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Abstract

Significance: Diagnosis of suspicious lung nodules requires precise collection of relevant biop-
sies for histopathological analysis. Using optical coherence tomography and autofluorescence
imaging (OCT-AFI) to improve diagnostic yield in parts of the lung inaccessible to larger im-
aging methods may allow for reducing complications related to the alternative of computed
tomography-guided biopsy.

Aim: Feasibility of OCT-AFI combined with a commercially available lung biopsy needle was
demonstrated for visualization of needle puncture sites in airways with diameters as small as
1.9 mm.

Approach: A miniaturized OCT-AFI imaging stylet was developed to be inserted through an
18G biopsy needle. We present design considerations and procedure development for image-
guided biopsy. Ex vivo and in vivo porcine studies were performed to demonstrate the feasibility
of the procedure and the device.

Results: OCT-AFI scans were obtained ex vivo and in vivo. Discrimination of pullback site is
clear.

Conclusions: Use of the device is shown to be feasible in vivo. Images obtained show the stylet
is effective at providing structural information at the puncture site that can be used to assess the
diagnostic potential of the sample prior to collection.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JBO.25.10.106003]

Keywords: optical coherence tomography; autofluorescence; biopsy; lung imaging; animal
study.

Paper 200078RR received Mar. 20, 2020; accepted for publication Oct. 6, 2020; published
online Oct. 20, 2020.

1 Introduction

Recently, two large randomized clinical trials in the US and Europe provided solid evidence that
lung cancer screening using low dose computed tomography (LDCT) of the chest can reduce
lung cancer mortality by 20% to 24% in heavy ever-smokers.1,2 As worldwide implementation of
lung cancer screening with LDCT expands, an increasing number of patients are found to have
lung nodules <2 cm in diameter that requires repeat imaging studies or a diagnostic procedure.3

CT-guided biopsy is currently considered to be more accurate to biopsy these lesions than
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endoscopic biopsy but has more associated complications, such as pneumothorax and
bleeding.4,5 A method for improving endoscopic biopsy yield could therefore reduce the overall
rate of complications in diagnosing these lesions.

In transbronchial biopsies, a video bronchoscope provides visual guidance in navigating to
the site of the lesion and may be supplemented by a number of other imaging modalities, such as
radial endobronchial ultrasound or electromagnetic navigation, with or without fluoroscopic
guidance.4,6–9 These technologies aide either in navigation to or confirmation of the nodule char-
acteristics and have been shown to improve diagnostic yield. However, many imaging modalities
are limited by the large size of the instrumentation relative to the airway lumen and are therefore
unable to access lesions in the lung periphery and have a significantly lower diagnostic yield than
endobronchially accessible lesions.7,8 Such peripheral lesions are common, with one study find-
ing peripheral cancers to account for 62.7% of cases in heavy smokers.10 In these cases where
fluoroscopic imaging is unavailable to confirm whether the target site is reached, the diagnostic
yield is relatively low, potentially as a result of false negatives where the nodule tissue is actually
not sampled.11 Therefore, a device capable of providing relevant imaging information in real
time for difficult-to-access nodules could improve diagnostic accuracy for peripheral lung
nodules.

Optical coherence tomography (OCT) is a volumetric imaging modality that can provide
subsurface cross-sectional images of tissue structure at almost cellular resolution in real
time.12,13 OCT has been investigated as a method of biopsy guidance in the respiratory
tract by other researchers, either by classification of tissue transthoracically,14,15 from within the
airway lumen (endobronchial),16–19 or by puncturing the airway wall using a needle-based
OCT catheter to image nodules embedded within or located behind the airway wall
(transbronchial).20,21

One of the main advantages of OCT for lung imaging is the relatively small size of the im-
aging components, making it ideal for miniaturization for high generation airway imaging and
compatibility with the small working channels of bronchoscopes. OCT alone may not have the
sensitivity to detect small precancerous lesions in the lung. The addition of a second imaging
modality with complementary information is likely to increase the sensitivity and may enable the
detection of these lesions.

