
MCX Cloud—a modern, scalable, high-performance
and in-browser Monte Carlo simulation platform

with cloud computing

Qianqian Fang a,b,* and Shijie Yan b

aNortheastern University, Department of Bioengineering, Boston, Massachusetts, United States
bNortheastern University, Department of Electrical and Computer Engineering, Boston,

Massachusetts, United States

Abstract

Significance: Despite the ample progress made toward faster and more accurate Monte Carlo
(MC) simulation tools over the past decade, the limited usability and accessibility of these
advanced modeling tools remain key barriers to widespread use among the broad user
community.

Aim: An open-source, high-performance, web-based MC simulator that builds upon modern
cloud computing architectures is highly desirable to deliver state-of-the-art MC simulations and
hardware acceleration to general users without the need for special hardware installation and
optimization.

Approach: We have developed a configuration-free, in-browser 3D MC simulation platform—
Monte Carlo eXtreme (MCX) Cloud—built upon an array of robust and modern technologies,
including a Docker Swarm-based cloud-computing backend and a web-based graphical user
interface (GUI) that supports in-browser 3D visualization, asynchronous data communication,
and automatic data validation via JavaScript Object Notation (JSON) schemas.

Results: The front-end of the MCX Cloud platform offers an intuitive simulation design, fast 3D
data rendering, and convenient simulation sharing. The Docker Swarm container orchestration
backend is highly scalable and can support high-demand GPU MC simulations using MCX over
a dynamically expandable virtual cluster.

Conclusion: MCX Cloud makes fast, scalable, and feature-rich MC simulations readily avail-
able to all biophotonics researchers without overhead. It is fully open-source and can be freely
accessed at http://mcx.space/cloud.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JBO.27.8.083008]

Keywords: Monte Carlo method; light transport; cloud computing; optical imaging.

Paper 210206SSR received Jun. 28, 2021; accepted for publication Nov. 17, 2021; published
online Jan. 5, 2022.

1 Introduction

Since the initial release of the first open-source Monte Carlo (MC) light transport simulator—
MCML1—nearly 30 years ago, MC-based photon simulations have been playing important roles
amongst the biophotonics research community to facilitate the design and optimization of novel
imaging instrumentation and image reconstruction, as well as providing gold-standard solutions
for validating novel algorithms and data analysis pipelines. Notably, in the last decade, a list of
free and open-source MC simulators have been published and further improved upon by their
respective authors. The proliferation of open-source MC tools provides the community with
abundant options to meet diverse needs arising in biophotonics research.

*Address all correspondence to Qianqian Fang, q.fang@neu.edu

Journal of Biomedical Optics 083008-1 August 2022 • Vol. 27(8)

https://orcid.org/0000-0003-0805-935X
https://orcid.org/0000-0002-1983-4625
http://mcx.space/cloud
http://mcx.space/cloud
https://doi.org/10.1117/1.JBO.27.8.083008
https://doi.org/10.1117/1.JBO.27.8.083008
https://doi.org/10.1117/1.JBO.27.8.083008
https://doi.org/10.1117/1.JBO.27.8.083008
https://doi.org/10.1117/1.JBO.27.8.083008
https://doi.org/10.1117/1.JBO.27.8.083008
mailto:q.fang@neu.edu
mailto:q.fang@neu.edu
mailto:q.fang@neu.edu


Many of the emerging MC simulators have placed strong emphases toward addressing two of
the top limitations facing traditional MC algorithms. First, the adoption of massively parallel
computing and graphics processing units (GPUs) have greatly improved the computational effi-
ciency of conventional MC simulations, shortening the simulation run-time by tens to hundreds
fold on a modern GPU.2–7 In parallel, a list of new MC algorithms were proposed to handle more
complex and accurate tissue anatomical boundaries.8–11 Among these algorithms, mesh-based
Monte Carlo (MMC) offers the capability to accurately model a curved tissue boundary with
tetrahedral meshes while performing ray-tracing computation significantly more efficiently than
surface-based MC techniques.8 More recently, hybrid approaches that combine shape represen-
tations offer further computational efficiency and accuracy.12–15 These hybrid approaches include
(1) dual-grid MMC (DMMC)12 that combines a coarse tetrahedral mesh with a dense voxelated
output volume, (2) split-voxel MC (SVMC)14 that combines curved surface meshes within a
compact voxel data structure, and (3) implicit MMC (iMMC)15 that combines a skeletal tetra-
hedral mesh with implicitly defined shapes such as tubes, spheres and thin membranes. These
enhancements in modeling geometry have resulted in significantly improved accuracy, which
can be directly translated to further speed enhancement while achieving the same output accu-
racy as conventional approaches.

Compared to many published traditional research codes that were developed as single-release
static software, an increasing number of new MC software packages have started tackling the
challenges of usability and long-term maintainability. Many of these projects openly embrace
state-of-the-art software engineering best practices and offer the software as a vibrantly growing
platform via continuous enhancements, timely bug fixes, and active user support via flexible
feedback channels. Ease-of-use has also become the focus of a number of recently published
MC toolkits, where MATLAB-based dynamic library (MEX) interfaces and graphical user inter-
faces (GUIs) have been reported.16,17

