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Personal identification using a cross-sectional
hyperspectral image of a hand
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ABSTRACT. Significance: I explore hyperspectral imaging, a rapid and noninvasive technique
with significant potential in biometrics and medical diagnosis. Personal identification
was performed using cross-sectional hyperspectral images of palms, offering a sim-
pler and more robust method than conventional vascular pattern identification
methods.

Aim: I aim to demonstrate the potential of local cross-sectional hyperspectral palm
images to identify individuals with high accuracy.

Approach: Hyperspectral imaging of palms, artificial intelligence (AI)-based region
of interest (ROI) detection, feature vector extraction, and dimensionality reduction
were utilized to validate personal identification accuracy using the area under the
curve (AUC) and equal error rate (EER).

Results: The feature vectors extracted by the proposed method demonstrated
higher intra-cluster similarity when the clustering data were reduced through uniform
manifold approximation and projection compared with principal component analysis
and t -distributed stochastic neighbor embedding. A maximum AUC of 0.98 and an
EER of 0.04% were observed.

Conclusions: I proposed a biometric method using cross-sectional hyperspectral
imaging of human palms. The procedure includes AI-based ROI detection, feature
extraction, dimension reduction, and intra- and inter-subject matching using
Euclidean distances as a discriminant function. The proposed method has the
potential to identify individuals with high accuracy.
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1 Introduction
Biometrics is an authentication method that utilizes physical characteristics unique to each indi-
vidual to verify identity.1 Traditional biometrics, such as fingerprint,2 face,3 and palmprint,4 are
commonly employed for personal authentication or identification purposes. However, many of
these features are externally visible, rendering them less secure and more susceptible to counter-
feiting. In contrast, internal biometrics provide increased security as they are not readily exposed
and are difficult to replicate. Features such as vein patterns, inherent in the human body, offer
enhanced security compared with external features as they cannot be captured from a distance.5–7
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In recent times, the importance of identity verification has surged, particularly in areas such
as offline payment processing and event access control. Biometric authentication has gained
traction as a password-free solution due to the challenges associated with managing IDs and
passwords. These methods are particularly resilient against identity theft due to their reliance
on unique biological traits. Palm vein authentication, in particular, is renowned for its high accu-
racy and resistance to fraud as it relies on internal bodily information.6,8,9 This is attributed to the
lower melanin deposits and fewer melanocytes in the skin tissues of the palm compared with
other parts of the body, making it suitable for optical imaging.

Optical imaging techniques for biometrics have utilized optical coherence tomography
(OCT)10,11 and photoacoustic tomography (PAT)12,13 for finger measurements. These modalities
offer the capability to extend tissue measurements from 2D to 3D. OCT provides cross-sectional
images of the fingertip, revealing features such as sweat gland distribution and papillary junc-
tions in the epidermis layer. On the other hand, PAT utilizes 3D vein structures for biometric
identification. Both approaches have demonstrated high authentication accuracy, suggesting that
leveraging subcutaneous information for personal identification could enhance robustness
against spoofing.

Hyperspectral imaging, a type of optical imaging, captures a sequence of images from the
same scene across a broad spectrum of contiguous wavelengths.14 A hyperspectral image can be
visualized as a hypercube structured in three dimensions, where the initial two dimensions re-
present the spatial geometry of the image ðx; yÞ and the third dimension corresponds to the spec-
tral wavelength (λ).15 Different light wavelengths penetrate various skin layers and illuminate
different spectra.16,17 Therefore, the visible spectrum and near-infrared spectrum could enhance
different layers of the palm and contain the most useful features for palmprint verification.
Particularly, high spectral resolution reveals distinct vein patterns.18 Spectral information from
hyperspectral imaging enables the detection of subcutaneous tissue structures,19 which vary sig-
nificantly from person to person. In addition to biometrics by OCT and PAT, utilizing depth
information from spectral data obtained through hyperspectral imaging can also be a potent tool
for personal identification.

Hyperspectral imaging offers a wealth of information, yet processing it is complicated by the
high dimensionality of the data space. In image processing, the size of an image significantly
impacts the computational costs of various algorithms and operations. Larger images necessitate
more memory, processing power, and time for tasks such as feature extraction, filtering, and
recognition. In addition, reducing the required palm area decreases device cost and size.20

On the other hand, a cross-sectional image of a hyperspectral data cube comprises a continuous
sequence of spectra,14 depicting texture patterns that may vary among individuals. By generating
a cross-sectional image of a part of the palm, image size can be reduced while preserving all
wavelength information along the cut line. Therefore, personal identification using a cross-
sectional hyperspectral image is expected to reduce computational costs.

In generating a cross-sectional image of a hyperspectral image, region of interest (ROI)
extraction is a crucial step as it directly impacts subsequent feature extraction and matching.
Researchers are continuously exploring innovative methods to improve the accuracy and effi-
ciency of hand-palm image registration for ROI extraction.8 Recent advancements in deep learn-
ing and computer vision have propelled the development of hand-pose recognition. Thus, an
artificial intelligence (AI)-based ROI detection technique was employed to determine the cutting
plane of a hyperspectral cube, automating, and simplifying the ROI setting process.

A hyperspectral imaging-based personal identification system proves to be a valuable tool,
particularly in clinical settings where biometric identification can significantly reduce errors
stemming from patient misidentification.21 Furthermore, hyperspectral imaging exhibits consid-
erable potential in clinical applications, particularly in disease diagnosis and image-guided
surgery.22 Therefore, integrating hyperspectral authentication with clinical hyperspectral devices
is expected to enhance their usability.

