5 Three-Dimensional Refractive Index Profilometry

The configuration of our system (Fig. 1) is similar to that used in
profilometry-based fringe projection (FPP).21 Briefly, when a
sinusoidal pattern is projected onto the target object surface,
the resultant phase distortions of deformed patterns are quanti-
tatively related to the object’s surface height distribution. The
intensity of the distorted image recorded by a camera for a single
frame is given by

EQ-TARGET;temp:intralink-;e006;63;136In ¼ Aðx; yÞ þ Bðx; yÞ cos½ϕðx; yÞ þ 2πn∕N� N ≥ 3;

(6)

where In is the n-frame sampling intensity, Aðx; yÞ represents
the background intensity, Bðx; yÞ is the amplitude of the fringe

pattern, and ϕðx; yÞ is the phase modulation at the measured
height. The phase ϕðx; yÞ can be calculated by traditional
phase stepping with N images. For a case of an N ¼ 3 with
a 120-deg phase-shifting step among adjacent patterns, it can
be shown that25

EQ-TARGET;temp:intralink-;e007;326;697ϕðx; yÞ ¼ arctan

� ffiffiffi
3

p I1ðx; yÞ − I3ðx; yÞ
2I2ðx; yÞ − I1ðx; yÞ − I3ðx; yÞ

�
; (7)

where I1ðλiÞ, I2ðλiÞ, and I3ðλiÞ represent the captured adjacent
reflectance images at spatial phases of 0 deg, 120 deg, and
240 deg, respectively. This phase-shift method has been consid-
ered as an essential technique to extract the phase information
[Eq. (7)] and employs only simple arithmetic operations. The
phase map ϕðx; yÞ calculated by Eq. (7) is wrapped into the val-
ues from −π to π with discontinuities along 2π phase jumps. To
remove the phase jumps and to obtain continuous phase distri-
bution, an unwrapping algorithm is carried. For unwrappimg
process and to improve sample visualization, we use the
phase-derivative-variance (PDV)26 map following 2-D finite
impulse response filter by the Blackman window in
MATLAB™. Once a correct phase unwrapping is achieved,
the height can then be computed based upon the system geom-
etry. The relation between phase and object height is written as27

EQ-TARGET;temp:intralink-;e008;326;488hðx; yÞ ¼ ðL∕dÞ
2πfx

ϕðx; yÞ ¼ Kϕðx; yÞ; (8)

where L is the distance between the camera and the object, d is
distance between the projector and the camera, and fx is the
spatial frequency of the projected fringes. In optical metrology
area, Eq. (8) is known as the phase-to-height triangulation con-
version algorithm. Once the object profile is obtained, simple
visualization of the object’s RI can be obtained in 3-D by dis-
playing the image profile as texture map using the following
commands in MATLAB™ software:

X ¼ 2D matrix of n at single wavelength;
Y ¼ 2D matrix of the correct phase unwrapping;
figure;surf(Y, X,‘FaceLighting’,‘gouraud’,‘FaceColor’,

‘interp’,‘AmbientStrength’,0.5)
colormap(jet)
shading interp
set(gca,‘fontweight’,‘bold’,‘fontsize’,14);axis off;
colorbar(‘horiz’);caxis([1.42, 1.43]);
title(‘3-D Refractive index’,‘fontsize’,12,‘fontweight’,

‘bold’);
xlabel(‘X’,‘fontsize’,14,‘fontweight’,‘bold’)
ylabel(‘Y’,‘fontsize’,14,‘fontweight’,‘bold’)
zlabel(‘Height’,‘fontsize’,14,‘fontweight’,‘bold’)
view(24,22);

Figure 2 is a flowchart illustrating the above approach to for-
mulate RI and its 3-D representation.