With the exciting progress in developing open-source MC simulators with increasing speed,
functionality, accuracy, and user-friendliness, we would like to tackle here the next major chal-
lenge in high-performance, general-purpose MC photon simulation software, namely scalability
and availability. A number of previous publications, including several from our group, have
addressed the challenges in creating scalable simulations that can utilize more than one GPU
or run simulations across CPUs/GPUs of multiple vendors. In particular, a number of previous
papers reported OpenCL-based MC implementations5,18 that are readily scalable across hetero-
geneous computing environments including multi-vendor hardware. Several NVIDIA CUDA-
based GPU MC simulators also offer support to multiple GPU architecture generations and
multi-GPU simulations. Regarding availability, most MC software tools are disseminated via the
conventional download-installation-execution approach. Software dissemination via Docker-
based container images has also become increasingly popular and is found in several notable
open-source MC tools, including MCX,3 MMC10 and FullMonte.19 Nevertheless, a majority of
these software dissemination methods require users to have a pre-configured GPU to be able to
execute their desired simulations. Purchasing and configuring high-performance GPUs may still
present a barrier for beginner and less-experienced computer users. Online-based MC modeling
tools that do not require local GPU installation are extremely limited. In 2011, a proprietary web-
based MC simulator, MCOnline,20 was reported by Doronin and Meglinski using Microsoft
Silverlight and ASP.NET technologies as the front-end and a GPU MC simulator on the
server-side. Although this tool is still being actively maintained, the proprietary nature of the
tool and the limited scalability of the underlying technologies necessitate a re-investigation using
up-to-date cloud-computing technologies. In 2020, another proprietary web-based MC simula-
tion platform, Multi-Scattering, was published by Jönsson and Berrocal,21 featuring a modern
and user-friendly web GUI design, versatile scattering phase function support, and a proprietary
voxel-based MC simulator in the backend. While this tool offers intuitive interfaces to attract a
broad userbase, the maximum simulation domain is limited to 20 × 20 × 20 voxels,21 making it
quite limited for solving practical problems.

In this work, we report a modern, scalable, high-performance, and fully open-source in-
browser MC simulation platform—MCX Cloud—to bring state-of-the-art GPU hardware and
our extensively optimized and feature-rich MCX simulator software to the rapidly growing bio-
photonics research community. Our MCX Cloud platform embraces an array of modern and

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-2 August 2022 • Vol. 27(8)



standardized cloud-computing techniques. In the backend, it utilizes Docker22 and Docker
Swarm-based container orchestration technology to create a highly scalable, dynamically
expandable, fault-tolerant, and distributed GPU virtual cluster with built-in “ingress load-
balancing” capabilities. In the front-end, we have developed a modern web GUI based upon
a list of open-source web technologies, such as HTML5 markup language,23 cascading style
sheets (CSS), JavaScript, and JQuery24 for GUI development, and WebGL25 for in-browser
3D data rendering.

A key advancement that enables us to develop such a compact, scalable and portable soft-
ware/hardware platform is the adoption of JavaScript Object Notation (JSON26) and JData—an
open-specification for scientific data annotation using JSON27—as the input and output data
formats for MCX. JSON is a lightweight, human-readable, and ubiquitously supported data for-
mat that is capable of storing complex hierarchical data. It has rapidly replaced XML (extensible
markup language) and become one of the most widely used data exchange formats among web
applications. Since 2012, we have migrated MCX’s input file format to JSON and subsequently
completed the migration of all output data files to JSON in 2020. In this work, we use JSON
Schema28—an open-standard for defining JSON-based data files—and JSON Editor—a light-
weight JavaScript library for editing arbitrary JSON files inside a browser—to create a compact
and easy-to-maintain in-browser MCX input editor and data visualization platform that is intui-
tive to use for users without any programming experience. Both the front-end and backend
designs in MCX Cloud are highly flexible and require only minimal changes to support addi-
tional input/output fields and hardware extensions. In contrast with previously published online
MC simulators, both the front-end (user interface) and the backend (server-side scripts) of MCX
Cloud are open-source so that a user may easily configure a private cloud-computing virtual
cluster to run MCX-based simulations from a browser.

In the following sections, we will first discuss the key technology components that have
enabled this scalable cloud-computing based MC simulator, including a brief discussion on the
latest MCX light transport simulator, backend design, front-end design, and input/output data
formats. We then show a number of example simulations and a benchmark demonstrating
scalability for high-performance, distributed GPU-based simulations using MCX Cloud. Finally,
we discuss our plans for further improvement of this platform.

2 Methods

A diagram showing the overall design of the MCX Cloud simulation platform is shown in Fig. 1.
This highly portable and scalable platform can be divided into a front-end (web-based user
interface) and a backend (a distributed GPU cluster managed by Docker Swarm services),
communicating asynchronously via lightweight and versatile JSON/JData data packets. The key
technologies used in this platform are highlighted in gray-shaded boxes, and open-source
software/libraries used are highlighted in orange colored text. The MCX Docker image
(bottom-left)—a lightweight package that contains the MCX simulator software along with all
dependencies—is publicly hosted on Dockerhub. In the following subsections, we will discuss
each key component and the overall simulation workflow.

2.1 MCX Photon Transport Simulator and Containerization

At the heart of this cloud computing platform is a Docker container image of our latest MCX
photon simulator. A container is simply a lightweight package that allows users to reliably repro-
duce the virtual environment, including dependencies and libraries, of a given application and
conveniently execute it consistently across various platforms. A containerized application auto-
matically downloads all dependencies necessary to run the program, greatly simplifying the
installation and configuration process of new software. In this work, our MCX container image
is built using the “base image” cuda-9.0 provided by NVIDIA and is publicly accessible via
Dockerhub—one of the largest repositories of container images.