In this study, personal identification was assessed using the proposed method on a self-built
database. The aim of this study is to illustrate that a local cross-sectional hyperspectral palm
image, retaining rich spectral information within a section, can accurately identify individuals.
In addition, the efficacy and precision of region extraction using AI-based ROI settings were
validated.
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2 Methods

2.1 Experiment Setup

2.1.1 Hyperspectral imaging system

The experimental setup comprised a hyperspectral camera, a palm scanner, a broadband illumi-
nation light source, and a personal computer (Fig. 1). The hyperspectral imaging for the hand was
established using a hyperspectral camera (NH-A-S, EBA, Japan, Japan), equipped with a single
focus lens (f ¼ 12 mm, M118FM12, Tamron, Japan), providing a spectral resolution of 5 nm
across the total range of 400 to 1000 nm [Fig. 1(a)]. The scanner featured a 240 × 240-mm scan-
ning area, positioned 900 mm above the floor and tilted at an angle of ∼30 deg to the horizontal
ground, with a 5-mm-thick high-transparency glass plate (OOKABE GLASS, Japan) inserted to
transmit visible to near-infrared light [Fig. 1(a)]. Subjects were placed one palm on the glass plate
to acquire hyperspectral images while maintaining the distance between the lens and the objects
being photographed [Fig. 1(b)]. Palm placement on the scanner for measurements was unre-
stricted, except when the fingers were pointed forward. Hyperspectral images of the palm were
captured through the glass using a low-angle shot from the hyperspectral camera. Positioned
∼500 mm behind the scanner, the hyperspectral camera’s lens tip was set ∼450 mm above the
floor and tilted at an angle of ∼40 deg to the horizontal ground. A 500-W halogen lamp (CTW-
1550, SANKYO CORPORATION, Japan), placed beneath the scanning section, illuminated the
subject’s palm from the reverse side of the glass [Fig. 1(a)]. The lamp’s radiation raised the
surface temperature of the glass by ∼3°C in 30 s. Camera control and data acquisition were
managed using the manufacturer-provided software (NH Capture, EBA Japan, Japan). Spectral
reflection was captured using a hyperspectral camera, and the hyperspectral cube data
(640 × 480 px and 121 bands) were stored on the personal computer’s hard disk. The scan rate
was set at 20 lines∕s, and the camera exposure time was set at 0.05 s (50 ms). The total scan time
was ∼24 s. The lateral resolution (sensor direction) was 0.36 mm∕px, whereas the axial reso-
lution (scan direction) was 0.42 mm∕px.

2.1.2 Image processing

The original hyperspectral image was calibrated for white and dark balance using the following
equation:23

EQ-TARGET;temp:intralink-;e001;117;177Iref ¼
Iraw − Idark
Iwhite − Idar

: (1)

In the provided equation, Iref represents the relative reflectance of the hyperspectral image,
scaled from no reflectance at a value of 0 to 100% reflectance at a value of 1. Iraw denotes the
original image data, whereas Iwhite and Idark stand for the white reflectance image data and the
dark-current dark image data, respectively. The white reference image was obtained under the
same conditions as the raw images using a white surface board (ColorChecker White Balance, X-
Rite, Grand Rapids, Michigan, United States). The dark reference image was acquired by turning

Fig. 1 Experimental setup of hyperspectral imaging for acquiring palm data. (a) Hyperspectral
imaging system consists of a hyperspectral camera, light source, and scanning section.
(b) Example of palm scanning.
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off the light source and fully covering the camera lens with its black cap. This calibration process
was executed using ImageJ.24 The calibrated hyperspectral image was saved in a 32-bit tiff
format.

2.1.3 Region of interest detection for image registration

To ensure consistency in the region extracted from the palm for each measurement, landmarks
were detected on a palm image using MediaPipe Hands (version 0.10.1), an open-source image
processing machine learning library developed by Google Inc.25–27 The development environ-
ment consisted of a Jupyter notebook (version 6.5.4) with the Python programming language
(version 3.11.5). To enhance the precision of recognition by MediaPipe Hands, a pseudo-RGB
image was generated from the hyperspectral image, following a previous study.28 RGB images
were produced using in-house LabVIEW software (LabVIEW 2020, National Instruments,
Austin, Texas, United States). Subsequently, Google’s pre-trained MediaPipe Hand landmarks
model was applied to the RGB hand palm image, automatically generating 20 landmarks on the
image (Fig. 2). These landmarks were used to draw a straight line as an ROI through landmark
#0, and the midpoint between landmarks #9 and #13 was determined using ImageJ (version
1.53t). The average length of the line ROI placed on the image was 76.19 mm. Further details
regarding all measurement values for each subject are listed in Table S1 in the Supplementary
Material. Prior to tracing the ROI onto a hyperspectral image, a Gaussian filter (σ ¼ 2) was
applied to both the spatial and spectral directions for image noise reduction using ImageJ.
During the preliminary test, it was observed that larger σ values could lead to numerical overflow
issues, resulting in pixel values reaching infinity. To avoid this problem and ensure stable and
accurate filtering, it was determined that σ ¼ 2 provided an optimal balance. This value could
effectively reduce noise while maintaining the integrity of important image features without caus-
ing numerical overflow.