2.6 Animal Preparation

The animal experiments used in this study were performed in
accordance with ethics protocols approved by the Animal
Care and Use Committee at Ariel University, Ariel, Israel.
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Male C57BL/6 mice (n ¼ 3, 27 to 30 g, ∼12 weeks old) were
housed in the animal facility at the Ariel University with free
access to standard laboratory chow and water. Anesthesia
was induced by an intraperitoneal injection of ketamine
(80 mg∕kg) and xylazine (20 mg∕kg) in sterile saline. The
depth of anesthesia was sufficient to eliminate withdrawal from
foot pinch, corneal reflex, or vibrissal movements. After the
mouse was anesthetized, it was constrained on an in-house-
made experimental platform, scalp hair was carefully removed
using a commercial hair-removing lotion, and a sponge was
inserted underneath the chin. A heating plate precisely con-
trolled by a home-built thermal regulation system was placed
under the mouse to control the body temperature, and a digital
thermometer was inserted rectally to measure core body temper-
ature. Changes in body temperature were induced by increasing

Fig. 3 (a) Image of the shaved mouse scalp observed by the camera at 690 nm. Dimensions in pixels/
mm are presented. The broken frame is the ROI selected for analysis. ROI is selected between the ante-
rior coronal suture (bregma) and posterior coronal suture (lambda). (b) Examples of projected structured
light patterns at f x ¼ 0.27 mm−1 with phase shift of 120 deg among patterns. (c) Series of 2-D false-color
spatial maps of the RI at different wavelengths (hyperspectral data) for two extreme temperatures of 28°C
and 43°C. The color bar at the bottom indicates the RI value of each pixel in the map. As demonstrated,
change in temperature leads to localized changes in RI within the brain surface.

Fig. 2 Flow chart of the process for estimating the RI and its 3-D
profile.
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the temperature of a folded heating plate. In addition, a thermal
camera (FLIR i7 IR, resolution 140 × 140 pixels) was posi-
tioned slightly off angle from the mouse head to measure
brain temperature. Temperature of brain and body was recorded
every 2 min during which the mouse body core temperature was
raised from 28°C to 43°C.

3 Results and Discussion
Figure 3(a) is a typical planner illumination reflectance image of
a representative mouse scalp captured at 690 nm, alongside the

ROI (dashed rectangle) situated between the anterior coronal
suture (bregma) and posterior coronal suture (lambda). Three
representative modulated images captured by the camera at
a single spatial frequency of fx ¼ 0.27 mm−1, at respective
phase shifts of 0 deg, 120 deg, and 240 deg, are shown in
Fig. 3(b). Following the processing algorithm described in
Sec. 2.4, a series of 2-D false-color spatial maps of the RI at
different wavelengths (hyperspectral data) for two extreme tem-
peratures of 28°C and 43°C are shown in Fig. 3(c). The color bar
at the bottom indicates the RI value of each pixel in the map.

Fig. 4 (a) The first two maps at 690 nm from the spectral cube in Fig. 3(c) and their corresponding pixel
histogram profiles (b) for the two extreme temperatures. The color scale below the maps shows the value
of each pixel; higher index values correspond to brighter pixels and vice versa. The vertical axis in the
histogram reflects the number of counts in each bin, while the solid curve is a Gaussian fit with appro-
priate mean and standard deviation. Conversion of each map into histogram distributions demonstrated
localized changes in minimum, maximum, and average RI values at single-pixel resolution, revealing
spatial heterogeneity of RI values within the FOV.

Table 1 Coefficients of the four dispersion equations [Eq. (5), in this paper] at 28°C and 43°C. Coefficients were obtained with wavelength in the
unit of nanometers.

28°C 43°C

Cauchy A ¼ 1.4057, B ¼ 9.686, C ¼ −0.4 A ¼ 1.4047, B ¼ 10.0145, C ¼ 0.1

Sellemier B1 ¼ 345.3624, C1 ¼ 393.5024 B1 ¼ 335.0951, C1 ¼ 380.2549

B2 ¼ −344.73, C2 ¼ −283.6719 B2 ¼ −334.4449, C2 ¼ −275.8240

Cornu A ¼ 1.4032, B ¼ 1.3007, C ¼ −28.7977 A ¼ 1.4032, B ¼ 1.3007, C ¼ −28.7978

Conrady A ¼ 1.4057, B ¼ 11.1979, C ¼ 1.2 A ¼ 1.4047, B ¼ 11.1979, C ¼ 1.2
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As depicted, change in temperature leads to localized changes in
RI within the brain tissue morphology. These RI alterations have
been shown to represent gross morphological changes in the
mean size, density, and distribution of cell membrane, nuclei,
lysosomes, peroxisomes, protein, DNA, mitochondria, and
other organelles, as well as hemodynamic changes in hemoglo-
bin concentration, water, lipids, and oxygen saturation levels.
The first two color-coded maps at 690 nm from the spectral

cube in Fig. 3(c) and their corresponding pixel histogram pro-
files for the two temperatures are shown in Figs. 4(a) and 4(b),
respectively. The color scale below shows the value of each pixel
in the map, such that higher index values correspond to brighter
pixels and overall reveal spatial heterogeneities within the mea-
sured area. The vertical axis in the histogram reflects the number
of counts in each bin while the solid curve is a Gaussian fit with
appropriate mean and standard deviation. Conversion of each