The current release of the MCX photon simulator contains numerous algorithmic improve-
ments over the original version published in 2009.3 Briefly, MCX is a GPU-accelerated, parallel

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-3 August 2022 • Vol. 27(8)



MC photon transport simulator that supports 3D heterogeneous media defined in a voxelated
space. We want to particularly highlight several key improvements over the original MCX algo-
rithm described in Fang et al.3 First, we have implemented precise ray-tracing in MCX releases
since 2016. Photon trajectories are precisely broken into segments bounded by voxel boundaries;
in comparison, the original MCX accumulates photon energy at a fixed 1-mm spacing along the
trajectory. This update has led to significant accuracy improvements in simulation results.
Secondly, all MCX releases since 2013 have supported over a dozen complex source types,
including pencil beam, isotropic source, planar and disk sources, Gaussian beam, Fourier pat-
terns (for spatial-frequency domain imaging, or SFDI), line and slit sources, user-defined 2D and
3D pattern sources, etc. For all area-sources, a focal-length parameter is also added to enable
convergent and divergent beams. Thirdly, four new boundary conditions (BCs) are supported on
the bounding box of the voxelated domain, including a total absorption BC, a Fresnel reflection
BC, a total reflection/mirror BC, and a cyclic BC (photons exiting from a bounding box face
re-enters from the opposite face to simulate infinite medium). Fourthly, MCX outputs a variety of
detected photon data outputs, including partial-pathlengths, partial-scattering-event-count, exit
position and direction, momentum transfer, initial photon weight etc. Moreover, MCX not only
supports label-based segmented volume, but also continuously varying medium. Furthermore,
MCX has incorporated state-of-the-art MC algorithm advances, including photon replay,29 pho-
ton sharing,12 and our latest hybrid algorithm split-voxel MC (SVMC).14 Lastly, we have exten-
sively optimized the MCX GPU computing implementation and dramatically improved its
simulation speed across multiple generations of NVIDIA GPU architectures. We want to high-
light that MCX is an actively maintained platform funded by the National Institutes of Health
(NIH). New features are constantly being added; recently added key features include user-
defined scattering phase functions and modeling of polarized light in 3D heterogeneous media.

2.2 Docker Swarm Based Cloud Computing Backend

Docker Swarm is a lightweight container “orchestration” framework that is built-in to the Docker
toolkit. Docker Swarm allows users to create a virtual cluster made of a single or multiple Docker
service “nodes”, dispatch executions across such distributed computing environments, and

Fig. 1 Diagram showing the overall design of the MCX Cloud simulation platform. Gray-shaded
boxes indicate key technologies utilized in this platform; boxes shaded in light-blue indicate key
functionalities.

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-4 August 2022 • Vol. 27(8)



perform job distribution and job queue management. In our current MCX Cloud configuration,
we have included several rack-mount servers as Docker service nodes and also enumerated each
GPU hosted on each server as a named resource. As a result, any simulation dispatched by the
Docker service to the Swarm can be automatically assigned to one of the vacant GPU cards
among all participating nodes, determined automatically by the Docker Swarm manager node.
Utilizing the Docker Swarm framework to manage the computing hardware backend offers a
number of notable benefits. First, a Docker Swarm can be dynamically expanded and shrunk
without interrupting current jobs. Therefore, system administrators can grow the number of
GPUs to accommodate the job loads or shutdown some of the nodes for maintenance without
interrupting the simulation queue. Secondly, the latest Docker Swarm release offers fine-grained
GPU-based resource allocation and job distribution capability. With a simple configuration, one
can let Docker Swarm assign each simulation to a single GPU or to a single host, utilizing all
GPUs on the host in parallel. The Docker Swarm platform also provides high fault-tolerance:
when a hardware failure is detected on a host or a GPU, incomplete jobs can be automatically
relaunched by the Docker service manager.

We would like to emphasize that the Docker platform is a vastly rich ecosystem for cloud
computing; numerous free tools are available for container creation, sharing, management, and
orchestration. In this initial release of MCX Cloud, we chose Docker Swarm as the orchestration
framework largely because of its simplicity, but our platform can be further adapted to support
other orchestration platforms such as Kubernetes or Apache Mesos.

2.3 JSON/JData Based Data Exchange Format and JSON Schema

As we mentioned previously, JSON is an internationally standardized (also known as
ISO21778:2017) data exchange format, and is at the core of most today’s web-based applica-
tions. Compared to XML, JSON is extremely lightweight and fast to parse, yet it is capable of
storing complex hierarchical data. Numerous free and lightweight JSON parsers are available
today for nearly all existing programming languages, permitting plug-and-play implementation
of JSON data support in most applications.

Despite these aforementioned advantages, adoption of JSON in storing scientific data is
largely limited to handling lightweight metadata. This is because JSON does not have explicit
rules on how to serialize common scientific data structures such as N-dimensional (N-D) arrays,
complex and sparse arrays, tables, graphs, trees, etc. Additionally, JSON does not directly
support storage of strong-typed binary data. To bridge this gap, our group published an
open-standard—the JData Specification27—to systematically serialize common data structures
used in scientific research, enabling storage of binary strongly-typed data using 100% JSON-
compatible annotation tags. In addition, the JData specification also provides a binary data inter-
face utilizing the Universal Binary JSON (UBJSON30) format to offer additional space efficiency
and processing speed. In Fig. 2(a), we show an input data file snippet that MCX uses to define an
MCX simulation. In the “Shapes” section, an example defining a 3D volume using the JData
annotations27 is shown.

In addition to using JSON to encode input data, we have also completed the migration of
MCX volumetric output data as of 2020, converting from the NIfTI data format31 to JSON/
JData-based JNIfTI32 data files. Additional output data associated with detected photon data,
including partial pathlengths and exit position, are also stored in a JSON/JData27 file that is
readily readable by any existing JSON parser. The migration from an opaque and rigid binary
conventional format to the human-readable and easily extensible JSON/JData file sets the foun-
dation for migrating MCX from a local application to the cloud and web environments.