2.1.4 Feature extraction

Figure 3 depicts a schematic of the imaging procedure employed for feature extraction.
Following the ROI detection, the hyperspectral image was resliced along the straight line
ROI using the “Reslice” function of ImageJ, resulting in a 2D spatial-spectral image. The flow-
chart in Fig. 3 outlines the feature extraction process. Subsequently, the resliced image was
resized to 100 × 100 px via bilinear interpolation using a resize plug-in for ImageJ software
to standardize the image size. This resized image was subsequently converted to 8-bit grayscale
and saved in JPEG format.

Fig. 2 Hand landmarks model of MediaPipe. Blue arrow indicates a line ROI. Horizontal and ver-
tical scale bars indicate 20 mm.
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The local binary pattern (LBP)29 was utilized to extract features from the resized 2D spatial-
spectral images. The resized image was divided into 25 non-overlapping square sub-regions of
the same size (20 × 20). Features were extracted from each sub-region, and histograms were
constructed for each region. These histograms were concatenated into a long vector, serving
as the feature vector for the hand hyperspectral image. Image processing was conducted using
the IMAQ Extract LBP Feature Vector VI30 of LabVIEW. Each histogram comprised nine bins,
resulting in a feature vector with dimensions of 225 (5 × 5 × 9).

2.1.5 Clustering

The feature values extracted from the biometrics underwent analysis using K-means with prin-
cipal component analysis (PCA),31 t-distributed stochastic neighbor embedding (t-SNE),32 and
uniform manifold approximation and projection (UMAP),33 implemented using the Python pack-
age. Using Python’s scikit-learn Version 1.3, these three dimensionality reduction algorithms
were executed with n_components = 2 and random_state = 0. For PCA, the explained variance
ratio was [0.4215, 0,10992], which accounted for only 53.1% of the variance. Although setting
n_components = 8 exceeded 80% variance, the explained variance rations for PC3 to PC8 were
significantly lower. Therefore, selecting PC1 and PC2 appeared reasonable. Even with n_com-
ponents = 8, no combination of components except for PC1 and PC2 improved clustering accu-
racy. t-SNE and UMAP were executed with the n_components = 2 and random_state = 0, which
was consistent with that of the PCA. This ensured dimensionality reduction consistency, facili-
tated comparison, simplified visualization, and guaranteed reproducibility. In addition, the PCA
results with n_components = 2 aligned with the k-means (k ¼ 10) clustering results. Similarly,
the results from t-SNE and UMAP also matched the k-means results. Therefore, in this study,
setting n_components = 2 was adopted for each clustering process. These dimensionality reduc-
tion techniques transform the feature vector from a high-dimensional space to a low-dimensional
space (from 225 to two dimensions in this study), retaining some meaningful properties of the
original data.

The similarity among different biometric feature vectors after dimension reduction was evalu-
ated using Euclidean distance. A small Euclidean distance is expected between intra-subjects,
whereas the distance between inter-subjects is larger. In addition, the statistical significance of the
difference between the mean Euclidean distances of the two populations (intra-subject and inter-
subject) was assessed by an unpairedWelch’s t-test usingKaleidagraph 5.0 (HULINKS Inc., Japan).

To define the reference threshold value, the false acceptance rate (FAR) and false rejection
rate (FRR) were calculated. FAR is defined as the number of incorrectly accepted individuals
divided by the total number of incorrect matches, whereas FRR is defined as the number of

Fig. 3 Visualization of feature vector extraction.
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incorrectly rejected individuals divided by the total number of correct matches. There were a total
of 900 intra-class and 9000 inter-class matches. FAR and FRR were calculated at each threshold
of the Euclidean distance, increasing in steps. This calculation was performed using an in-house
LabVIEW code (LabVIEW 2020, National Instruments, Austin, Texas, United States). In addi-
tion, recognition performance was assessed using the equal error rate (EER), which is the point
where FAR and FRR are equal.

The clustering performance for user identification was evaluated using receiver operating
characteristics (ROC) curves, plotting the true acceptance rate (TAR), defined as 1 − FRR, as a
function of FAR. To quantitatively assess the performance based on ROC curves, the area under
the curve (AUC) was computed using scikit-learn, an open-source Python library.

2.1.6 Image processing times

The image processing times after hyperspectral image acquisition from filtering to clustering
were evaluated. A laptop computer consisting of an Intel® Core™ i7-1068NG7 central process-
ing unit (CPU) and 32 GB of random access memory was used for image processing. Image
processing in this study was not fully automated; however, different software packages such
as Jupyter Notebook (for annotation and clustering), LabVIEW (for creating RGB images and
feature extraction), and ImageJ (for denoising and transforming images) were used for various
steps. The execution time for each cell was measured using the “%%time” magic command in
Jupyter Notebook. The total processing time was calculated by summing the wall times as the
execution times of all cells. The processing time in LabVIEW was measured by combining the
tick count function with a sequence structure. The execution time was determined by calculating
the difference between initial and final tick counts. The processing time in ImageJ was recorded
as the time displayed on the user interface.

2.2 Subjects
In this study, 10 healthy adults (seven males and three females) participated. The age range of the
participants was from 24 to 47 years old. Each subject had their palm scanned 10 times using the
imaging system. One subject was measured five times on two separate days, whereas another
subject was measured five times at different times on the same day. The other subjects were
measured 10 times continuously with a short break between each measurement. To protect their
eyes from the illumination light, the subjects wore safety glasses (LG2, Thorlabs, Newton, New
Jersey, United States).