Table 2 Coefficients of the four dispersion equations at 28°C and 43°C following second derivative. Coefficients were obtained with wavelength in
nanometers.

28°C 43°C

Cauchy A ¼ 0.0012, B ¼ 10, C ¼ 0.0001 A ¼ 0.001, B ¼ 10, C ¼ 0.0003

Sellemier B1 ¼ −0.5, C1 ¼ −0.0001 B1 ¼ −0.499, C1 ¼ −0.0003

B2 ¼ −0.5, C2 ¼ −0.0001 B2 ¼ −0.5001, C2 ¼ −0.0004

Cornu A ¼ −0.018, B ¼ 2.4991, C ¼ 0.0001 A ¼ −0.0014, B ¼ 2.0053, C ¼ 0.0001

Conrady A ¼ −0.0018, B ¼ 2.4991, C ¼ 0.0001 A ¼ −0.0014, B ¼ 2.0053, C ¼ 0.001

Fig. 5 RI spectra at two extreme temperatures of 28°C and 43°C for (a) Conrady, (b) Sellemier,
(c) Cauchy, and (d) Cornu models. Data points represent the mean and a bar refers to standard
error (correspond to the variation between ROI pixels). The line represents the model fitting to exper-
imental data.
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map into histogram distributions demonstrated localized
changes in minimum, maximum, and average RI values at sin-
gle-pixel resolution, revealing spatial heterogeneity of RI values
within the FOV. The RI variations with increased temperature
clearly demonstrated by both x- and y-axes of the histograms
indicate morphological and hemodynamic variations and overall
brain dysfunction during thermal insult.28–30

By averaging the RI maps of each wavelength in Fig. 3(c),
a single mean and standard deviation correspond to the variation
of RI values of the ROI pixel is obtained. Based upon this infor-
mation, RI spectra were then derived by the wavelength-depen-
dent dispersion model [Eq. (5)]. The wavelength dependence of
RI for the two extreme temperatures is plotted in Fig. 5, accord-
ing to the four models described in Eq. 5, Sec. 2.4. Data points
represent the discrete calculated mean RI and its standard
deviation at specific wavelengths. The lines are fitted based
on dispersion models to show the spectral dependence of RI
values. The fitting coefficients of each dispersion model (A,
B, and C) are shown in Table 1. In contrast to Cauchy
[Fig. 5(c)] and Cornu [Fig. 5(d)] models, which present a nearly
constant RI value of ∼1.4 across the wavelengths, both Conrady
[Fig. 5(a)] and Sellemier [Fig. 5(b)] models yield exponential
monotone spectra in which the RI slightly decreases by ∼8%
(28°C: 1.475 → 1.363, 43°C: 1.48 → 1.368). Thus, a moderate
reduction in RI from 690 to 970 nm was observed as the wave-
length increased. The plots obtained using Cauchy and Cornu
equations do not stand well with previous publications demon-
strating decreased RI as the wavelength increases.2,17,18,31,32 As
seen, along the spectrum of Figs. 5(a) and 5(b), there are minute
differences between RI levels with changes in temperature. The
lack of substantial alterations in RI levels between temperatures
may have several origins, such as: (i) approximations made
using Eqs. (1)–(4), (ii) utilizing a limited number of NIR wave-
lengths, (iii) the partial volume effect,11,33,34 and (iv) errors
related to spatial frequency domain.35,36 Nevertheless, to
increase discrepancies in RI spectra with temperature, a
second-derivative operation was implemented on each image
map appearing in Fig. 3(c). The “imgradient” function in
MATLAB™ with prewitt method (arbitrarily chosen) was
used twice for this purpose. Following second derivation, a sin-
gle mean value was obtained by averaging the derivative image
for each wavelength, and the wavelength dependence of RI was
subsequently obtained using one of the dispersion equations.
The corresponding fitting coefficient of each model for the
two given temperatures is listed in Table 2, and the plotted
derivative spectrum for the Conrady model is shown in
Fig. 6(a). In contrast to the Cauchy model, which yields a con-
stant value across the wavelengths with 16% contrast among
temperatures Fig. 6(b), or the Sellemier scheme, which revealed
opposite behavior in temperatures (not appear), the Conrady
model shows a constant spectral decrease from 690 to 970 nm,
while the RI spectrum lowers with a temperature increase result-
ing in distinguishable differences among temperatures. For
example, an 18% difference is observed at 690 nm, with a 14%
difference at 970 nm. Following data analysis, we found Cornu
wavelength-dependent fitting to yield similar results to those of
Conrady shown in Fig. 6(a). Based on Figs. 5 and 6, we found
fitting data with Conrady method to be more reasonable than the
other three schemes, supporting the use of second-derivative
operation to highlight variations in RI arising with temperature.
In Ref. 10, Fig. 9 shows changes in RI of biological tissue
occurring with altered tissue density, as measured by Abbe