A key benefit of adopting JSON based data formats is to enable machine-automatable data
validation. This can be readily achieved using the JSON Schema framework. JSON Schema is a
systematic approach to defining data types, formats, and properties for each data entry in a JSON
data structure, and is currently a proposed Internet standard by the Internet Engineering Task
Force (IETF).28 It has received widespread adoption for automating and creating JSON based
data files. In this work, we have rigorously defined the JSON-based MCX input file format using
JSON Schema syntax (which is fully JSON-compatible). A snippet of MCX input file JSON
schema is shown in Fig. 2(b).

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-5 August 2022 • Vol. 27(8)



2.4 Web-Based JSON Editor and Graphical User Interface Design

The front-end, i.e., the web GUI, of MCX Cloud consists of two major components—an in-
browser JSON data editor to create JSON-formatted input data for MCX simulations and
a 3D data rendering module based on WebGL (see below section). The web-based MCX
JSON input editor was derived by combining an open-source general-purpose JSON editor
developed by Jeremy Dorn et al. with our JSON-schema of MCX input JSON data format.
The JSON editor module is a lightweight (73 kB in size) JavaScript library that enables the
creation and editing of arbitrary JSON-formatted data using a user-defined schema. It also simul-
taneously supports a number of popular web GUI frameworks and icon libraries to improve
customizability.

A minimalistic design style is used to provide users with a clean and streamlined environment
to create, preview, execute, render, and easily share MCX simulations. All front-end function-
alities are achieved using a combination of HTML5 and JavaScript programming. Notably, the
use of the JQuery library makes the front-end compact (less than 1,500 lines of JavaScript code)
and easy-to-maintain.

2.5 In-Browser Rendering of 3D Shapes and Volumetric Data Using WebGL

In the front-end of MCX Cloud, we have developed fully featured 3D shape and volumetric data
rendering and download functionalities. In comparison, the web GUI of MCOnline only pro-
vides rendering and data downloading for a particular x∕y∕z slice of the volume. The in-browser
3D data rendering feature is enabled by the WebGL technology,25 conveniently provided via
utilizing the open-source Three.js JavaScript rendering library33 application programming inter-
faces (APIs).

Our MCX JSON input file accepts two methods for defining a heterogeneous simulation
domain: (1) a constructive solid geometry (CSG) approach using a list of shape primitive
constructs such as spheres, boxes, cylinders, x∕y∕z layered structures etc, and (2) a JData-
formatted27 3D array that defines the tissue-types or per-voxel absorption/scattering values

(a) (b)

Fig. 2 Samples of (a) JSON-based MCX input file, and the corresponding (b) JSON schema
snippet.

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-6 August 2022 • Vol. 27(8)



of a voxelated space. As a result, in our web GUI, we support rendering of both shape-based
domain configurations as well as 3D array based rendering. An OpenGL 3D texture is created if
a 3D array-based volume is provided; the voxelated input domain is rendered in either maxi-
mum-intensity-projection (MIP) or isosurfaces. In either case, convenient controls of 3D rotation
and zooming are supported. Because Three.js is highly optimized on modern browsers such as
Chrome and Firefox, rendering a typically sized volume only slightly increase the CPU/GPU
loads of the browsers on most of our tested computers.

2.6 Asynchronous Data Communication and Optimization

The client (i.e., web GUI) and the server (i.e., a web service running on the manager node of the
Docker Swarm) communicate via asynchronous data communication, known as AJAX (asyn-
chronous JavaScript And XML). Despite the name, JSON, instead of XML, has been predomi-
nantly used in today’s web applications data exchange. User inputs are encoded as lightweight
JSONP (JSON with Padding) data packets and sent to the server; the server sends back the
response, also encoded as JSON packets, and informs the JavaScript on the web GUI to update
the web page content dynamically without needing to reload the entire web page.

To facilitate the processing of user submissions and management of Docker Swarm jobs, we
developed an ultra-compact common gateway interface (CGI) script, named “mcxserver,” writ-
ten in the Perl programming language to handle user-submitted job requests. These submitted
simulation data are stored in a database using Sqlite34 for fast query and update. The mcxserver
server script also handles status queries from the client once a job is submitted, and returns the
simulation output data once the simulation is completed. In addition, another Perl script named
“mcxcloudd” (MCX Cloud Daemon, see Fig. 1) is repeatedly executed at a fixed time interval
(currently set to run every 20 s) and checks (1) if the Docker Swarm has a vacant GPU device,
and (2) if there exist unprocessed user-submitted job requests in the Sqlite database. If both are
confirmed, a docker service command is then submitted to launch the user-submitted job to the
Docker Swarm. The web server database and simulation input/output files are shared among all
Docker Swarm nodes via the network file-system (NFS), as depicted in Fig. 1.

To optimize server disk usage, we define a job expiration time window (currently set to 1 h)
and configure another recurrent process (known as a cron-job) to automatically clean the expired
job folders to save space. If a simulation is frequently executed by users, such as the default
simulation or built-in examples, we keep the simulation output folder in a cache folder to avoid
repeated computation.

2.7 Reusable and Community-Driven Simulation Repository

Guided by the FAIR principle35 (i.e., making data findable, accessible, interoperable and reus-
able), our MCX Cloud platform provides convenient mechanisms to allow a user to share their
simulations with the community or reuse simulations contributed by other users. In MCX
Cloud’s “share” tab, a user can fill out a simple form to give permission for others to use
his/her designed MCX simulation JSON data. A dedicated server database is used to store these
shared simulation settings. When a user opens the “browse” tab in the web GUI, the GUI
retrieves a list of community-contributed simulations, including the JSON input data as well
as a domain preview thumbnail. If a user clicks on any one of the previously defined simulations,
the JSON data corresponding to the selected simulation will be loaded and ready for modifi-
cation by the user. Over time, we anticipate that this feature will eventually build a rich
simulation repository, not only helping new users quickly create new and more advanced sim-
ulations, but also establishing a set of standardized benchmarks that facilitate cross-validation
between diverse light simulation tools.

