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Abstract

Significance: The image reconstruction problem in quantitative photoacoustic tomography
(QPAT) is an ill-posed inverse problem. Monte Carlo method for light transport can be utilized
in solving this image reconstruction problem.

Aim: The aim was to develop an adaptive image reconstruction method where the number of
photon packets in Monte Carlo simulation is varied to achieve a sufficient accuracy with reduced
computational burden.

Approach: The image reconstruction problem was formulated as a minimization problem.
An adaptive stochastic Gauss–Newton (A-SGN) method combined with Monte Carlo method
for light transport was developed. In the algorithm, the number of photon packets used on
Gauss–Newton (GN) iteration was varied utilizing a so-called norm test.

Results: The approach was evaluated with numerical simulations. With the proposed approach,
the number of photon packets needed for solving the inverse problem was significantly smaller
than in a conventional approach where the number of photon packets was fixed for each GN
iteration.

Conclusions: The A-SGN method with a norm test can be utilized in QPAT to provide accurate
and computationally efficient solutions.
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1 Introduction

Photoacoustic tomography (PAT) is an imaging modality based on the photoacoustic effect.1–3

In PAT, images of an initial pressure distribution are reconstructed from boundary measurements
of generated photoacoustic waves caused by absorption of an externally induced light pulse. PAT
can be applied, e.g., to image soft biological tissues, such as blood vessels and microvasculature
of tumors in medical imaging, and for small animal imaging in biomedical applications.2,4–9 In
quantitative photoacoustic tomography (QPAT), the aim is to estimate the concentration of chro-
mophores from photoacoustic images.10 This provides more accurate information of the imaged
target, such as differentiation between oxygenated and non-oxygenated blood.

Estimation of the chromophore concentrations is an ill-posed problem that needs to be
approached in the framework of inverse problems. The optical inverse problem of QPAT is
typically formulated as a minimization problem that is solved using methods of numerical
optimization.10 The chromophore concentrations can be estimated directly from photoacoustic
images obtained at multiple wavelengths, or by first reconstructing the absorption coefficients
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from the photoacoustic images and then computing the concentrations utilizing the absorption
spectra of the known chromophores.10–17 Alternatively, the optical parameters can be estimated
directly from the photoacoustic time series.18–23 To obtain accurate reconstructions, light propa-
gation in the imaged target needs to be modeled.12,24

Awidely accepted forward model for light propagation in a scattering medium, such as bio-
logical tissue is the radiative transfer equation (RTE).25 Utilizing the RTE in QPAT has been
studied, for example in Refs. 21, 24, 26–28. RTE can be solved analytically in a limited number
of cases, but it is usually approached numerically using for example a finite element method. In
addition to deterministic methods, Monte Carlo method for light transport can be used to sim-
ulate light propagation in tissues. Monte Carlo is a stochastic method where light transport is
approximated by tracing paths of a large number of photons or photon packets in the medium.29

It has been widely utilized in biomedical optics, see e.g., Refs. 30–33 and the references therein.
In addition, there is an increasing interest in its usage in solving the inverse problems related to
optical imaging, see e.g., Refs. 34–40.

In this work, we study the utilization of Monte Carlo method in the optical inverse problem of
QPAT. The approach has been previously studied in Refs. 37–42 either for estimating absorption
only or both absorption and scattering. However, despite the recent work,40 the number of photon
packets have not been investigated, and thus the computational burden of using Monte Carlo for
both the forward and inverse problems has been large.

In Monte Carlo, the computational burden is strongly related to the number of simulated
photons. Therefore, by adjusting the amount of simulated photons, the computational cost of
a Monte Carlo algorithm can be controlled. However, due to the stochastic nature of Monte
Carlo, simulating less photons increases stochastic noise in the solution. This trade-off between
computational cost and stochastic noise can be used to optimize the computational cost of the
approach: if a certain level of noise in the forward model can be accepted, the amount of simu-
lated photons could be chosen to provide sufficient accuracy without unnecessary computational
burden.

In the recent work by Macdonald et al.,40 efficient image reconstruction strategies using sto-
chastic forward model were investigated. In that work, the QPAT inverse problem was formu-
lated as a least-squares minimization problem for estimating target absorption coefficient. The
inverse problem studied was estimation of absorption coefficient based on observation of
absorbed energy density in layered (one-dimensional) and noise-free setting. A stochastic gra-
dient descent method was used to solve the minimization problem, and choosing the number of
simulated photon packets was studied. In that work, a norm test approach43,44 was used to deter-
mine the required number of photon packets to achieve sufficient accuracy of the gradient of the
objective function. While the stochastic gradient descent approach was shown to provide accu-
rate estimates in the presented simulations,40 utilizing curvature (second-order) information of
the objective function, such as Newton’s minimization direction, could provide significantly
faster convergence rate, especially in a high-dimensional optimization problem.45–47

In this work, we approach the QPAT inverse problem in the framework of Bayesian inverse
problems.48,49 That is, we formulate the inverse problem using models for data likelihood and
prior, and seek to find the distribution of target absorption coefficients by computing a maximum
a posteriori (MAP) estimate. Inverse problems methodologies, such as the Bayesian framework,
enable image reconstruction also in situations where a problem is ill-posed. In this work, we
study only the optical inverse problem of QPAT and assume that the initial pressure distribution
has been reconstructed, without studying possible reconstruction artefacts caused by the acoustic
solver. Further, it is assumed that the scattering coefficient, anisotropy parameter, and the
Grüneisen parameter, that is used to describe photoacoustic efficiency, are known.

We formulate an adaptive stochastic Gauss–Newton (A-SGN) method for the solution of the
inverse problem. In the approach, the amount of photon packets used by the Monte Carlo for-
ward model in the algorithm is varied on each iteration. We propose an approach where the
number of photon packets is determined by a norm test. In the norm test, variance between
approximate and accurate minimization direction is studied to determine the number of photon
packets. The methodology automatically adjusts the number of photon packets during iteration
until a desired convergence of the minimization problem has been achieved.
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The rest of the paper is organized as follows. Modeling light transport in QPAT is described in
Sec. 2, and the inverse problem of QPAT is described in Sec. 3. In Sec. 4, the stochastic opti-
mization framework and the A-SGN method are presented. Simulation studies are presented in
Sec. 5, and results in Sec. 6. Results are discussed and conclusions are given in Sec. 7.