refractometer. Similarly, our previous studies demonstrated
structural variations occurring during heatstroke through altered
reduced scattering coefficient, which linked to the changes in
RI.37 Thus, we may argue temperature change causes changes
in tissue density, which in turn alters tissue RI. On the other
hand, this argumentation can be supported by the Gladstone–
Dale (G–D) equation, which makes the connection between
material density (ρ) and its RI (n) following: n ¼ 1þ kρ,
where k is the G–D constant.38 The overall changes in RI over
a continuous spectral NIR region highlight the pathophysiologic
changes occurring in the brain in response to thermal insult and
demonstrate our ability to resolve an additional intrinsic optical
parameter.

In the final step, RI distribution is presented in 3-D [Figs. 7(a)
and 7(b)] showing the head RI at both temperature extremes at a
single wavelength (690 nm) generated according to the FPP
principle (Sec. 2.5). For distinguishable visualization, the
color bar representing the RI is slightly different across the
head surface. The dashed lines highlight the changes in the sur-
face occurring with temperature elevation. The use of unwrap-
ping methodology and spatial filtering provided clear topology
of the mouse head. Thermal images demonstrating temperature
distribution across the mouse body acquired by a thermographic

Fig. 6 Second-derivative RI for: (a) Conrady and Cornu, and
(b) Cauchy. Second-derivative operation was used to highlight varia-
tions in RI occurring with temperature.
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camera [Fig. 7(c)] clearly demonstrate differences in head tem-
perature level.

4 Concluding Remarks
In this work, spatially modulated NIR imaging, KK processing,
and dispersion models were used in tandem to estimate the real
RI of a mouse brain following thermal insult. As expected,
change in temperature lead to alterations in tissue RI, which
reflect changes in brain tissue morphology and hemodynamics.
Furthermore, the wavelength dependence of the RI was demon-
strated using four well-known dispersion schemes: Cornu,
Cauchy, Conrady, and Sellmeier. A decrease of ∼8% in RI
across the NIR spectrum was seen and second-derivative pro-
cedure further enhanced differences among temperatures.
Results found the Conrady formula to be more accurately
than the other tested dispersion schemes. In a wider context,
quantification of the RI can contribute to: (1) assessment of
physiologic changes, (2) treatment response, and (3) modeling
light propagation in scattering media. Additionally, 3-D spatial
distribution of RI values as a function of temperature was dem-
onstrated based on FPP principle. PDVand spatial filtering were
then used for unwrapping, providing a smooth surface topology
of RI distribution in the mouse brain. This mapping technique
suggests an additional capability of the spatially modulated NIR
imaging system to quantitatively characterize RI values in 3-D.
Since fringe projection is the basis of both spatially MI and
object surface profilometry, it enables us to simultaneously esti-
mate RI values and to profile RI distribution in 3-D independent
of additional hardware or software.23 This simultaneity is

a unique strength of the spatially modulated system in compari-
son to others. For the reader information, 3-D RI distribution at
subdiffraction resolutions using structured light in microscopy
setup and diffraction tomography computation was documented
recently.39 Overall, this work offers an easier, simpler, and
lower-cost framework for retrieving CRI components of biologi-
cal tissue in contrast to others.3,40,41
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