3 Results

Following the methodologies discussed above, we have created a preview version of the MCX
Cloud simulation platform. In this initial configuration of the MCX Cloud backend, we have
currently included 6× Docker service nodes using six Linux servers running Ubuntu 16.04 and

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-7 August 2022 • Vol. 27(8)



20.04 and Docker version 20.10.3. To balance the server loads, one of the servers is configured
as the “manager” node and is dedicated to running the web service (Apache 2.4.18), the CGI
script (mcxserver) and the mcxcloudd cron-job to process the user-submitted job queue, as
shown in Fig. 1. The remaining servers host a total of 5× NVIDIA RTX 2080 SUPER (Turing)
GPUs, 4× GTX 1080 (Pascal) GPUs, and 1× GTX 980Ti (Maxwell) GPU. This preview Docker
Swarm backend is capable of simultaneously executing 10 parallel simulations. With only a few
simple commands, we can effortlessly expand this Docker Swarm to include more nodes and
GPUs without interrupting the service. Docker provides command-line tools to enable easy
administration of the Docker Swarm and the jobs running on it. Graphical management tools
are also freely available, including Portainer and Shipyard.

To demonstrate the GUI design in MCX Cloud’s front-end, in Fig. 3, we include four screen-
shots showing (a) the main menu screen, (b) the browse tab for loading built-in or community-
contributed simulation library, (c) the “create” tab for MCX input JSON data in-browser editing,
and (d) the “run” tab for job submission and management. The initial loading of the front-end
web GUI only needs to download a total of 570 kB of resources, including nine open-source
JavaScript libraries, two cascade style-sheets (CSS), three web-fonts, and a single HTML file.
This small software footprint enables smooth access to this cloud service even for users with
low-bandwidth networks. All subsequent data exchange with the server is achieved via AJAX
with lightweight JSON data packets; no web page reloading is needed.

To show the 3D domain rendering functions in the web GUI, in Fig. 4, we provide two
screenshots showing both the shape-based and 3D-volume-based in-browser rendering via
WebGL and Three.js APIs. The first rendering in Fig. 4(a) shows MCX’s built-in benchmark,

(a) (b)

(c) (d)

Fig. 3 Sample screenshots of MCX Cloud GUI in a web browser, including (a) the main menu;
(b) the browse tab to download user-contributed simulations; (c) the create tab for editing JSON-
based input data validated by built-in schema; and (d) the run tab to launch jobs to the cloud and
monitor progress.

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-8 August 2022 • Vol. 27(8)



“skinvessel”, which was derived from the benchmark used by mcxyz.36 The domain is described
by JSON-based shape descriptors, consisting of 3 layers in the z axis, a cylindrical object, and a
disk-shaped source. In this screenshot, our front-end calls Three.js APIs to parse the shape
descriptors and render each domain component in a canvas object. To give an example for
rendering 3D voxelated domain inputs, in Fig. 4(b), we show the web GUI rendering of
the “digimouse” benchmark provided by MCX. The simulation domain is the segmented
Digimouse atlas,37 described by a 190 × 496 × 104 unsigned-integer array with 21 tissue types.
This 3D segmented digital atlas is encoded in the JData N-D array format along with Zlib data
compression38 and Base64 encoding. The self-contained JSON input file is 188 kB in size. Using
aWebGL rendering speed benchmark library, we have observed a speed of 180 to 300 frame-per-
second (fps) for the digimouse on a range of desktop and laptop computers with dedicated
NVIDIA GPUs; such speed drops to 20 to 60 fps when using this GUI on a laptop with
Intel’s integrated GPUs.

Our 3D in-browser rendering tool also automatically renders MCX-computed fluence maps,
also encoded in the JSON/JNIfTI format, returned by the server after the computation is com-
pleted. In Figs. 5(a) and 5(b), we show the 3D views of the volumetric fluence rate (as MIP)
obtained from the above two simulations. One can click on the “download” button at the bottom
of the rendering tab to download the entire 3D output data file, encoded in the JSON/JNIfTI
format, to the local disk for further analysis. Similarly, one can also click on the download button
in the “JSON” tab to download the web GUI generated JSON input file to his/her disk to locally
run MCX on the user’s own computer.

(a) (b)

Fig. 4 In-browser 3D rendering samples of complex simulation domains, showing (a) the skin-
vessel benchmark and (b) the digimouse benchmark, using WebGL.

(a) (b)

Fig. 5 Volumetric rendering of the computed fluence-rate output from (a) the skinvessel bench-
mark and (b) the digimouse benchmark.

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-9 August 2022 • Vol. 27(8)



To demonstrate that one can use MCX Cloud to distribute a large simulation across multiple
GPU devices installed in the Docker Swarm, we launch the digimouse benchmark simultane-
ously to 10 GPUs installed on the backend, each running 109 photons, and record the elapsed
time shown in a chart in Fig. 6. The overall simulation speed is 20; 704 photon∕ms if counting
from the job submission time, or 21; 834 photon∕ms if counting from the start of the first job.
This is about 3× of the average speed on all RTX 2080S nodes (6775 photon∕ms), and 9× of that
on the GTX 1080 GPUs (2374 photon∕ms). We want to highlight that this sample simulation is
designed to show the versatility of the platform without making any attempt to optimize to
achieve maximum speed. The simulation speed can be easily improved by adjusting backend
settings to increase the frequency of running the mcxcloudd server script and perform GPU-
based load-balancing.