2.3 Ethic Statement
This project was approved by the Ethics Committee of the Center for Health Science Innovation
at Osaka City University (approval No. 42, June 30, 2021). All subjects signed an informed
consent form before enrollment in the study.

2.4 Additional Experiments
Additional experiments were conducted to examine the effects of hand placement and light
source position and intensity on imaging and personal identification results. These experiments
are detailed in Sec. S3 in the Supplementary Material and include Figs. S4 and S7 in the
Supplementary Material related to the methodology, which can be referred to for further
information.

3 Results
The representative results of the hyperspectral hand images averaged over a certain wavelength
band are shown in Fig. 4. All spectral images from the same subject are presented in Fig. S1 in the
Supplementary Material. In a low waveband, a patchy pattern was observed [Fig. 4(a)]. As the
waveband lengthened, the patchy pattern disappeared, and vein-like patterns were observed
[Figs. 4(b)–4(d)].

Figure 5 shows an example of a cross-sectional hyperspectral image along a line of interest.
The cross-sectional image consisted of a series of spectra, ranging from 400 to 1000 nm in 5-nm
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Fig. 4 Averaged image of 20 spectral images every 5 nm. (a) Averaged from 500 to 600 nm.
(b) Averaged from 600 to 700 nm. (c) Averaged from 700 to 800 nm. (d) Averaged from 800
to 900 nm. The arrows indicate vein-like patterns. Each color represents a different pattern, and
the same color indicates that the vein-like patterns are continuous. Horizontal and vertical scale
bars in the top-left image indicate 20 mm. These data are from subject 1.

Fig. 5 Correspondence between a palm and a cross-sectional image. (a) A pseudo-color image
reconstructed from a hyperspectral image. The yellow line indicates a line ROI. (b) Cross-sectional
image. Blue dot arrows indicate the same point between panels (a) and (b). The black arrow indi-
cates the wavelength (λ) direction. Horizontal and vertical scale bars in the left image indicate
20 mm.
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increments. The sequence of the spectra depicted a textured pattern. In addition, shadow lines
perpendicular to the cutting line were observed in the images. These shadow lines corresponded
to the palm surface morphology, such as the lines of interphalangeal joints, palm lines, palm-
prints, and hand wrinkles [Fig. 5(a)].

The processed cross-sectional images of one subject (Fig. 6) and different subjects (Fig. 7)
are shown. Overall, the cross-sectional hyperspectral image exhibits a layered structure caused by
the luminance gradient. The brightness was darker in the short-wavelength range and brighter in
the middle-to-long wavelength range, with distinct brightness distributions observed in each
layer. In addition, the cross-sectional images contained vertical shadow lines. Images from the
same subject showed a similar pattern, whereas images from different subjects tended to display
different patterns. The feature vectors extracted by the LBP histogram from the data in Figs. 6
and 7 are shown in Figs. S2 and S3 in the Supplementary Material, respectively. Similar trends
are observed for the feature vectors of a single subject, whereas the histogram patterns from
different subjects did not show similarities.

Figure 8 shows the performance of K-means with PCA (a), t-SNE (b), and UMAP (c) clus-
tering of the feature vectors extracted from the cross-sectional image using LBP. For each case,
the data were reduced to two dimensions, and the plots were colored based on the ground truth of
the self-built data. The results visually illustrate that the data clusters are well separated. Notably,

Fig. 6 Image-processed cross-sectional hyperspectral images of subject 1. A black dashed ver-
tical arrow from the top to bottom indicates the wavelength (λ) direction. The blue horizontal arrow
from left to right corresponds to a line ROI in Fig. 2. (a) First measurement result. (b) Second
measurement result. (c) Third measurement result. (d) Fourth measurement result. (e) Fifth meas-
urement result. (f) Sixth measurement result. (g) Seventh measurement result. (h) Eight measure-
ment results. (i) Ninth measurement result. (j) Tenth measurement result. Each image size is
100 × 100 px.

Fig. 7 Image-processed cross-sectional hyperspectral images of hands from different subjects.
The black dashed vertical arrow from top to bottom indicates the wavelength (λ) direction. The
blue vertical arrow from left to right corresponds to a line ROI in Fig. 2. (a) Representative result
of subject 2. (b) Representative result of subject 3. (c) Representative result of subject 4.
(d) Representative result of subject 5. (e) Representative result of subject 6. (f) Representative
result of subject 7. (g) Representative result of subject 8. (h) Representative result of subject
9. (i) Representative result of subject 10. Each image size is 100 × 100 px.
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UMAP shows the best clustering, t-SNE presents better clustering than PCA, and PCA also
shows good clusters.

To determine the clustering performance of the biometrics with hyperspectral imaging, the
distributions of the Euclidean distance-based discriminant function were computed. The
Euclidean distances of inter- and intra-subject matching were analyzed (Fig. 9). In all cases,
the distribution curves with a Gaussian fit exhibited an obvious bimodal shape. It can also
be observed that inter-subject distances are described by a wide distribution as opposed to
intra-subject distances, which are captured by a remarkably peaked distribution. Furthermore,
the inter-subject distances were significantly larger than the intra-subject distances in all cases
(P < 0.0001) (Fig. 10).