2 Forward Model

The optical forward problem in QPAT is to determine the absorbed optical energy density H
within the target when the optical parameters and input light are given. In this work, we use
Monte Carlo simulations as a forward model to approximate the solution of the RTE.

Let us consider a domain Ω ⊂ Rd with a boundary ∂Ω in dimension d ¼ 2;3 and let ŝ ∈ Sd−1

denote a unit vector in the direction of interest. In QPAT imaging situation, light propagation in
tissue can be modeled using the (time-independent) RTE

EQ-TARGET;temp:intralink-;e001;116;578

8><
>:

ŝ · ∇ϕðr; ŝÞ þ ðμsðrÞ þ μaðrÞÞϕðr; ŝÞ ¼ μsðrÞ
R
Sd−1 Θðŝ · ŝ 0Þϕðr; ŝ 0Þdŝ 0; r ∈ Ω

ϕðr; ŝÞ ¼
�
ϕ0ðr; ŝÞ; r ∈ ϵ; ŝ · n̂ < 0

0; r ∈ ∂Ω \ ϵ; ŝ · n̂ < 0

; (1)

where r is the spatial position, μaðrÞ is the optical absorption coefficient, μsðrÞ is the optical
scattering coefficient, ϕðr; ŝÞ is the radiance, ϕ0ðr; ŝÞ is a boundary source, n̂ is an outward
unit normal, and Θðŝ · ŝ 0Þ is the scattering phase function.25,50,51 A commonly applied scattering
phase function is the Henyey–Greenstein phase function

EQ-TARGET;temp:intralink-;e002;116;466Θðŝ · ŝ 0Þ ¼
8<
:

1
2π

1−g2
1þg2−2gŝ·ŝ 0 ; d ¼ 2

1
4π

1−g2
ð1þg2−2gŝ·ŝ 0Þ3∕2 ; d ¼ 3

; (2)

where −1 < g < 1 is the scattering anisotropy parameter.52 The boundary condition indicates that
no photons travel in an inward direction at the boundary except at source position ε ⊂ ∂Ω.

The photon fluence ΦðrÞ is obtained from the radiance as

EQ-TARGET;temp:intralink-;e003;116;370ΦðrÞ ¼
Z
Sd−1

ϕðr; ŝÞdŝ: (3)

As light propagates within the medium, it is absorbed by light-absorbing molecules (chromo-
phores), creating absorbed optical energy density HðrÞ

EQ-TARGET;temp:intralink-;e004;116;303HðrÞ ¼ μaðrÞΦðrÞ: (4)

The light absorption generates localized increases in pressure that propagate through the tissue.
The time evolution of the resulting photoacoustic waves can be modeled using the equations of
linear acoustics.1

2.1 Monte Carlo Method for Light Transport

In this work, we approximate the solution of the RTE with the Monte Carlo method for light
transport. We use the photon packet method29 implemented in open-source software ValoMC
and the associated MATLAB toolbox.53 In the photon packet approach, packets of photons with
an initial weight w0 are generated at light-source locations of the simulation domain.29,31

Scattering distance, or distance for a photon packet to propagate, is drawn from an exponential
probability density distribution function

EQ-TARGET;temp:intralink-;e005;116;127fðlÞ ¼ μsðlÞ exp
�
−
Z

l

0

μsðl 0Þdl 0
�
; (5)

where l is the distance, and μsðl 0Þ is the scattering parameter from the photon packet’s current
location toward its current propagation direction. After photon packet has propagated for a
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scattering distance, a new scattering event occurs where a new propagation direction and a new
scattering distance are drawn. In this work, the scattering direction is drawn from the Henyey–
Greenstein phase function Eq. (2). These scattering steps are repeated until the photon packet
exits the simulation domain or its weight becomes negligible.

During propagation, the photon packet is continuously absorbed by the medium by prob-
ability μads for differential propagation distance ds. That is, the photon weight is described by
the Beer–Lambert’s law

EQ-TARGET;temp:intralink-;e006;116;651wðsÞ ¼ w0 exp

�
−
Z

s

0

μaðs 0Þds 0
�
; (6)

which is expressed by parameter s along the photons trajectory, which is formed by a polygonal
chain with vertices defined by sequence of scattering locations, with μaðs 0Þ being the absorption
coefficient along the trajectory.

In photon packet-based Monte Carlo, the absorbed optical energy density Hj in a discreti-
zation element j of the domain is computed as

EQ-TARGET;temp:intralink-;e007;116;546Hj ¼ −
1

Aj

Z
t

0

χjðsÞ
dw
ds

ðsÞds; (7)

where Aj is the area (d ¼ 2) or the volume (d ¼ 3) of the element j, the integral is understood as
being carried from the position where the photon packet was created (s ¼ 0) until the photon
packet terminates (s ¼ t), χj is a characteristic function having the unit value when the photon
packet is in the element j and zero elsewhere, and − dw

ds ðsÞ describes the energy absorbed by the
medium during the photon packet propagation.

3 Inverse Problem

In this work, we focus to study the optical inverse problem of QPAT. That is, we consider our
data to be absorbed optical energy density that is obtained as a solution of the acoustic inverse
problem of PAT by reconstructing the initial pressure from photoacoustic time series. Further, it
is assumed that the Grüneisen parameter is known.

Let us denote the data vector by Hdata ¼ ðh1; h2; : : : ; hMÞ ∈ RM, where M is the number of
data, which in the case of QPAT is the number of illuminations multiplied with the number of
discretization points to represent the data. Further, let us denote absorption coefficients as μa ¼
ðμa1 ; μa2 ; : : : ; μaN Þ ∈ RN where N is the number of discretization elements in the parameter grid.
The discretized observation model with an additive noise model is

EQ-TARGET;temp:intralink-;e008;116;283Hdata ¼ HðμaÞ þ e; (8)

where H∶RN ↦ RM is the discretized forward model that maps optical parameters to data pre-
dictions and e ∈ RM is additive noise.