3.1 Discussion and Conclusion

Over the past decade, MC-based photon transport simulation has gained ample progress in terms
of speed and accuracy in modeling increasingly complex anatomical structures. A list of free and
open-source MC simulators with various levels of functionalities have been developed, pub-
lished, and actively maintained by a number of research groups. While some of these open-
source toolkits have successfully attracted a sizable user community, most of these tools were
disseminated using a conventional download-and-install approach. In addition, many high-
performance MC simulators require purchasing and installing high-end graphics cards on users’
own computers to maximize efficiency. For less-experienced users, properly configuring and
using these specialized simulation tools can be key barriers.

This work specifically addresses challenges regarding the usability and availability of MC
simulators as mentioned above. Particularly, we described an in-browser GPU-accelerated MC
simulator and cloud-based service that can be launched anywhere a browser is available, includ-
ing mobile devices such as a smartphone or a tablet. This system combines our decade-long,
continual development in MCX light transport simulation software with state-of-the-art
cloud-computing platforms, and offers a robust, scalable and forward-looking framework for a
standardized, high-demand, high-throughput and community-focused MC modeling platform.
Compared to the previously published online MC simulator, this new platform embraces the
latest technologies in microservices, cloud-computing (containerization and orchestration), and
web-based GUI design (AJAX, JSON, JSON Schema, jQuery, WebGL, and Three.js), and
demonstrates high flexibility and scalability that were not previously available.

We can not emphasize enough how adopting a standardized and web-friendly input/output
data format in JSON/JData greatly simplified or even directly enabled the implementation of this
lightweight yet highly versatile web-based platform. To be more specific, utilizing JSON to
encode MCX’s input/output data allowed us to seamlessly integrate them with JavaScript and
a web environment. Also, defining MCX’s input data using JSON schema allows the JSON
Editor library to automatically create the JSON editing interface in our front-end. This in-

Fig. 6 Elapsed time analysis for running the digimouse benchmark with a total of 1010 photons
using 10× NVIDIA GPU devices via MCX Cloud. In this example, we used 5× RTX 2080SUPER,
4× GTX 1080 and 1× GTX 980Ti.

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-10 August 2022 • Vol. 27(8)



browser JSON editor is not only intuitive to use, but also generates JSON data that automatically
satisfies the specified schema. Similarly, adopting JSON and JData data annotations also
allow MCX to store complex output data records, including volumetric fluence rate, partial-
pathlengths, and various lightweight metadata in a unified, easy-to-read JSON format that can
be readily transmitted, parsed and rendered inside a browser.

Although we use MCX at the backend to perform the underlying MC computation, our cloud
computing system can be readily adapted to use any other MC simulators, as long as the alter-
native simulator also supports JSON/JData as the input/output data format and provides the cor-
responding JSON schema of the desired input JSON data structure (can be entirely different from
those of MCX). For the same reason, our current web GUI can be directly used in combination
with MCX-CL5 as the simulator in the backend if AMD or Intel GPUs are configured in Docker
Swarm. This is because MCX-CL and MCX share nearly identical input/output formats. We are
currently working on creating similar JSON/JData support for our MMC simulator,10 and antici-
pate that running MMC simulations on this cloud-computing platform will be supported in the
near future.

From the benchmark results shown in Fig. 6, it is clear that this cloud computing platform can
function not only as a parallel processor for simultaneously submitted jobs from multiple remote
users, but also as a distributed high-performance computing platform to allow the running of a
single simulation using all GPUs available. With more nodes and GPU devices added to the
Docker Swarm, one should anticipate a nearly linear increase in the simulation speed when
running large simulation loads.

Moving forward, we aim to complete the migration of our MMC simulator10 to the JSON
input/output data format, and make our web GUI readily usable for executing mesh-based MC
simulations online. We will also focus on curating a comprehensive and reusable community-
contributed MC simulation library and creating standardized benchmarks to facilitate easy cross-
validation between existing and emerging MC and diffusion solvers. In addition, we will monitor
the utility of our GPU cloud and expand the capacity when necessary. We are also interested in
upgrading the current Turing-/Pascal-based NVIDIA GPUs to the newer and more powerful
generations as they become available to help users run their simulations in less time. We will
release detailed tutorials and documentations on our MCX web site to guide users to configure
and optimize their “private MCX cloud” when such guidance is necessary. In addition, contain-
erization of MC simulators, such as MCX, is only the beginning of building more sophisticated
and automated biophotonic data analysis pipelines. With more optical data analysis tools dis-
seminated in a container environment, and more tools accepting the use of a standardized format,
such as JSON/JData, as the input/output file format, the developers in our community will be
able to create more sophisticated and automated data analysis processes using Docker compose,
a standard tool to invoke multiple containerized applications.

The next step of our project also includes further solidification and dissemination of the JData
specification39 for portable scientific data exchange, which has recently been funded by the NIH,
including the exchange of volumetric data via the JNIfTI format,32 unstructured mesh data via
the JMesh format40 etc. All of these JData-based data formats are fully JSON compatible and can
be readily parsed by all existing JSON parsers and libraries. We strongly believe that providing
such a universal data exchange platform permits all optical data analysis tools, and other sci-
entific software in general, to efficiently share, exchange, integrate and automate hierarchical
data records that are essential to scientific research. The convergence to a JSON-based data
exchange platform also enables the research community to benefit from the latest NoSQL hier-
archical database technology for large-volume and scalable scientific data storage and integra-
tion. Using MCX Cloud as a showcase, we sincerely invite all open-source MC simulator
developers to consider supporting JSON-/JData-based data formats in their software to take ad-
vantage of these major benefits.