Table 1 summarizes the mean, standard deviation, maximum, and minimum values derived
from Figs. 9 and 10.

To assess authentication accuracy, FAR and FRR were used. Figure 11 illustrates the
changes in FAR and FRR under different Euclidean distances of each dimensionally reduced
space using PCA, t-SNE, and UMAP. The abscissas of these graphs represent the threshold for
a normalized Euclidean distance within each dimensionally reduced space, ranging from 0 to 1. If
the normalized Euclidean distance between the two data points in the space is closer to 0, this
indicates a higher possibility of being the same subject. Conversely, a distance closer to 1 indi-
cates a higher possibility of being a different subject. By setting a threshold within range, dis-
tances below the threshold were considered the same subject, whereas distances above the
threshold were considered different subjects. Therefore, the increase in threshold value leads
to a decrease in FRR, albeit an increase in FAR. Similarly, a decrease in threshold value leads
to a decrease in FAR, albeit an increase in FRR. The threshold value can be found at the

Fig. 8 Comparison of different dimensional reduction algorithms on the self-built database. Each
color indicates data from the same subject. (a) Feature size is reduced to dimension 2 by PCA.
PCA plot shows two principal components (PC1 and PC2). (b) Feature size is reduced to dimen-
sion 2 by t -SNE. t -SNE plot illustrates 2D embedding (t -SNE1 and t -SNE2) of the dataset.
(c) Feature size is reduced to dimension 2 by UMAP. UMAP plot depicts the 2D embedding
(UMAP1 and UMAP2) of the dataset.

Fig. 9 Probability distribution histogram. (a) Feature size reduced to dimension 2 by PCA.
(b) Feature size reduced to dimension 2 by t -SNE. (c) Feature size reduced to dimension 2
by UMAP. Blue fill represents the intra-subject distribution, whereas light pink fill represents the
inter-subject distribution.

Suzuki: Personal identification using a cross-sectional hyperspectral image of a hand

Journal of Biomedical Optics 023514-9 February 2025 • Vol. 30(2)



intersection of the FAR and FRR plots. The value at this intersection point represents the EER.
The smallest threshold was observed for UMAP, followed by t-SNE and PCA.

As shown in Fig. 12, the ROC curve was calculated. The AUC was used as the optimization
objective because it provides a good representation of ROC performance. The verification results
for the EER and AUC are reported in Table 2. It can be observed from Table 2 that UMAP
demonstrated better performance than the other methods. Therefore, additional experiments
investigating the effects of palm and light source positions and light source intensity were clus-
tered using only UMAP. These results are shown in Figs. S6, S9, and S11 in Sec. S3 of the

Table 1 Summary of mean, standard deviation, maximum, and minimum values derived from
probability distribution and mean comparison.

PCA t-SNE UMAP

Intra-subject Inter-subject Intra-subject Inter-subject Intra-subject Inter-subject

Mean 0.77 1.52 0.94 7.62 0.41 10.91

Standard deviation 0.22 0.42 0.52 3.98 0.22 7.72

Maximum 1.39 2.59 2.68 18.88 1.30 23.25

Minimum 0.36 0.71 0.09 0.92 0.02 0.42

Fig. 10 Significant differences of intra- and inter-subject matching. (a) Feature size reduced to
dimension 2 by PCA. (b) Feature size reduced to dimension 2 by t -SNE. (c) Feature size reduced
to dimension 2 by UMAP. Values are means ± standard deviations. ***P < 0.0001. The blue bar
represents intra-subject data, whereas the light pink bar represents inter-subject data.

Fig. 11 Changes of false acceptance rate (FAR, bright pink line) and false rejection rate (FRR,
light blue line) under different thresholds. (a) Feature size reduced to dimension 2 by PCA.
(b) Feature size reduced to dimension 2 by t -SNE. (c) Feature size reduced to dimension 2
by UMAP.
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Supplementary Material. In addition, the variabilities in clustering using UMAP in the additional
experiments are shown in Table S2 in Sec. S4 of the Supplementary Material.

The hyperspectral imaging process required 24 s; however, using two light sources reduced
this to 8 s (see the Supplementary Material for details). For image processing, the 3D Gaussian
filter noise reduction required 223.8 ms, conversion of the hyperspectral image to an RGB image
required 4935.8 ms, MediaPipe Hands annotation required 29.9 ms, ROI setup and cross-
sectional image extraction required 81.2 ms, and LBP feature vector extraction required
0.6 ms. Finally, the total image processing time was 5271.3 ms (∼5.3 s).

4 Discussion
In this study, an effective biometric technique using cross-sectional hyperspectral imaging of the
palm was proposed. The cross-sectional hyperspectral image represented a pattern inherent to
each person. The developed system uses MediaPipe Hands, a machine learning library, to auto-
matically set the ROI without complex image registration. Despite the ROI being smaller com-
pared with the entire palm, the optimal performance achieved an area of 0.98 under the ROC
curve, with an EER of 0.04% at its highest performance. This technique will be incredibly ben-
eficial because it has demonstrated high accuracy in personal authentication, leading to the devel-
opment of a more secure bio-hyperspectral imaging system.