We have developed a miniaturized “imaging stylet” for use with a commercially available
biopsy needle, which replaces the semi-rigid nitinol stylet in the lumen of the needle. Our im-
aging stylet combines OCT with co-registered autofluorescence imaging (AFI). AFI provides a
complementary high-resolution functional image of the structural proteins associated with pre-
cancer (collagen and elastin) and other biomarkers associated with progression to cancer includ-
ing blood vessel density. The addition of AFI to white-light endoscopy in the large airways has
demonstrated a six-fold increase in the sensitivity to detect precancer compared to white-light
alone.22–24 With the OCT-AFI imaging stylet loaded into a biopsy needle, the needle can be
maneuvered via video bronchoscope to the lesion site, with the aid of CT-generated computer
navigation assistance, if necessary. Next, the needle may be used to puncture the suspected
lesion, and then retracted to leave the imaging stylet in place to scan the tissue prior to needle
aspiration. The functional biomarkers from AFI in combination with the structural OCT have the
potential to improve an operators ability to confirm the placement of the needle in abnormal
versus normal tissue before taking a biopsy. The scale and maneuverability of the device allow
for sampling of peripheral lesions that would otherwise be difficult to access, potentially reduc-
ing the need for CT-guided biopsy.

The work described in this contribution was conducted to show the feasibility of OCT-AFI
guided biopsy in small airways. Specifically, we aimed to: (1) develop an imaging catheter com-
patible with a commercial 18G biopsy needle; (2) develop the procedures for nodule localization,
puncture, imaging, and biopsy; (3) determine if blood absorption changes the intensity of the
OCT images; (4) determine if correct transbronchial images could be differentiated from incor-
rect endobronchial images post-puncture; and (5) determine if pre-deposited artificial nodules
could be discriminated from surrounding normal tissue. We developed the imaging stylet and
validated an imaging procedure ex vivo using resected porcine lung tissue. Image-guided biopsy
was demonstrated during an in vivo study of three animals.
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2 Materials and Methods

2.1 OCT-AFI System

We used a swept-source OCT-AFI system developed previously by our group.25 Briefly, a 50-
kHz swept-source laser (SSOCT-1310, Axsun Technologies Inc., Billerica, Massachusetts) with
20-mW output power feeds a single-mode fiber 90/10 sample/reference split Mach–Zehnder
OCT interferometer. Light for fluorescence excitation from a 445-nm semiconductor laser is
coupled into the core of the polyimide coated double-clad fiber (DCF, FUD-3489, Nufern,
East Granby, Connecticut) with the OCT light using a wavelength division multiplexer. The
sample arm consists of a fiber-optic rotary joint that connects the stationary optics to the rotating
core of the imaging stylet. A custom-built rotary-pullback drive allows rotation speed up to
33 Hz and pullbacks up to a maximum length of 160 mm performed at 1 mm∕s. The OCT
interferogram is acquired using a fast digitizer (ATS9350, Alazar Technologies Inc., Pointe-
Claire, Quebec) in “k-clock” acquisition mode with custom data acquisition software.
Autofluorescence light is collected in the inner cladding of the DCF, detected by a photomulti-
plier tube (H10723-20, Hamamatsu, Japan), and digitized by the second channel of the fast
digitizer.

The OCT modality has a measured resolution of 24 um in the longitudinal direction
and 14 um in the circumferential direction, and an imaging depth of ∼1 to 2 mm in tissue.
The AFI modality has a measured spot size at the surface of the stylette of 18 um in the longi-
tudinal direction and 12 um in the circumferential direction. The AFI beam does not penetrate
more than 1 mm into tissue and its spot size increases quickly with distance from the imaging
stylet.