In summary, we report a highly scalable, easy-to-use, and cloud-computing-based in-browser
MC simulation platform—MCX Cloud. This platform was built upon an array of modern open-
source technologies, including the use of Docker containers and container orchestration to run
GPU-based MC simulations across a robust, elastic, scalable, and distributed virtual GPU clus-
ter. It also leverages the latest web-based technologies, such as JSON, JSON schema, AJAX, and
WebGL, to create an intuitive, easily expandable, and responsive web GUI. At the core of this

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-11 August 2022 • Vol. 27(8)



cloud computing platform is our significantly improved MCX photon transport simulator, pack-
aging numerous enhancements in GPU optimization and algorithmic features that we have
developed and integrated over the past decade. We want to particularly highlight that this plat-
form is fully open-source—we not only provide the source codes for the MCX simulator, but
also those for the web GUI and server-side scripts—so that anyone can build a private cloud for
internal use or modify these scripts to accommodate other similar solvers. In the meantime, we
have built an initial GPU cloud containing 10× NVIDIA GPUs to help users execute MCX
simulations without needing to purchase or maintain GPU hardware. Our online MCX simu-
lation service is freely available at http://mcx.space/cloud.

Disclosures

No conflicts of interest, financial or otherwise, are declared by the authors.

Acknowledgments

This research is supported by the National Institutes of Health (NIH grants R01-GM114365,
R01-EB026998, and U24-NS124027). We would like to thank Leiming Yu and Yuhui Bao for
their inputs and help in creating MCX Docker images.

References

1. L. V. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport
in multi-layered tissues,” Comput. Methods Prog. Biomed. 47(2), 131–146 (1995).

2. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics
processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed.
Opt. 13(6), 060504 (2008).

3. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media
accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).

4. N. Ren et al., “GPU-based Monte Carlo simulation for light propagation in complex hetero-
geneous tissues,” Opt. Express 18(7), 6811–6823 (2010).

5. L. Yu et al., “Scalable and massively parallel Monte Carlo photon transport simulations for
heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 010504 (2018).

6. C. J. Zoller et al., “Parallelized Monte Carlo software to efficiently simulate the light propa-
gation in arbitrarily shaped objects and aligned scattering media,” J. Biomed. Opt. 23(6),
1–12 (2018).

7. T. Young-Schultz et al., “FullMonteCUDA: a fast, flexible, and accurate GPU-accelerated
Monte Carlo simulator for light propagation in turbid media,” Biomed. Opt. Express 10,
4711–4726 (2019).

8. E. Margallo-Balbás and P. J. French, “Shape based Monte Carlo code for light transport in
complex heterogeneous tissues,” Opt. Express 15(21), 14086–14098 (2007).

9. H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simula-
tor,” Phys. Med. Biol. 55(4), 947–962 (2010).

10. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,”
Biomed. Opt. Express 1(1), 165–175 (2010).

11. V. Periyasamy and M. Pramanik, “Monte Carlo simulation of light transport in turbid
medium with embedded object-spherical, cylindrical, ellipsoidal, or cuboidal objects
embedded within multilayered tissues,” J. Biomed. Opt. 19(4), 045003 (2014).

12. S. Yan, A. P. Tran, and Q. Fang, “Dual-grid mesh-based Monte Carlo algorithm for efficient
photon transport simulations in complex three-dimensional media,” J. Biomed. Opt. 24(2),
020503 (2019).

13. A. P. Tran and S. L. Jacques, “Modeling voxel-based Monte Carlo light transport with
curved and oblique boundary surfaces,” J. Biomed. Opt. 25(2), 025001 (2020).

14. S. Yan and Q. Fang, “Hybrid mesh and voxel based Monte Carlo algorithm for accurate and
efficient photon transport modeling in complex bio-tissues,” Biomed. Opt. Express 11,
6262–6270 (2020).

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-12 August 2022 • Vol. 27(8)

http://mcx.space/cloud
http://mcx.space/cloud
https://doi.org/10.1016/0169-2607(95)01640-F
https://doi.org/10.1117/1.3041496
https://doi.org/10.1117/1.3041496
https://doi.org/10.1364/OE.17.020178
https://doi.org/10.1364/OE.18.006811
https://doi.org/10.1117/1.JBO.23.1.010504
https://doi.org/10.1117/1.JBO.23.6.065004
https://doi.org/10.1364/BOE.10.004711
https://doi.org/10.1364/OE.15.014086
https://doi.org/10.1088/0031-9155/55/4/003
https://doi.org/10.1364/BOE.1.000165
https://doi.org/10.1117/1.JBO.19.4.045003
https://doi.org/10.1117/1.JBO.24.2.020503
https://doi.org/10.1117/1.JBO.25.2.025001
https://doi.org/10.1364/BOE.409468


15. Y. Yuan, S. Yan, and Q. Fang, “Light transport modeling in highly complex tissues using
the implicit mesh-based Monte Carlo algorithm,” Biomed. Opt. Express 12, 147–161
(2021).

16. D. Marti et al., “MCmatlab: an open-source, user-friendly, MATLAB-integrated three-
dimensional Monte Carlo light transport solver with heat diffusion and tissue damage,”
J. Biomed. Opt. 23(12), 121622 (2018).

17. A. A. Leino, A. Pulkkinen, and T. Tarvainen, “ValoMC: a Monte Carlo software and
MATLAB toolbox for simulating light transport in biological tissue,” OSA Continuum
2, 957–972 (2019).

18. Q. Fang and S. Yan, “Graphics processing unit-accelerated mesh-based Monte Carlo photon
transport simulations,” J. Biomed. Opt. 24(11), 115002 (2019).

19. J. Cassidy et al., “High-performance, robustly verified Monte Carlo simulation with
FullMonte,” J. Biomed. Opt. 23(8), 085001 (2018).