Personal verification and identification using palm images have drawn considerable
attention.34 The palm vein pattern, a dense network of veins spanning the entire palm, is also
used for authentication. However, a large palm scanning area increases data acquisition and
analysis time. Nayar and Tomas20 proposed using a partial palm vein pattern for authentication,
which has sufficient identification performance. They also stated that this technique will help
reduce the size of the device. In this study, the palm scan area was reduced to a single line
of the hyperspectral image. Although spatial information on the palm vein distribution was lost,

Fig. 12 Receiver operating characteristic (ROC) curves of three different dimension reduction
algorithms.

Table 2 Verification performance by different methods.

Algorithm EER (%) AUC (%)

PCA 0.11 88.61

t -SNE 0.11 96.79

UMAP 0.04 98.02
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the cross-sectional hyperspectral image of the palm was extremely informative in the wavelength
direction. The hyperspectral images of the palm provided different features at each
wavelength.17,35 These features were generated by the distribution of absorption in the skin and
the different tissue penetration depths of light wavelengths.16 Patchy patterns were observed in
the short waveband [Fig. 4(a)], as reported by Sato et al.18 The cross-sectional hyperspectral
image displayed a gradient pattern with variations layering from the short- to long-wavelength
direction. The gradient pattern in the wavelength direction corresponded to the luminance change
in the hyperspectral image (Fig. S1 in the Supplementary Material) across all spectral bands. The
low-brightness layer, corresponding to ∼400 to 600 nm, represented the patchy pattern of the
spectral image appearing as darker areas (Figs. 6 and 7). Moreover, vein-like patterns were iden-
tified in some locations in the longer waveband. The high-brightness layer over 600 nm depicted
another pattern as the vessel-like pattern of the spectral image also appeared as darker areas
(Figs. 6 and 7). The lower brightness at shorter wavelengths in hyperspectral imaging can
be attributed to two primary factors. First, the sensor sensitivity is lower at the spectral edges.
Second, shorter wavelengths can be absorbed by the numerous capillaries near the skin surface.
In contrast, the higher brightness at mid to long wavelengths is caused by deeper penetration,
where fewer and larger blood vessels can be present compared with capillaries. Building on the
second reason, in the hyperspectral image, patchy patterns were observed at shorter wavelengths,
which disappeared as the wavelength increased, revealing vein-like patterns. The distribution of
capillaries and veins in the skin differs from person to person. Personal identification using vas-
cular patterns typically uses a 2D distribution; however, blood vessels are distributed in a 3D
manner. Hyperspectral imaging uses different wavelength lights to penetrate the skin at different
depths; therefore, cross-sectional hyperspectral images would reflect blood vessel distribution in
the depth direction. Consequently, cross-sectional images could provide a unique pattern for each
person to identify the individual. In addition, the palm lines matched with the striped shadows in
the cross-sectional hyperspectral images (Fig. 5). The cross-sectional hyperspectral image
includes information not only on the inside of the body but also on the surface. Multi-biometrics,
such as palm print and finger knuckle print,36 palm print and dorsal hand veins,37 and palm print
and palm veins,38 have succeeded in efficiently improving accuracy. Hence, it was suggested
that cross-sectional images could have sufficient characteristics for personal identification, even
within limited regions. The cross-sectional image at the same location would have an individual-
specific pattern, thus enabling effective authentication.

Extracting the ROI is a critical and essential step in the palm recognition process, as the
location of the ROI significantly impacts feature extraction within the palm image. Most
ROI extraction algorithms utilize key points between fingers to establish a coordinate system.
In contactless imaging, it is important to note that palm images present numerous translational
and rotational variations. In this study, an AI-based approach, MediaPipe Hands, was used to
extract the ROI from the palm images. Hand landmarking tools frequently produced incorrect
landmarks on spectral monochromatic images. The hand pose estimation model is capable of
predicting hand poses using only RGB input.25 Consequently, the reconstructed RGB images
from the hyperspectral image showed accurate landmarks. The feature vector extracted using
this ROI could classify each individual. Therefore, the ROI using MediaPipe Hands succeeded
in selecting almost the same position each time, although effects may have occurred from filter-
ing for noise reduction and interpolation in the resizing process. Alternatively, the hyperspectral
cross-sectional images from nearby locations may not exhibit significant differences. The palm
scan area in this study was not as large as the palm of the hand, which allowed the hand to be
placed anywhere. However, the orientation and position of the hands are generally decided. In
fact, in one subject (subject 1), some of the hand placements in the ten scans changed positions
purposely; for example, the fingertips were positioned at angles ranging from ∼0 to 90 deg.
However, these features from the subjects using the ROI detection were almost identical
(Fig. 6). Therefore, the AI-based ROI placement technique is robust against misalignments and
rotations. Thus, this technique may be superior to conventional image registrations.

The cross-sectional image extracted from the ROI was converted into a feature vector using
LBP, which is widely used for face recognition.39 To visualize the relationships in the data, high-
dimensional feature vectors were converted to two dimensions using dimensionality reduction
algorithms such as PCA, t-SNE, and UMAP (Fig. 8). These results show 10 clusters of the
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10-subject dataset based on their similarity. Consequently, the texture patterns in the cross-sec-
tional hyperspectral images (Figs. 6 and 7) and the feature vectors (Figs. S2 and S3 in the
Supplementary Material) contained individual features. The clustering results of the UMAP
dimension reduction data revealed a high agglomeration of data for each label [Fig. 8(c)].
UMAP is a method where similar data in the original feature space are plotted closely after
dimension reduction.33 In a comparison of the performance of dimensionality reduction tech-
niques in clustering, UMAP provided better results than the other two algorithms.40 In addition,
UMAP has a rigorous mathematical foundation; however, it is straightforward to utilize with a
scikit-learn-compatible API.41 UMAP is also one of the fastest manifold learning implementa-
tions available and is significantly faster than most t-SNE implementations.41 Therefore, UMAP
was considered advantageous not only in terms of clustering accuracy, albeit also in terms of
processing speed.