2.2 OCT-AFI Imaging Stylet

The needle-compatible imaging stylet is based on an existing OCT-AFI catheter design devel-
oped by our group. The design was modified to be compatible with the commercial biopsy nee-
dle (FleXNeedle, 18G, Broncus Medical Inc, San Jose, California) selected for this work. The
stylet included with the biopsy needle had an outer diameter (OD) of 0.69 mm. The OD of our
existing catheter had to be reduced from 0.90 mm to match and pass easily through the needle
lumen. Additionally, the insertable length of the catheter design was increased from 130 to
175 cm to span the entire length of the needle. The entire device was deployed through the
instrument channel of a standard bronchoscope (Olympus BF Type P180A—EVIS EXERA
II bronchovideoscope).

By changing the diameter and length of the catheter, mechanical performance can be
impacted, as characterized by non-uniform rotational distortion (NURD) at the distal tip of the
rotating optical assembly. Imaging stylets were tested in 3D printed channels with eight equally
spaced markers placed along their length to highlight any deviations in a scan pattern from
expected patterns.26 This was done both with the imaging stylet unconstrained and contorted
to match a typical path it would take through a bronchoscope and into human lung.

For the reduced-diameter window tube, Pebax® 70D, Pebax® 72D, and PETwere considered
and tested as potential tube materials due to their optical clarity and flexibility.

The distal tip of the imaging stylet is shown in Fig. 1.
To reduce the OD of the stationary window tube to fit inside the biopsy needle, the diameter

of the rotating optical assembly needed to be reduced to maintain clearance between the two. The
torque cable [Fig. 1(a)] determines the size of the rotating assembly and runs the length of the
probe, protecting the optical fiber while delivering the proximally-driven torque to the distal tip.
A high torsional stiffness is desirable to avoid NURD27 but often comes at the cost of decreased
flexibility that limits the assembly’s ability to perform well in low-radius bends when conform-
ing to lung anatomy. We ordered and tested custom double-wound torque cables (Asahi Intecc
Co. Ltd., Aichi, Japan) with an OD of 0.33 mm and an inner diameter of 0.17 mm.
Measurements made to estimate bending and torsional stiffness of the cable were both signifi-
cantly lower than existing cables, but measurements of NURD performance showed torque
cable-induced distortion comparable to our existing probes in straight orientations, and slightly
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superior in tortuous conditions emulating the path the bronchoscope would take in clinical
conditions.

The stationary window tube [Fig. 1(a)] surrounds the rotating optical assembly and the water
that acts as lubricant and optical coupling medium to reduce reflections due to index of refraction
changes. The window tube outer surface makes contact with the entire inside length of the biopsy
needle and tissue, when extended. Optical clarity, low friction, and resistance to buckling are all
requirements of acceptable tubing. Of the materials tested, Pebax® offered better resistance to
buckling, whereas PET is stiffer and therefore, more easily passed through the narrow lumen of
the biopsy needle (i.e. higher “pushability”). A probe was constructed using Pebax® 70D, which
was found to stick inside the biopsy needle occasionally despite having low friction over small
distances. Another probe was made using PET to compare and was found to not stick even when
the needle was contorted into tortuous orientations to simulate clinical conditions. The PET
tubing was used for all future window tubes.

For flushing water, a T-junction luer lock connector was added to the proximal end of the
biopsy needle handle (Fig. 2), such that a seal could be formed around the imaging stylet and
water irrigated between the stylet and needle using an attached syringe. This also allowed for the
application of vacuum pressure while the imaging stylet was still loaded (but partially retracted)
in the needle to collect aspiration biopsy samples.

2.3 Image-Guided Needle Puncture Procedure

The protocol for image-guided biopsy was developed through ex vivo experimentation with por-
cine lung tissue. This led to the following puncture and pullback protocol (with reference to
Figs. 3 and 4), which was followed during the subsequent in vivo imaging studies: (1) navigate
the bronchoscope (with needle preloaded) to the desired airway; (2) verify bronchoscope posi-
tion with fluoroscopy; (3) extend 10 mm of needle from the bronchoscope and angle the needle

Fig. 2 The proximal handle of the Bronchus FleXNeedle, with attached T-junction for vacuum
suction, and releasable luer seal around the imaging stylet.