In the Bayesian approach to inverse problems, all parameters are modeled as random var-
iables. Using Bayes’ formula and following derivation given for example in Ref. 48, the solution
of the inverse problem, i.e., the posterior distribution, can be derived. The unknown absorption
μa and the noise e are modeled as Gaussian distributed μa ∼N ðημa ;ΓμaÞ and e ∼N ðηe;ΓeÞ,
where ημa ∈ RN and ηe ∈ RM are the means and Γμa ∈ RN×N and Γe ∈ RM×M are the covariance
matrices, respectively. Computing the full posterior distribution is typically computationally too
expensive in practical tomographic imaging problems. Therefore, point estimates, such as MAP
estimate that is used in this work, are considered. Thus, we estimate absorption coefficients by
solving a minimization problem

EQ-TARGET;temp:intralink-;e009;116;116μ̂a ¼ arg minμa

�
1

2
kLeðHdata −HðμaÞ − ηeÞk2 þ

1

2
kLμaðμa − ημaÞk2

�
¼ arg minμafuðμaÞg;

(9)
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where Γ−1
μa ¼ LT

μaLμa and Γ−1
e ¼ LT

eLe are the Cholesky decompositions of the inverse of the
covariance matrices and uðμaÞ ¼ 1

2
kLeðHdata −HðμaÞ − ηeÞk2 þ 1

2
kLμaðμa − ημaÞk2.

Solving the minimization problem Eq. (9) is a non-linear optimization problem, which can be
achieved using for example a gradient descent or Gauss–Newton (GN) method.45 In the GN
method,45 the estimates are updated as

EQ-TARGET;temp:intralink-;e010;116;672μðiþ1Þ
a ¼ μðiÞa þ αðiÞδðμðiÞa Þ; (10)

where αðiÞ is a step size parameter, and δðμðiÞa Þ is the GN minimization direction on iteration i and

parameter μðiÞa , which is obtained by solving

EQ-TARGET;temp:intralink-;e011;116;608ðJTðμðiÞa ÞΓ−1
e JðμðiÞa Þ þ Γ−1

μa ÞδðμðiÞa Þ ¼ JTðμðiÞa ÞΓ−1
e ðHdata −HðμðiÞa Þ − ηeÞ − Γ−1

μa ðμðiÞa − ημaÞ; (11)

where HðμðiÞa Þ is the forward solution and JðμðiÞa Þ its Jacobian.

4 QPAT Optimization Problem in a Stochastic Setting

As it can be seen, solving the minimization problem Eq. (9) requires solutions to the forward
model and its Jacobian. Issues, however, arise when using a stochastic forward model.
Nevertheless, the minimization problem Eq. (9) can be approached utilizing methods of stochas-
tic optimization.40,47 In this work, we utilize the stochastic Gauss-Newton (SGN) method.

Let us denote the approximation of the forward model as HPðμaÞ and its Jacobian as JPðμaÞ
evaluated at point μa and with a number of photon packets P. They can be expressed as

EQ-TARGET;temp:intralink-;e012;116;444HPðμaÞ ¼ HðμaÞ þ εHðμaÞ;P; (12)

EQ-TARGET;temp:intralink-;e013;116;399JPðμaÞ ¼ JðμaÞ þ εJðμaÞ;P; (13)

where HðμaÞ is the “accurate” forward model that refers to the (unavailable) asymptotic limit of
Monte Carlo with infinite number of photon packets. Similarly, JðμaÞ is the Jacobian of the
accurate forward model. Errors of the approximative forward model and its Jacobian are
εHðμaÞ;P and εJðμaÞ;P, respectively. These approximations are assumed to be unbiased, i.e.,

EQ-TARGET;temp:intralink-;e014;116;339EfHPðμaÞg ¼ HðμaÞ; (14)

EQ-TARGET;temp:intralink-;e015;116;296EfJPðμaÞg ¼ JðμaÞ; (15)

where E denotes the expected value.
In an idealistic situation, the forward model and its Jacobian would be approximated with a

very large number of photon packets leading to approximations with errors that can be regarded
infinitesimal. However, this would require a significant amount of computational resources,
which would be infeasible in practical applications. On the other hand, if we can accept a certain
level of error in the forward solution and its Jacobian, computational cost of evaluating the for-
ward model can be reduced by simulating less photon packets. In this work, we study how to
optimally choose the number of photon packets to find a feasible compromise between accuracy
and computational cost of the minimization algorithm.

4.1 Stochastic Gauss–Newton Method

Let us consider the GN method Eqs. (10) and (11) in a stochastic setting. In the SGN method,
estimates are updated as

EQ-TARGET;temp:intralink-;e016;116;117μðiþ1Þ
a ¼ μðiÞa þ αðiÞδPi

ðμðiÞa Þ; (16)

where δPi
ðμðiÞa Þ is the approximative GN minimization direction computed by solving
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EQ-TARGET;temp:intralink-;e017;116;735ðJTPi
ðμðiÞa ÞΓ−1

e JPi
ðμðiÞa Þ þ Γ−1

μa ÞδPi
ðμðiÞa Þ ¼ JTPi

ðμðiÞa ÞΓ−1
e ðHdata −HPi

ðμðiÞa Þ − ηeÞ − Γ−1
μa ðμðiÞa − ημaÞ;

(17)

where HðμðiÞa Þ is the approximate forward solution and JPi
ðμðiÞa Þ is its Jacobian, approximated

with Pi photon packets.
To construct the Jacobian, derivatives of absorbed optical energy density with respect to the

optical coefficients need to be evaluated. The derivative for the absorption coefficient can be
computed directly from Eq. (7) by differentiation. In the case of piece-wise constant absorption
μak and absorbed optical energy density Hj, the derivative can be expressed as

EQ-TARGET;temp:intralink-;e018;116;619

∂Hj

∂μak
¼ −

1

Aj

Z
t

0

χjðsÞ
d

ds
∂w
∂μak

ðsÞds; (18)

where

EQ-TARGET;temp:intralink-;e019;116;566

∂w
∂μak

ðsÞ ¼ −LkðsÞwðsÞ; (19)

and

EQ-TARGET;temp:intralink-;e020;116;514LkðsÞ ¼
Z

s

0

χkðs 0Þds 0; (20)

describes the distance traveled by the photon packets inside element k. For more details,
see Ref. 39.