To measure the effectiveness of the authentication system, the FRR and FAR were calculated
using the Euclidean distance between the dimensionally reduced feature vectors as the discrimi-
nant function. The Euclidean distance for intra-subject comparisons was small, whereas that for
the inter-subject comparisons was large. Across all dimensionality reduction procedures, the dis-
tribution of similarity scores for inter-subject comparisons showed high variability, indicated by a
wide distribution. In contrast, intra-subject comparisons exhibited low variability, indicated
by a sharply peaked distribution (Fig. 9 and Table 1). In addition, the mean Euclidean distance
for inter-subject comparisons was significantly larger than for intra-subject comparisons
(P < 0.0001) for all algorithms (Fig. 10). The EER, which occurs when FRR equals FAR, is
frequently used to provide a synthetic evaluation of a system’s detection capability. The smaller
the EER, the better the model performance. Even herein, the smallest EER was observed for
UMAP (Fig. 11 and Table 2).

The performance of authentication using different dimensionality reduction techniques was
compared through ROC curves, which plot the FRR and TAR (1 − FRR) as a function of the
FAR. The proposed method showed better recognition performance when the ROC curve was
closer to the axis. To quantitatively evaluate the performances based on ROC curves, the AUC
was calculated. The ROC curves and AUC indicated that UMAP demonstrated the best perfor-
mance (Fig. 11 and Table 2). Thus, hyperspectral cross-sectional images can be effectively used
for personal identification, with UMAP being one of the most suitable methods for dimension-
ality reduction.

Other personal identification techniques with optical imaging modalities, such as OCT11,42

and PAT12,13 imaging, have been reported.
In biometric authentication using OCT fingerprinting, the field of view was several tens of

millimeters squared, with an image acquisition time of 8 s and image processing completed in
<1 s.42 The OCT imaging time is approximately the same as the hyperspectral imaging time with
dual light illumination in the study conducted herein (Sec. S3 in the Supplementary Material). In
addition, the EER in this previous study was 2.7%,42 whereas the hyperspectral personal iden-
tification method proposed in this study achieved a lower EER. Furthermore, owing to the impact
of skin deformation on OCT measurements, it is not possible to press the finger against a glass
plate, which makes it difficult to align the finger position. Conversely, the technique proposed
herein allows for the entire palm to be pressed against a glass plate for stable measurements.
Using MediaPipe Hands, the ROI is automatically set on the palm. Although the length of
ROIs varied with each measurement (Table S1 in the Supplementary Material), the accuracy
in terms of personal identification remained high. This suggests that despite changes in the
degree of pressure applied to the hand, the annotated positions were relatively consistent, seg-
menting almost the same location. Even when the palm was tilted and partially lifted from the
glass plate, the length of the ROI varied (Table S3 in the Supplementary Material); however, the
relative landmark positions remained (Figs. S5, S8, and S10 in the Supplementary Material).
Motion artifacts caused image misalignment when the palm was completely lifted (Fig. S10
in the Supplementary Material). However, UMAP clustering results were plotted near the base-
line condition cluster (Fig. S11 in the Supplementary Material). This may be caused by the fact
that hyperspectral imaging, with its lower spatial resolution compared with OCT, is less affected
by movements during voluntary hand stabilization. In another study using OCT images of inter-
nal fingerprint structure for anti-spoofing, the processing time is ∼2 s; however, the non-local
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means denoising process for OCT images requires considerable time (∼370 s).11 Conversely, the
proposed method used only the 3D Gaussian filter for denoising, which required <1s. The EER in
the OCT study was 3.57%. However, the results of the study conducted herein demonstrate a
lower EER (0.04%), indicating that the proposed hyperspectral method achieves higher accuracy.

Biometric authentication using 3D finger vein structures obtained from PAT requires 35 s for
imaging.12 In addition, the imaging process requires the finger to be in contact with a water tank
with the use of ultrasound gel. The EER in this PAT study was 0.13%, whereas the proposed
method achieved a lower EER. Another biometric identification study using PAT of fingerprints
and underlying vasculature requires 60 s for imaging.13 This PAT approach also requires contact
with a water tank, albeit without the necessity for ultrasound gel. Both PAT studies had longer
image acquisition times compared with the proposed method. Also, in the first PAT study, the
evaluation of rotation invariance was conducted by rotating the finger 30 deg clockwise and
counterclockwise during imaging. The results showed that such rotation caused body motion
and poor contact, which affected the authentication process. This study also investigated the
hand tilt effect. The results showed that as the tilt angle increased, the plots in the UMAP embed-
ding space tended to spread out (Fig. S6 in the Supplementary Material). However, they remained
clustered at a distance from those of other individuals. Therefore, the proposed method is con-
sidered to have high rotation invariance. Furthermore, the effect of light source position was
investigated. As with the tilt effect, the results showed that similar tendencies occurred in the
UMAP embedding space (Fig. S9 in the Supplementary Material).