Fig. 1 Distal end of the imaging stylet. (a) Schematic showing the OCT and excitation light path in
red. (b) Imaging stylet loaded in the biopsy needle and retracted slightly for puncture and (c) stylet
extended for imaging.
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tip toward the desired site; (4) puncture by advancing the needle forward such that the needle
penetrates the airway wall by 10 to 20 mm (Fig. 3); (5) irrigate the puncture site with saline
[Fig. 4(a)]; (6) retract only the needle, leaving the imaging stylet in place [Fig. 4(b)]; (7) collect
a pullback with imaging stylet [Fig. 4(c)]; and (8) re-advance the needle around imaging
stylet [Fig. 4(d)].

Where biopsy aspiration is indicated by image confirmation of a diagnostic site, the imaging
stylet may then be fully retracted such that transbronchial needle aspiration (TBNA) can be
performed at the same site.

Sites in the cranial right lobe were punctured to a depth of 10 mm. Sites were flushed with
sterile water prior to imaging to displace blood, but two sites were imaged immediately after
puncturing and prior to flushing to compare image quality. Figure 5 shows cross-sectional
B-scans taken from pre- and post-flushed puncture sites with histograms of OCT intensity values
for subsets of the image at roughly the same depth into tissue. The change in mean OCT intensity
at site 1 (<5 gray levels, 1.6%) is significant (P ¼ 0.007), whereas the change at Site 2 (<2 gray
levels, 0.6%) in not significant (P ¼ 0.5082).

Fig. 3 Videobronchscope images of the needle being (a) maneuvered into view; (b) advanced out
of the tubing by 1 cm; and (c) used to puncture the airway wall.

(a)

(c)

(d)

(b)

Fig. 4 Puncture and pullback procedure. The needle and imaging stylet puncture the tissue
together (a) before the needle is retracted by 10 mm while the stylet is held in place (b). The stylet
is then used to capture a helical scan of the punctured tissue (c) and the needle is then re-
advanced over the stylet into the tissue being scanned (d), at which point the stylet can be with-
drawn from the needle for TBNA.
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2.4 Ex Vivo Imaging of Needle Puncture Site

The operation of the imaging stylet with the commercial biopsy needle was validated using six
non-inflated excised porcine lungs. Organs were donated by researchers at the UBC Centre for
Comparative Medicine after conducting unrelated studies covered by existing Animal Care pro-
tocols and ethics approvals.

Three lungs were also acquired and inflated using both positive internal and negative external
pressure to inflate the alveoli as much as possible and mimic the OCT-AFI appearance of periph-
eral lung tissue in vivo.

In both cases, we navigated to the lung site of interest using the bronchoscopes white-light
video and pierced with the needle up to a depth of 20 mm. Next, the needle was retracted
fully into the needle sheath while the stylet and the needle sheath were kept stationary. The
stylet, now embedded in tissue, was used to scan the length of the puncture. These pullbacks
were acquired at 33 Hz, 1 mm∕s over 90-mm total length. AFI gain for each case was adjusted to
achieve the highest contrast between the brightest and darkest features in a representative
pullback.

2.5 In Vivo Imaging of Needle Puncture Site

Image-guided biopsy was performed on three live swine using the commercial biopsy needle and
the OCT-AFI imaging stylet during bronchoscopy based on standard instructions for use of
transbronchial biopsy needles.28,29 Procedures were performed in the Animal Care Facility at
the Jack Bell Research Center and the study was approved by the UBC Animal Care
Committee (A16-0029). The swine were sedated with acepromazine and ketamine followed
by intravenous propofol. Animals were intubated and ventilated with blood pressure, O2 satu-
ration, and heart rate monitored throughout the procedure.