Computing the GN minimization direction is computationally more demanding compared to
first-order optimization methods, such as the gradient descent method, as obtaining the GN iter-
ation direction involves solving a linear system Eq. (17). However, utilizing the second-order
(curvature) information can result in a much faster convergence in practice.45–47

4.2 Adaptive SGN Algorithm with a Norm Test

During the first steps of the SGN iteration, when the absorption estimates are relatively far from
the minimum of the optimization problem, even approximative knowledge of the minimization
direction can be used to achieve minimization directions that provide sufficient decrease. When
the iterations advance and the estimates approach the minimum, the difference between the for-
ward model and data vector decreases. Consequently, the effect of the stochastic noise in the
difference increases. If the stochastic noise starts to dominate, the minimization direction com-
puted based on this difference may not be useful and it is possible that the algorithm starts to
jump in the surroundings of the minimum. On the other hand, if the accuracy of the minimization
direction (number of photon packets) is increased as iterations proceed, the effect of the stochas-
tic noise could be kept sufficiently low.

In this work, we propose an adaptive approach for choosing the number of photon packets on
each iteration. The iteration algorithm starts with a relative low number of photon packets P1. In
addition, in the beginning of the algorithm, the number of samples in the norm test L and initial

absorption parameters μð1Þa are set. The accuracy of the minimization direction is assessed using a
so-called norm test,43,44 and if needed, the number of photon packets is increased. A similar
approach has been recently utilized in Ref. 40 to study the number of photon packets needed
in a stochastic gradient method in QPAT.

In the norm-test, the expected value of the squared relative error of the approximative min-
imization direction is controlled. For the SGN method, it can be expressed as

EQ-TARGET;temp:intralink-;e021;116;135VPi
ðμðiÞa Þ2 ≔ EfkδðμðiÞa Þ − δPi

ðμðiÞa Þk2g
kδðμðiÞa Þk2

≤ γ2; γ > 0; (21)

where δðμðiÞa Þ is the accurate minimization direction, that is a minimization direction that is
computed with such a large number of photon packets that it can be regarded exact within
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measurement precision. Further, VPi
ðμðiÞa Þ2 describes the expected value of the squared relative

error evaluated at point μðiÞa with Pi photon packets and γ is a threshold parameter defining
acceptable relative error in the minimization direction.

In practice, the accurate minimization direction δðμðiÞa Þ is not available. Therefore, on each

iteration, we compute L approximate forward solutions fHðlÞ
Pi
ðμðiÞa Þg and Jacobians fJðlÞPi

ðμðiÞa Þg
using Pi photon packets for l ¼ 1; : : : ; L. An approximation of the accurate forward solution

HðμðiÞa Þ and Jacobian JðμðiÞa Þ can be computed from the means of these samples fHðlÞ
Pi
ðμðiÞa Þg and

fJðlÞPi
ðμðiÞa Þg, which can be used to compute an approximation of the accurate GN direction

δðμðiÞa Þ. Then, the samples fHðlÞ
Pi
ðμðiÞa Þg and fJðlÞPi

ðμðiÞa Þg are utilized to compute the value of

VPi
ðμðiÞa Þ. If the norm test, Eq. (21), fails and the inequality does not hold, the error in the min-

imization direction is considered to be too large and the number of photon packets is increased.
In this work, we use similar method as presented in Ref. 40 where the number of photon packets
is increased by a factor

EQ-TARGET;temp:intralink-;e022;116;548Pi ←
VPi

ðμðiÞa Þ2
γ2

Pi: (22)

The algorithm and implementation of the norm test are presented in Algorithm 1. Choice of the
parameters used in the adaptive SGN algorithm and in the norm test in this work is discussed in
more detail in Sec. 5.

Algorithm 1 Adaptive stochastic Gauss–Newton

Set the initial number of photon packets P1, number of samples in the norm test L, initial value μð1Þa and i ← 1;

Repeat

Compute a set of approximative solutions fHðlÞ
Pi

ðμðiÞa Þg and Jacobians fJ ðlÞ
Pi
ðμðiÞa Þg, l ¼ 1; : : : ; L;

Compute a set of approximate GN directions fδðlÞPi
ðμðiÞa Þg from fHðlÞ

Pi
ðμðiÞa Þg and fJ ðlÞ

Pi
ðμðiÞa Þg;

Compute an approximation of the accurate GN direction δðμðiÞa Þ using means of fH ðlÞ
Pi
ðμðiÞa Þg and fJ ðlÞ

Pi
ðμðiÞa Þg;

Compute VPi
ðμðiÞa Þ2 from Eq. (21);

if VPi
ðμðiÞa Þ2 > γ2 then

if
VPi

ðμðiÞa Þ2
γ2

> L then

Set Pi ←
VPi

ðμðiÞa Þ2
γ2

Pi ;

Compute GN direction δPi
ðμðiÞa Þ using Pi photon packets;

Set ξi ← δPi
ðμðiÞa Þ;

Else

Set Pi ←
VPi

ðμðiÞa Þ2
γ2

Pi ;

Set ξi ← δðμðiÞa Þ;

Else

Set ξi ← δðμðiÞa Þ;

Update estimate μðiþ1Þ
a ¼ μðiÞa þ ξi ;

Set Piþ1 ← Pi ;

Set i ← i þ 1

until a convergence criterion is fulfilled ;
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It should be noted that computing the norm test Eq. (21) necessitates evaluation of a set of
forward model solutions and its Jacobians using multiple photon packets. These can be utilized
in the algorithm when the GN search direction is computed after the norm test. That is, the simulated
photon packets utilized in the norm test will not bewasted. It is worthy to note that in an optimization
algorithm, the step length αðiÞ on each iteration should be determined. Newton’s method is asso-
ciated with a unit step length.45 In this work, we also use a step length αðiÞ ¼ 1 to reduce computa-
tional cost. Basically this means that we trust the GN approximation of the Hessian to be a good
enough approximation to follow the characteristics of the convergence of the Newton’s method. In
practice, this leads to a somewhat slower convergence than with an optimal step length but proves
savings for the photon packet usage of the algorithm, and thus saves overall computation time.