20. A. Doronin and I. Meglinski, “Online object oriented Monte Carlo computational tool for
the needs of biomedical optics,” Biomed. Opt. Express 2(9), 2461–2469 (2011).

21. J. Jönsson and E. Berrocal, “Multi-Scattering software: part I: online accelerated Monte
Carlo simulation of light transport through scattering media,” Opt. Express 28, 37612–
37638 (2020).

22. Docker Project Contributors, “Docker software, version 20.10.3,” https://docker.com/.
23. W3C Working Group, “HTML 5 – a vocabulary and associated APIs for HTML and

XHTML,” 2008, https://www.w3.org/TR/2008/WD-html5-20080122/.
24. JQuery Project Contributors, “JQuery JavaScript Library, version 3.3.1,” https://jquery.com/.
25. Khronos WebGL Working Group, “WebGL 2.0 specification,” 2017, https://www.khronos

.org/registry/webgl/specs/latest/2.0/.
26. T. Bray, “The JavaScript object notation (JSON) data interchange format,” https://json.com

(2014).
27. Q. Fang, “JData: a general-purpose data annotation and interchange format, Version 1,”

2020, https://github.com/NeuroJSON/jdata.
28. A. Wright, H. Andrews, and B. Hutton, “JSON schema: a media type for describing JSON

documents,” 2020, https://json-schema.org/specification.html.
29. R. Yao, X. Intes, and Q. Fang, “Direct approach to compute Jacobians for diffuse optical

tomography using perturbation Monte Carlo-based photon ‘replay’,” Biomed. Opt. Express
9, 4588–4603 (2018).

30. R. Kalla, “Universal binary JSON specification - draft 12,” https://ubjson.com (2016).
31. R. Cox, “Official definition of the NIFTI1 header,” 2007, https://nifti.nimh.nih.gov/pub/dist/

src/niftilib/nifti1.h.
32. Q. Fang, “JNIfTI: an extensible file format for storage and interchange of neuroimaging

data, Version 1,” 2020, https://github.com/NeuroJSON/jnifti.
33. ThreeJS Project Contributors, “Three.js JavaScript Library, version R135,” https://threejs

.org (2021).
34. R. D. Hipp, “SQLite, version 3.31.1,” https://sqlite.org (2020).
35. M. Wilkinson et al., “The FAIR guiding principles for scientific data management and

stewardship,” Sci. Data 3, 160018 (2016).
36. S. Jacques, “mcxyz software,” https://omlc.org/software/mc/mcxyz/.
37. B. Dogdas et al., “Digimouse: a 3D whole body mouse atlas from CTand cryosection data,”

Phys. Med. Biol. 52, 577–587 (2007).
38. J. Gailly and M. Adler, “zlib compression library,” https://zlib.org (2004).
39. Q. Fang, “OpenJData - “Source code” format for scientific data,” http://openjdata.org (2021).
40. Q. Fang, “JMesh—a versatile data format for unstructured meshes and geometries, Version 1,”

2020, https://github.com/NeuroJSON/jmesh.

Qianqian Fang is currently an associate professor in the Bioengineering Department at
Northeastern University, Boston. He received his PhD from Thayer School of Engineering,
Dartmouth College, in 2005. He then joined Massachusetts General Hospital and became an
instructor of radiology in 2009 and assistant professor of radiology in 2012, before he joined
Northeastern University in 2015. His research interests include translational medical imaging

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-13 August 2022 • Vol. 27(8)

https://doi.org/10.1364/BOE.411898
https://doi.org/10.1117/1.JBO.23.12.121622
https://doi.org/10.1364/OSAC.2.000957
https://doi.org/10.1117/1.JBO.24.11.115002
https://doi.org/10.1117/1.JBO.23.8.085001
https://doi.org/10.1364/BOE.2.002461
https://doi.org/10.1364/OE.404005
https://docker.com/
https://docker.com/
https://www.w3.org/TR/2008/WD-html5-20080122/
https://www.w3.org/TR/2008/WD-html5-20080122/
https://www.w3.org/TR/2008/WD-html5-20080122/
https://jquery.com/
https://jquery.com/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://json.com
https://json.com
https://github.com/NeuroJSON/jdata
https://github.com/NeuroJSON/jdata
https://json-schema.org/specification.html
https://json-schema.org/specification.html
https://json-schema.org/specification.html
https://doi.org/10.1364/BOE.9.004588
https://ubjson.com
https://ubjson.com
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h
https://github.com/NeuroJSON/jnifti
https://github.com/NeuroJSON/jnifti
https://threejs.org
https://threejs.org
https://sqlite.org
https://sqlite.org
https://doi.org/10.1038/sdata.2016.18
https://omlc.org/software/mc/mcxyz/
https://omlc.org/software/mc/mcxyz/
https://doi.org/10.1088/0031-9155/52/3/003
https://zlib.org
https://zlib.org
http://openjdata.org
http://openjdata.org
https://github.com/NeuroJSON/jmesh
https://github.com/NeuroJSON/jmesh


devices, multi-modal imaging, image reconstruction algorithms, and high performance comput-
ing tools to facilitate the development of next-generation imaging platforms.

Shijie Yan is a doctoral candidate at Northeastern University. He received his BE degree from
Southeast University, China, in 2013 and MS from Northeastern University in 2017. His research
interests include Monte Carlo photon transport simulation algorithms, parallel computing, GPU
programming and optimization.

Fang and Yan: MCX Cloud—a modern, scalable, high-performance and in-browser Monte Carlo simulation. . .

Journal of Biomedical Optics 083008-14 August 2022 • Vol. 27(8)