Owing to anatomic differences (swine have longer trachea and airways that branch more
slowly compared to humans30), image-guided biopsy was performed in the cranial lobe as the
other lobes were out of reach using a human bronchoscope. The cranial lobe branches from the
trachea just prior to the main carina, and as such, involves a sharp turn similar to upper-lobe
anatomy in the human lung. At each biopsy site, after puncture with the needle, sterile water was
flushed around the stylet through the aspiration channel. Flushing was done to displace any
blood present at the site, which may otherwise reduce penetration of OCT light and absorb the
autofluorescence excitation and/or emission light. At two locations, pullbacks were acquired
before and after flushing to compare image quality and inform whether regular flushing is nec-
essary. The mean OCT intensities from pullbacks collected before and after a saline flush were
compared using a two-tailed student’s t-test.

Fig. 5 Pre and post-flush histograms of the OCT signal. Histograms were calculated from pixels in
the red boxes, with the mean intensity shown at each site, and standard deviation in parentheses.
There was <5 gray level difference between the mean OCT signal at site 1 and <2 gray level
difference at site 2, indicating minimal improvement in penetration and contrast.
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2.6 Discrimination of Trans- and Endobronchial Pullbacks

Endobronchial pullbacks were collected by navigating the biopsy needle into the lumen of the
target airway, advancing the imaging stylet from the needle, maneuvering the imaging stylet such
that it was in contact with the airway wall along the desired pullback length, followed by acquis-
ition of the pullback. Transbronchial pullbacks were collected by puncturing the airway wall
(with stylet retracted), retracting the needle leaving the stylet in the puncture site, followed
by acquisition of the pullback. OCT and AFI features were identified in the pullbacks that could
discriminate between the endobronchial and transbronchial pullbacks. Endobronchial pullbacks
were collected in RB1Cr and RB1Cd (cranial lobe) and compared with transbronchial pullbacks
collected from puncture sites in the same airway.

2.7 Nodule Confirmation

Following a similar protocol for the transthoracic deposition of artificial nodules in human lungs
in vivo performed by Tsuchida et al.,31 powdered agarose and acridine orange were dissolved at
1.5% and 0.002% w/v, respectively, in water at 60°C. When cooled to body temperature, this
mixture yields a solid mimicking the stiffness of lung parenchyma. The concentration of acridine
orange was chosen to slightly exceed the highest level of fluorescence expected in normal lung
tissue. Artificial fluorescent nodules could then be created by injecting the agarose/acridine
orange/water mixtures into the parenchyma of one swine using an 18G needle designated for
nodule placement.

Nodule deposition and detection were performed in vivo following process development on
one of the ex vivo porcine lungs. We created two nodules in the cranial lobe and two nodules in a
lower lobe.

At each nodule site, we first collected a transbronchial OCT pullback as a negative
control. The solution and delivery needle were kept at 60°C until immediately prior to injection
to keep the mixture fluid. The warmed needle, loaded with ∼0.5 ml of the agarose solution, was
advanced quickly down the bronchoscope and used to puncture the airway at a depth of 5 mm.
Positive pressure at the proximal port was applied and held for 30 s to allow the semi-viscous
agarose to flow into the tissue. The needle was then unloaded from the bronchoscope and
prepared for the next site while the nodule was left for at least 2 min to set before attempting
to re-puncture and collect a second pullback for nodule detection. The bronchoscope was kept
in position throughout to keep the puncture site in view of the white-light camera so that the
needle could more accurately be maneuvered to the same airway wall section that was just
punctured.

3 Results

3.1 Transbronchial Pullback

A transbronchial pullback from an airway in the cranial lobe is shown in Fig. 6. The autofluor-
escence information from the pullback is shown as a θz surface plot [Fig. 6(a)] since AFI is not
depth-resolved. Volumetric OCT information is plotted in longitudinal cross sections, r-z
[Fig. 6(b)] and circular cross-sections, θr [Figs. 6(c)–6(f)].