5 Simulation Studies

Image reconstruction problem of QPAT was studied with numerical simulations in two-
dimensional (2D) and three-dimensional (3D) domains. Absorption estimates were computed
with the SGN method utilizing the proposed adaptive approach for adjusting the number of
photon packets. The results were compared to absorption estimates computed using the SGN
method without adjusting the number of photon packets during an iteration. The simulations
were performed in MATLAB (R2019b MathWorks Inc., Natick, Massachusetts, United States).

5.1 Data Simulation

In the 2D simulations, a rectangular simulation domain of size 15 mm × 10 mm was used. The
true absorption and scattering distributions, which were used to generate the data, are given in
Fig. 1. The scattering anisotropy parameter was g ¼ 0.8. To simulate the data, two imaging

Fig. 1 (a) Simulated absorption (first row) and scattering (second row) distributions in the simulation
mesh (first column) and in the reconstruction mesh (second column). (b) Reconstructed reference
(computed using a large number of photon packets) absorption distribution when the domain was
illuminated from all boundaries (left image) and from top and left boundaries (right image).

Hänninen et al.: Adaptive stochastic Gauss–Newton method with optical Monte Carlo for quantitative. . .

Journal of Biomedical Optics 083013-8 August 2022 • Vol. 27(8)



situations with different illuminations were studied. In the first imaging situation, four planar
illuminations, one at each side of the domain, with a uniform intensity covering the whole side
length were used. In the second situation, two planar illuminations, at adjacent sides of the
domain, with a uniform intensity covering the whole side length were used. The two illumination
situations were chosen to simulate the reconstruction problem with different levels of difficulty:
one idealistic situation with as many illuminations as possible and the other with an increased ill-
posedness due to the limited illumination angle. The absorbed optical energy density was simu-
lated using Monte Carlo method as described in Sec. 2 in a piecewise constant triangular dis-
cretization composed of 46,142 elements and 23,360 grid nodes with 109 photons packets per
illumination. The light source was spatially planar and angularly cosine shape, which means that
the initial directions of the photon packets were sampled from a cosine distribution supporting
inward directed photon packets. To avoid making an inverse crime, the simulated data were
interpolated to a different piecewise constant triangulation that was used as the reconstruction
mesh in the inverse problem.

In the 3D simulations, a rectangular domain of size and 15 mm × 10 mm × 5 mm was used.
The true absorption and scattering distributions are shown later in Fig. 12. The scattering
anisotropy parameter was g ¼ 0.8. Six planar illuminations, one at each side of the domain,
were used to simulate the data. The absorbed energy density was simulated using Monte
Carlo method similarly as in the 2D simulations, in a discretization composed of 26,244 tetra-
hedron elements and 5320 nodes and a light source with an angular cosinic shape 109 photon
packets per illumination were used. The simulated absorbed optical energy density data was
interpolated to a reconstruction discretization.

In all simulations, Gaussian radom noise with zero mean and standard deviation correspond-
ing to 1% of the maximum value of noiseless data was added to the simulated data following the
interpolation.

5.2 Inverse Problem

The inverse problem was solved in the reconstruction mesh. The number of elements and nodes
in the different 2D reconstruction discretizations are given in Table 1. In 3D, a mesh composed of
10,920 tetrahedron elements and 2352 nodes was used.

Following the methodology described in Sec. 3, absorption distributions were reconstructed
by minimizing Eq. (9). Two approaches using the SGN method were used: an SGN method
where the number of photon packets on each iteration was chosen using the norm test
(A-SGN method) and an SGN method with a fixed number of photon packets on each iteration
(simple stochastic Gauss–Newton method, S-SGN). To compare the 2D A-SGN and S-SGN
estimates to an accurate estimate, a reference absorption estimate was computed by minimizing
Eq. (9) using the S-SGN method with an (unnecessary) large number of 108 photon packets per
iteration. The algorithm for the reference estimate was run for 10 iterations, which ensured its
convergence.

The SGN approaches were evaluated in 2D using three different studies. In the first study, the
total usage of photon packets by the algorithms, hereinafter referred as a photon budget Pb, were
compared when the algorithms were iterated until converged. In the second study, the perfor-
mance of the algorithms with equal photon budgets were compared. In both studies, discretiza-
tion D2 was used as a reconstruction mesh. In the third study, computation times of the
approaches were studied in different discretizations Di; ði ¼ 1;3; : : : ; 6Þ when the algorithms
were iterated until converged.

Table 1 The number of nodes Nn and elements Ne of the discreti-
zations Di used in the 2D image reconstruction problem.

D1 D2 D3 D4 D5 D6

Nn 260 453 532 1014 1536 2035

Ne 456 832 972 1900 2914 3888
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In the A-SGN algorithm, the initial number of photon packets P1 was chosen to be 10. The
norm test was computed on every iteration to determine the number of photon packets using
L ¼ 10 samples. In the simulations, where computation times were compared, reconstructions
were also computed with the A-SGN approach using only L ¼ 5 samples. Further, a threshold
parameter γ ¼ 0.6 was used. These parameters were chosen based on our observation that they
provided accurate reconstructions in the studied simulations. A detailed implementation of the
A-SGN was shown in Algorithm 1 in Sec. 3. The number of photon packets in the S-SGN algo-
rithm is presented in Sec. 6.

In addition to the 2D simulations, the feasibility of the approach was validated with a 3D
study. The A-SGN and S-SGN methods were used used to reconstruct the absorption distribu-
tions by minimising Eq. (9). In the A-SGN algorithm, the same number of samples (L ¼ 10) and
threshold parameter (γ ¼ 0.6) as in the 2D simulations were used, but the initial number of
photon packets P1 was chosen to be 1000.