Figure 6(a) shows the AFI plot where the mucosa at the distal (leftmost) end of the puncture
site is non-fluorescent and appears dark, and a 0.4-mm diameter blood vessel is seen forking at
Fig. 6(e). The bright horizontal broadband at the bottom of the AFI plot with brighter vertical
streaks increasing in number toward the right is an artifact due to specular reflections of the
excitation light from the window tube being coupled back into the imaging catheter. This artifact
was observed at most sites in the cranial lobe owing to the rotating optical assembly resting non-
coaxially within the window tube in the non-rigid puncture cavities.

The OCT longitudinal cross section [Fig. 6(b)] shows the depth information at the horizontal
cut (dashed white line) indicated in the AFI plot. The needle sheath is visible on the right side of
the pullback (indicated by the white arrow). The vertical white lines indicate the position of the
four cross-sections in the bottom panels. Figure 6(c) shows the probe entirely embedded in
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homogenous structural tissue, with no significant adjacent features, compared to Fig. 6(d), which
has a grainier appearance suggesting unfilled alveoli from nearby airways. Figure 6(e) shows the
medium-sized vessel near the puncture (indicated with an asterisk), and alveoli that are filled
with air (dark semi-round cavities, especially on the left side).

OCT image quality, which is somewhat reduced due to multipath interference (ghosting)
in DCF-based multimodal OCT systems, is comparable to the quality observed in our larger-
diameter OCT-AFI catheters upon which the smaller-diameter imaging stylet is based. Features
such as alveoli, mucus, airway epithelium, and adjacent airways are all clearly discernible. The
needle sheath is visible at the end of the pullback, providing a physical reference point for dis-
tance measurements.

In the AF images, alveolar patterns are visible in the smaller distal airways, and superficial
blood vessels of various sizes can be traced in some cases. We see a relatively uniform distri-
bution of tissue autofluorescence, owing to the structural proteins collagen and elastin that
normally provide mechanical support for the airways.

3.2 Discrimination of Trans- and Endobronchial Pullbacks

Figure 7 compares cross-sectional imaging from transbronchial and endobronchial pullbacks at
distal and proximal locations taken from non-inflated excised porcine lungs. At the distal
position, the transbronchial cross-section shows homogenous backscatter that gradually
decreases in intensity, whereas the endobronchial cross-section shows stratified intensity with
bright structural tissue around the stylet more sharply transitioning to less scattering tissue, and
alveoli present and separated from the stylet. At the proximal position, the transbronchial cross-
section still has tissue surrounding the stylet, with minimal structure and bright features (possible
un-filled alveoli) distributed both in contact with and separated from the stylet; in the endobron-
chial cross-section, the stratified tissue structure has expanded smoothly to reveal a lumen
larger than the stylet, and a structural cartilage band (CR) is visible and concentric with the
airway.

Fig. 6 Example transbronchial pullback from an airway in the cranial right lobe showing a blood
vessel, with the distal end of the scan on the left: (a) en-face AF projection; (b) OCT azimuthal
pullback showing depth into tissue at the angle marked by the horizontal dashed line in (a); and
four cross-sections (c)–(f) taken at the positions marked with vertical dashed lines. A vessel is
visible in the AF projection, and in cross section in (b) and (e), marked with *. The needle outer
tube is also visible at the proximal end of the scan, indicated with an arrow. The horizontal band
with intense vertical streaks at the bottom of the AFI image is an artifact.
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3.3 Nodule Confirmation

We deposited four artificial nodules in one of the swine and then attempted to identify the nod-
ules based on their fluorescent contrast two minutes later after the nodules had solidified.

The time between readying the solution and injection varied only by about 10 to 30 s for each
nodule, but it was apparent that some nodules were fluid enough to leak out of the puncture site,
whereas others solidified too much in the needle to be ejected. Another complication was the
heat from the agarose needle caused the bronchoscope lens to fog up (despite using anti-fogging
solution), which made confirmation of nodule deposition and relocation of the nodule site even
more difficult.