In this work, the prior model for absorption was chosen to be based on the Ornstein-
Uhlenbeck process.11,54 The Ornstein–Uhlenbeck prior is a Gaussian distribution with the covari-
ance matrix defined as

EQ-TARGET;temp:intralink-;e023;116;544Γμa ¼ σ2μaΞ; (23)

where σμa is the standard deviation of the prior distribution and Ξ is defined by its elements

EQ-TARGET;temp:intralink-;e024;116;498Ξði; jÞ ¼ expð−kri − rjk∕τÞ; (24)

where i and j denote the row and column indices of the matrix, respectively, ri and rj denote the
element coordinates, and τ is the characteristic length scale parameter. In the reconstructions, the
absorption values of the target were assumed to be within an interval ½minðμsima Þ;maxðμsima Þ�. The
mean of the prior distribution ημa was chosen to be the mean of that interval, and the standard
deviation was chosen such that σμa ¼ 1∕6ðmaxðμsima Þ −minðμsima ÞÞ. In other words, the interval
½minðμsima Þ;maxðμsima Þ� corresponds to 99.7% of the probability mass of the prior distribution.
Characteristic length scale, that controls the spatial smoothness, τ ¼ 2.5 mm was used in all
simulations. In all simulations, the mean of the prior was also used as the initial guess for the

absorption estimates μð1Þa .
The scattering distribution and the anisotropy parameter were assumed to be known in all

simulations, and thus the simulated scattering was interpolated to the reconstruction mesh.
Furthermore, the additive noise was assumed well characterized and the estimates were com-
puted with the noise being modeled as zero mean using the simulated noise level.

Since the image reconstruction methodology studied in this work is a stochastic process, the
reconstructions were repeated 100 times for the first and second 2D study and five times for the
third 2D study to provide statistical information of the approaches. The performance of the algo-
rithms and reconstructed absorption distributions were compared visually and quantitatively.
The relative errors of the estimated parameters were computed as

EQ-TARGET;temp:intralink-;e025;116;242E ¼ 100% ·
kμ̂a − μsima k
kμsima k ; (25)

where μ̂a is the MAP estimate interpolated to the simulation discretization and μsima is the simu-
lated (true) distribution, and the norm is the Euclidean norm. Further, statistics of the repeated
experiments were computed.

6 Results

The 2D reference absorption distributions reconstructed using the SGN method with a very large
number of photon packets are shown in Fig. 1. These can be regarded as the best possible recon-
struction that can be obtained with the current simulation setup.
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6.1 Comparison of the Photon Budgets When the Convergence
Criterion Is Set

In the first study, the photon budget utilized in the A-SGN and S-SGN algorithms was compared.
In the A-SGN algorithm, the number of photon packets was adaptively varied as described in
Sec. 5. In the S-SGN algorithm, the number of photon packets on each iteration was chosen to be
the average number of photon packets in the last A-SGN iteration, which was 6 × 106. This was
done to ensure the convergence of the S-SGN algorithm to same accuracy as the A-SGN algo-
rithm. It is worthy to notice that in practice this accurate information of the optimal number of
photon packets in S-SGN algorithm would not be available. The algorithms were considered
converged when the relative difference between the last and three previous absorption estimates
was smaller than 10% for all of the three previous estimates. We compared the photon budgets
that were required to achieve the convergence criteria.

The reconstructed absorption coefficients obtained with A-SGN and S-SGN methods
are shown in Fig. 2. Both reconstructions look qualitatively identical by visual comparison,
which is expected as both algorithms were terminated with the same convergence criterion.
Furthermore, they are of the same quality as the reference reconstruction shown in Fig. 1.
The reconstructions obtained with four illuminations are slightly better quality than those
obtained with two illuminations due to a less ill-posed imaging situation.

The value of the objective function, relative errors of the estimates and number of photon
packets as a function of iterations obtained with A-SGN and S-SGN methods are presented in
Fig. 3. These results correspond to the simulations shown in Fig. 2. It can been seen that the
S-SGN converges with fewer iterations due to the higher number of photon packets per iteration.
On the other hand, A-SGN approach requires more iterations to achieve the desired convergence,
but the photon budget is significantly smaller. The photon budget used in the A-SGN algorithm
was approximately 8.6 × 106 in the simulation where the domain was illuminated from all
boundaries and 1.2 × 107 when the domain was illuminated from two boundaries. In the S-SGN
algorithm, the photon budget was 3 × 107 in the simulation where the domain was illuminated
from all boundaries and 3.6 × 107 when the domain was illuminated from two boundaries. Thus,
the A-SGN method was able to provide similar reconstructions with a significantly lower photon
budget than S-SGNmethod. It should be noted that even though the initial estimates are identical
in both A-SGN and S-SGN approaches, the values of the objective function on the first iteration
can be different. This is due to the stochastic nature of the forward model, which affects evalu-
ation of the objective function.

Fig. 2 Absorption distribution reconstructed using S-SGN (first column) and A-SGN methods
(second column). First row: the domain was illuminated from all boundaries. Second row: the
domain was illuminated from top and left boundaries.
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The results shown in Figs. 2 and 3 correspond to one (random) choice from the set of 100
A-SGN and S-SGN reconstructions. The statistics of the relative errors of the reconstructions and
photon budgets for the 100 evaluation cases are shown in Fig. 4. As it can be seen, the relative
errors are nearly identical in all reconstructions. On the other hand, the A-SGN method is able to
achieve these estimates with significantly lower photon budgets in all reconstructions when com-
pared to the S-SGN method.

6.2 Comparison of the Reconstruction Accuracy When the Photon
Budget Is Set

In the second study, the total number of photon packets utilized in the reconstruction algorithm
(the photon budgetPb), was fixed and equal for both A-SGN and S-SGNmethods. In the A-SGN
approach, the number of photon packets was determined by the norm test as described in Sec. 5,

Fig. 3 Value of the minimized objective function uðμaÞ (first column), relative errors of the esti-
mates E ð%Þ (second column), and the number of photon packets P (third column) as a function
of iteration evaluated with the S-SGN (blue solid line) and the A-SGN (red dashed line) methods.
First row: the domain was illuminated from all boundaries, second row: the domain was illuminated
from top and left boundaries.

Fig. 4 Statistics of the relative errors of the estimates E ð%Þ when the domain was illuminated
from all boundaries (first column) and from top and left boundaries (second column) and the sta-
tistics of the number of photon packets utilized in the image reconstruction when the domain was
illuminated from all boundaries (third column) and from top and left boundaries (fourth column) for
100 evaluation cases. S-SGN method (blue, left) and A-SGN method (red, right), and the refer-
ence reconstruction (black horizontal dashed line). The blue and red vertical lines (whiskers)
denotes all the samples excluding outliers, box denotes the 25th and 75th percentile, horizontal
line denotes the median, and + symbol denotes outliers.
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and the algorithm stopped when the photon budget was used. In the S-SGN approach, the num-
ber of simulated photon packets was divided equally for 10 iterations, that is for each iteration the
number of photon packets was Pi ¼ Pb∕10. In the end of the A-SGN algorithm, if the number of
photon packets available in the photon budget was less than required to evaluate the norm test or
compute sufficiently accurate direction (as determined by the norm test), the remaining budget
was added to the last iteration of the GN algorithm.

The reconstructed absorption distributions obtained with A-SGN and S-SGN methods with
different photon budgets when the domain was illuminated from all boundaries are shown in
Fig. 5. Further, the reconstructed absorption distributions when the domain was illuminated from
top and left boundaries are shown in Fig. 6. By visual comparison, A-SGN reconstructions are
qualitatively more accurate, and this is especially evident with smaller photon budgets. With
larger photon budgets, difference between the estimates decreases, and with photon budget
of 105, reconstructions resemble each other and the reference estimate shown in Fig. 1. The
reconstructions obtained with four illuminations are generally slightly better than those obtained
with two illuminations.

The value of the minimized objective function, relative errors of the estimates and the number
of photon packets on each iteration corresponding to the reconstruction shown in Fig. 5 where
the domain was illuminated from all boundaries are shown in Fig. 7. Further, the value of the
minimized objective function, relative errors of the estimates and the number of photon packets

Fig. 5 Absorption distributions reconstructed using S-SGN (first row) and A-SGN (second row)
methods. In the columns from left to right: the photon budget was 103 (first column), 104 (second
column), and 105 (third column). The domain was illuminated from all boundaries.

Fig. 6 Absorption distributions reconstructed using S-SGN (first row) and A-SGN (second row)
methods. In the columns from left to right: the photon budget was 103 (first column), 104 (second
column), and 105 (third column). The domain was illuminated from top and left boundaries.
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on each iteration corresponding to the reconstruction shown in Fig. 6 where the domain was
illuminated from top and left boundaries are shown in Fig. 8. As it can be seen in both images,
with 103 photon budget, the S-SGN is unable to minimize the function effectively. With larger
photon budgets, the S-SGN approach minimizes the objective function more effectively and
relative errors are smaller during the first iterations due to the larger number of photon packets
compared to the A-SGN method. However, after few iterations, the S-SGN approach is unable to
achieve more accurate solutions. On the other hand, the A-SGN approach is able to minimize the
objective function at every step due to the increasing number of photon packets during the algo-
rithm, and thus is able to achieve more accurate reconstructions. There are no significant
differences in the performance of the A-SGN and S-SGN algorithms depending on the number
of illuminations.

The statistics of the relative errors of the reconstructions for the 100 evaluation cases are
shown in Fig. 9 for the simulations where the domain was illuminated from all boundaries and
in Fig. 10 for the simulations where the domain was illuminated from top and left boundaries.
Further, the mean and standard deviation of the relative errors of the reconstructions are pre-
sented in Table 2. As it can be seen, with small photon budgets (103 and 104), the A-SGNmethod
is able to provide significantly lower relative errors than the S-SGN method. When the photon
budget increases, the difference between these methods decreases. With photon budgets of 106

and higher, the difference between the A-SGN and S-SGN methods is negligible, as the relative
errors of both A-SGN and S-SGN are very close to the relative error of the reference estimate.
When comparing the number of illuminations, it can be noticed that in general, the relative errors
are smaller and absorption estimates are more accurate, when the domain has been illuminated
from all boundaries when compared to illuminations only from top and bottom boundaries.
Furthermore, the statistical variation of the relative errors with small photon budgets is smaller
with four illuminations than with two illuminations.

Fig. 7 Value of the minimized objective function uðμaÞ (first row), relative errors of the estimates
E ð%Þ (second row), and the number of photon packets P (third row) as a function of iteration
evaluated with the S-SGN (blue solid line) and A-SGN (red dashed line) methods. In the columns
from left to right: the photon budget was 103 (first column), 104 (second column), and 105 (third
column). The domain was illuminated from all boundaries.
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6.3 Comparison of the Computation Times

In the third study, computation times of the approaches were compared when the domain was
illuminated from all sides. To differentiate the main factors contributing to the computation time,
three different times were studied: (1) “Monte Carlo time,” which is the time required to simulate
photon packets both for forward problem and construction of the Jacobians during the algorithm,

Fig. 8 Value of the minimized objective function uðμaÞ (first row), relative errors of the estimates
E ð%Þ (second row), and the number of photon packets P (third row) as a function of iteration
evaluated with the S-SGN (blue solid line) and A-SGN (red dashed line) methods. In the columns
from left to right: the photon budget was 103 (first column), 104 (second column), and 105 (third
column). The domain was illuminated from top and left boundaries.

Fig. 9 Statistics of the relative errors of the estimates with different photon budgets Pb (images
from left to right) when the domain was illuminated from all boundaries. For each photon budget:
S-SGN method (blue, left), A-SGN method (red, right), and the reference reconstruction (black,
horizontal dashed line). Blue and red vertical lines (whiskers) denote all the samples excluding
outliers, box denotes the 25th and 75th percentile, horizontal line denotes the median, and
+ symbol denotes outliers.
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(2) “Gauss-Newton time,” which is computation time required to solve GN directions (S-SGN
and A-SGN) and the norm test for updating the estimates (A-SGN), and (3) “total computation
time,” which is the sum of Monte Carlo time and Gauss–Newton time.

The A-SGN reconstructions were computed with two different samples L ¼ 5 and L ¼ 10

used in the norm test. The S-SGN reconstructions were computed with four different number of
photon packets per iteration: 105, 106, 107, and 108. The algorithms were considered converged
when the relative difference between the last and three previous absorption estimates was smaller
than 10% for all of the three previous estimates, similarly as in the first study.