One of the four artificial nodules provided a strong AFI signal, one provided a weak signal,
and two nodules provided no signal above the background level of normal tissue autofluores-
cence. The puncture site that returned the clearest response is shown in Fig. 8, with the nodule
located on the right, visible as a brightly fluorescent mass in the enface AFI image [Fig. 8(a)],
and a semi-homogenous layer in OCT [Fig. 8(b)], with lower-fluorescing “normal” tissue in the
distal direction. Differentiation of tissue and lesion in the figure is possible in OCT but much
clearer in AFI. The needle becomes visible on the proximal side of the scan, obscuring tissue on
the proximal side of the nodule in both the AFI and OCT images. As such, the imaging stylet was
able to positively identify whether a nodule had been punctured with a single 20 second-long
scan in one of the four attempts.

4 Discussion

OCT has been used extensively for imaging, and has been hailed as having the potential to act as
an “optical biopsy,”12,14,17 replacing the need for excision and histopathology with real-time

Fig. 7 Cross-section comparison of OCT features observed in transbronchial and endobronchial
imaging: (a) transbronchial distal scanning shows alveoli in most directions, and only a thin mem-
brane separating the probe from alveoli; (b) transbronchial proximal scanning still shows some
alveoli, but also the more solid tissue of airway wall in the upper right; (c) endobronchial distal
scanning shows some alveoli, but separated from the probe by airway wall or supportive tissue;
and (d) endobronchial proximal scan showing an airway much larger than the probe, with CRs
concentric with the airway. CR: cartilage band.
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imaging of comparable resolution, but efforts to establish OCT as a standalone replacement for
the current gold standard are still ongoing. While the technology continues to drive improve-
ments in OCT toward this goal, co-registered imaging modalities provide a more immediately
attainable upgrade in image utility. For example, Hariri et al.32 have reported on their polariza-
tion-sensitive OCT system enabling “accurate detection of tumor-associated fibrosis” in excised
lung tissue, with the intention of improving lung biopsy yield.

AFI can provide additional functional biomarkers that may improve the sensitivity of OCT-
AFI compared to OCT alone. The reduced density of structural proteins, particularly collagen
and elastin in the stroma, is an established indicator of precancerous progression in the epi-
thelium. Studies in the lung and cervix have shown that reduced protein density reduces the
fluorescent intensity detected by AFI. Precancerous lesions that appear dark under AFI are likely
to be more advanced that brighter ones, and a biopsy as this location may improve the diagnostic
yield compared to collecting a biopsy from adjacent tissue where the AFI signal is higher.
Further, AFI may also enable the assessment of vessel density, which may further improve the
sensitivity to detect malignant lesions.

Similar devices to the one reported here have been developed and validated by other research-
ers. Tan et al.21 developed a 21G ball-lens OCT “smart needle” and tested it on inflated excised
pig lung. Michel et al.19 described an in vivo human lung pilot study where biopsy is taken by a
separate instrument at the location indicated by OCT. Our addition of AFI to this class of endo-
scopic biopsy guidance demonstrates that the information provided by OCT can be supple-
mented by adjunctive image modalities without sacrificing size or compatibility with
existing flexible biopsy needles. However, the addition of AFI to OCT devices requires the use
of DCFs, which introduce significant and difficult to manage noise into the OCT image. While
future fiber design improvements may reduce image degradation, this tradeoff is still expected to
be advantageous in clinical cases where OCT is not necessarily diagnostic on its own but useful
for the interpretation of the added imaging modalities.

We also add to the limited number of in vivo cases performed with OCT-assisted flexible
needle imaging studies, specifically confirming that blood collection is not a major concern
in living tissue: In previous studies this lab has performed, imaging sites have been flushed with
saline to prevent blood from absorbing OCT and AFI light and reducing contrast and depth
penetration. We expected that puncturing into transbronchial tissue would result in a blood-
occluded scan but found that the scans were not degraded by the presence of blood enough
to interfere with differentiation of trans- and endobronchial scan locations, nor was structural
information more difficult to trace for accurate interpretation of AFI.

(a)

(b)

Fig. 8 Transbronchial pullback through an artificial lesion: (a) enface AFI and (b) OCT azimuthal
pullback showing depth into tissue at the angle marked by the horizontal dashed line in (a). The
distal (left) half of the pullback is in normal tissue, followed by the bright positive-fluorescence
artificial lesion, and finally the needle (indicated with arrows in both views).
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Endobronchial “punctures” were another practical concern that was addressed after we deter-
mined that about 1 in 3 ex vivo punctures extended into adjacent airways. Such a puncture in in
vivo tissue would be greatly misleading (in terms of informing what tissue had been punctured) if
they could not be distinguished using the images obtained. We found that endobronchial pull-
backs could be differentiated from transbronchial scans by identifying any number of the punc-
ture-specific features described in Sec. 3.4 of this paper. OCT texture and structure were
consistent with previous imaging studies comparing punctured parenchyma and intact
airway.33 Additionally, branch points (not shown) are easily identified in the enface projection
of a pullback and indicate endobronchial placement.

Although verifying transbronchial puncture would be important in human clinical cases, it is
possible that endobronchial punctures are only of frequent concern in porcine lung anatomy.
This is due to porcine airways branching and running roughly parallel to each other, whereas
human airways tend to bifurcate at higher angles, especially in the periphery.30 Not inflating the
excised lungs may also have contributed to the frequency of endobronchial punctures.

Regarding the final aim of simulating nodules to demonstrate image verification at a site of
interest, we encountered a number of practical issues. Producing stable, contained nodules in the
porcine airway required a concentration of agarose that was fluid enough to be ejected from the
needlewhile being viscous enough to keep its shape under pressure before gelling completely. Given
the difficulty in maintaining viscosity and the strong AF response from even small amounts of the
agarose solution, we suspect that placement and/or re-puncturing of the nodules failed in the two
low-signal cases, rather than the OCT-AFI stylet failing to detect the artificial nodule. More reliable
deposition methods are required to determine the reliability of OCT-AFI to discriminate nodule
characteristics, but the single successfully identified nodule shows that the procedure is feasible.

One of the most significant improvements that could be made to the device is allowing im-
aging of the biopsy site as the biopsy is being taken to remove any uncertainty that the sample
obtained might not be from the area of interest. A number of imaging modalities already exist for
other organ sites that can visualize tissue as it is being collected, and represent one of the highest
levels of certainty in obtaining diagnostically relevant biopsies. Additionally, biopsy locations
with even smaller diameters may require a device with a further reduced OD.

For future applications, the miniaturized OCT-AFI catheter lends itself to use as an accessory
imaging tool in cases where space is limited and other visualization methods cannot be used,
particularly in luminal organs such as the pancreas. Additionally, although we have used the co-
registered channel for 445-nm autofluorescence, the channel may also be used for reflectance
imaging, or fluorescence imaging of dyes or markers, depending on the site and tissue character-
istics that are most likely to inform confirmation of the target tissue characteristics.

5 Conclusion

We have developed an imaging stylet that can be deployed through a commercial biopsy needle
to allow image confirmation of tissue characteristics at the biopsy site. We demonstrated trans-
bronchial lung biopsy using ex vivo and in vivo porcine lung. Integration into a commercial
biopsy needle procedure was straightforward and did not add significant time or risk of com-
plications. This study has shown that it is practical and feasible to add OCT-AFI to conventional
biopsy procedures with the aim of improved diagnostic yield. The quantitative improvements in
diagnostic yield of transbronchial needle biopsy due to the inclusion of OCT-AFI remain to be
shown. To the best of our knowledge, we present here the first in vivo demonstration of a flexible
transbronchial OCT-assisted biopsy device.
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