The mean of the total number of photon packets, relative reconstruction errors and compu-
tation times in different reconstruction discretizations are shown in Fig. 11. As it can be seen, in
all approaches the relative errors of the reconstructions are almost identical, except in the S-SGN
approach with the lowest number of photon packets. That is, 105 photon packets per iteration
can be interpreted to be insufficient to achieve similar accuracy as the other approaches. When
comparing the computation times, it can be seen that in both A-SGN and S-SGN approaches,
computation times increase with an increasing number of discretization elements. Also, in both
approaches, computation times increase with an increasing number of photon packets. In the
A-SGN, the time required to evaluate multiple GN minimization directions is a significant part
of the total computation time, and it is more time consuming with an increasing number of
unknowns and data. In the S-SGN, the GN minimization direction is evaluated only once in
each iteration. However, in the S-SGN, the amount of photons is fixed, and with an increasing

Fig. 10 Statistics of the relative errors of the estimates with different photon budgets Pb (images
from left to right) when the domain was illuminated from top and left boundaries. For each photon
budget: S-SGN method (blue, left), A-SGN method (red, right), and the reference reconstruction
(black, horizontal dashed line). Blue and red vertical lines (whiskers) denote all the samples
excluding outliers, box denotes the 25th and 75th percentile, horizontal line denotes the median,
and + symbol denotes outliers.

Table 2 Mean of the relative error E ð%Þ of the reconstructions and its standard deviation with
S-SGN and A-SGN approaches, with four and two illuminations and different photon budgets Pb .

Four illuminations Two illuminations

S-SGN A-SGN S-SGN A-SGN

Pb ¼ 103 54.3� 10.0 25.9� 4.6 57.5� 12.3 29.7� 6.1

Pb ¼ 104 17.9� 2.9 8.5� 1.1 21.2� 4.1 9.8� 1.7

Pb ¼ 105 7.7� 0.7 6.0� 0.3 8.7� 1.0 6.5� 0.3

Pb ¼ 106 6.0� 0.3 5.8� 0.1 6.5� 0.3 6.2� 0.1

Pb ¼ 107 5.78� 0.09 5.76� 0.03 6.25� 0.09 6.21� 0.03
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number of discretization elements, the computation times increase significantly. This is espe-
cially evident if a large number of photon packets are simulated.

6.4 Three-Dimensional Simulation

Then, the A-SGN and S-SGN approached were evaluated with a 3D study. In the S-SGN
approach, the number of photon packets was fixed to be 108 per iteration. The algorithms were
considered converged when the relative difference between the last and three previous absorption
estimates was smaller than 10% for all of the three previous estimates.

The simulated (true) absorption and scattering distributions and the reconstructed absorption
distributions obtained with the S-SGN and A-SGN method are shown in Fig. 12. Both S-SGN
and A-SGN reconstructions look qualitatively identical by visual inspection. Further, the relative
reconstruction error in both approaches was 10%. The total number of photon packets utilized in
the S-SGN approach was 5 × 108 and in the A-SGN approach 1.1 × 107.

Fig. 11 (a) Mean photon budget Pb and (b) relative reconstruction errors E ð%Þ with different
number of discretization elements Ne. (c) Mean Monte Carlo time TMC, (d) Gauss-Newton time
TGN, and (e) total computation time TMCþGN with different number of discretization elements. The
S-SGN approach with a fixed number of photon packets per iteration of 108 (□), 107 (✳), 106 (▵),
and 105 (○), and the A-SGN approach with 10 samples (×) and 5 samples (+).

Fig. 12 (a) Simulated absorption and (b) scattering distributions. Absorption distribution recon-
structed using (c) S-SGN approach and (d) A-SGN approach.
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7 Discussion and Conclusions

In this work, an A-SGN method was proposed for the solution of the image reconstruction prob-
lem of quantitative photoacoustic tomography. In the approach, the QPAT image reconstruction
problem was formulated as a minimization problem. This problem was solved with a SGN
method with a Monte Carlo light transport method as the forward model for light propagation.
An approach for adaptively determining the number of photon packets on each iteration was
proposed. The approach was based on a norm test where the expected squared relative error
of minimization direction was controlled. Similar stochastic optimization problems can be found
in a high-dimensional machine learning setting, where the size of the training data set is often so
large, that computing for example gradient of the cost function for the full training data set is
computationally infeasible.55

The presented approach was studied with numerical simulations. Compared to a S-SGN
method, where the number of photon packets was fixed, the adaptive method provided recon-
structions with similar relative errors with significantly lower photon budgets. It was also shown
that the adaptive approach can provide similar quality reconstructions as a reference approach
with a very large number of photon packets. When comparing computation times in different
discretizations, it was seen that the adaptive approach required less time to simulate the forward
solution and to construct the Jacobians than the conventional approach. On the other hand, it
required multiple evaluations of the GN search direction on each iteration and in that regard,
it was slower than the conventional approach. Still, the adaptive approach provided significant
savings in computation times compared to a simple SGN approach with a large number of photon
packets. It should also be remembered that knowing an optimal fixed number of photon packets
for an algorithm may be difficult beforehand. In the adaptive approach, the number of photon
packets is adjusted automatically, and a convergence to desired criterion can be achieved.

The adaptive approach necessitates choosing multiple parameters that affect the effectiveness
of the approach: accepted error in the minimization direction, how often the norm test is evalu-
ated, and the number of samples utilized in the norm test. Overall, many factors such as the
geometry of the imaged domain, discretization, and optical parameters affect on the minimiza-
tion problem. In this work, the parameters of the adaptive algorithm were chosen by repeated
simulations with different parameter values. However, more research is required for determining
them in different imaging scenarios and further utilization of the methodology.

In this work, the scattering coefficient was assumed to be known. In practice, this is not nec-
essarily a realistic assumption. The approach presented in this work could be applied to estimation
of both absorption and scattering coefficients where the evaluation of the Jacobians requires uti-
lization of an approximation such as the perturbation Monte Carlo method.39 Implementation and
effect of this approximation on stochasticMonte Carlo implementations remain as a future research
direction. Furthermore, the discretizations utilized in this work were relatively coarse. In addition,
only the optical part of the QPAT problem was studied, without considering the acoustic recon-
struction and its possible effects on the data. Accuracy and computational efficacy of Monte Carlo-
based inversion methods in more realistic simulations require thus further work.

In conclusion, utilizing the SGN method with a Monte Carlo light transport model in QPAT
can provide accurate reconstructions. Furthermore, adaptively determining the number of photon
packets during iterations can be utilized to minimize the simulation of unnecessary photon pack-
ets in the image reconstruction, thus reducing the computational cost of the inverse Monte Carlo
method.
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