The authentication process should be as fast as possible to ensure a positive user experience.
Operational requirements define a 10-s maximum period for practical applications.42,43 In 4-band
multispectral palm imaging, the imaging time is <1 s.44 The image acquisition time for palm
hyperspectral imaging with 321 wavelengths takes 10.7 s,18 which is shorter than that for
my hyperspectral imaging with 121 wavelengths. However, in this study, the image acquisition
time took 24 s (20 lines∕s). In addition, image processing time took ∼6.6 s. Although this
lengthier imaging time frame may present a limitation for practical applicability, it should be
noted that the primary purpose of this study was to demonstrate the potential for personal iden-
tification using cross-sectional hyperspectral images. Therefore, priority was afforded to image
quality herein. However, future research directions could concentrate on improving the practical
applicability of the proposed solution in terms of the time required for image acquisition/process-
ing. The burden on the subjects was also considered, such as thermal and visual stimulations
caused by increasing the light intensity. However, for one subject, an additional imaging experi-
ment was conducted by increasing the light intensity using dual light sources and decreasing the
exposure time (Sec. S3 in the Supplementary Material). This demonstrated that a palm hyper-
spectral image, which can be used for personal identification, can be acquired in 8 s (60 lines∕s).
Therefore, it was confirmed that imaging time could be reduced. Furthermore, MediaPipe Hands
was used to set the ROI, and it was necessary to scan the entire hand. With an image recognition
library focused on a narrower palm region, the scanning area could be reduced, which in turn
could further reduce imaging time. In addition, the average ROI scan-line number was 180 lines.
Therefore, the imaging time could be further reduced to 3 s (180∕60 lines∕s) by first determining
the ROI and subsequently scanning only lines within that ROI. In this study, all image processing
was performed using the CPU. In addition, the processing time is expected to be significantly
reduced using general-purpose graphics processing units. These optimizations suggest that image
processing using the proposed method could be realistically completed within 10 s.

A hyperspectral imaging system primarily consists of a hyperspectral camera and light
source. Therefore, camera and light source characteristics, such as spectral response, exposure
time, light intensity, and spectral distribution, are expected to affect the imaging result. In addi-
tional experiments as detailed in Sec. S3 in the Supplementary Material, the potential for hyper-
spectral personal identification was demonstrated by increasing light source intensity while
reducing exposure time. In this study, spectral distribution was corrected using the white balance
for each experiment. However, it is difficult to detect characteristic peaks from absorbers in the
body when using light sources with significantly different spectral distributions.45 This could
affect the patterns in hyperspectral cross-sectional images and potentially hinder personal iden-
tification. Moreover, the spectral response was not evaluated herein because the experiments
were conducted using a single hyperspectral camera. The camera used in this study operated

Suzuki: Personal identification using a cross-sectional hyperspectral image of a hand

Journal of Biomedical Optics 023514-14 February 2025 • Vol. 30(2)

https://doi.org/10.1117/1.JBO.30.2.023514.s01
https://doi.org/10.1117/1.JBO.30.2.023514.s01
https://doi.org/10.1117/1.JBO.30.2.023514.s01
https://doi.org/10.1117/1.JBO.30.2.023514.s01


in the visible to near-infrared range (400 to 1000 nm). A previous study presented spectral data of
skin in the 1000- to 2500-nm range, which significantly differed from the visible to near-infrared
spectrum.46 This indicates potential differences in spectral response that could affect imaging
results. However, it was also reported that the spectral data of skin in the 1000- to 2500-nm
range showed less inter-individual variability compared with the visible to near-infrared spec-
trum. Therefore, spectral characteristics in the range may be less suitable for personal
identification.

This study did not fully address the stability of cross-sectional hyperspectral features over
time. The maximum measurement interval was one day. Previous work has demonstrated the
stability of hyperspectral measurements by documenting a facial database in the 400- to
1000-nm range over several weeks.47 In addition, in biometrics, near-infrared hyperspectral face
imaging (700 to 1000 nm) has shown that skin spectral curves offer high long-term stability,
performance, uniqueness, and acceptability.48 However, palm injuries and health conditions may
impact the spectrum, potentially affecting the accuracy of biometric authentication.

In the realm of biometric authentication, the limited size of datasets poses a significant chal-
lenge for current research. This constraint impedes the accurate validation of proposed methods.
Although this study demonstrates the ability to discriminate between subjects using hyperspec-
tral imaging of the hand palm, the dataset utilized was small-scale, comprising only 10 subjects.
To address this data scarcity issue, future work will involve acquiring data from a larger number
of subjects to design a more robust authentication system. In addition, hyperspectral imaging
devices remain extremely expensive, which limits their widespread adoption in various solutions.
However, hyperspectral imaging for human skin has been applied in clinical settings. Integrating
the proposed method into these clinical applications may enhance their usability. Therefore, it is
important to note that personal identification using hyperspectral imaging offers several advan-
tages that standard solutions have yet to achieve.

5 Conclusion
This paper proposes biometric authentication using hyperspectral images of the palm, ranging
from visible to near-infrared wavelengths with 5-nm resolution. First, a machine learning-based
method for ROI detection is introduced. Subsequently, feature vectors are extracted from cross-
sectional hyperspectral images in the sagittal direction, capturing spectral connectives and skin
surface morphology. Finally, the effectiveness of the proposed method for biometric authenti-
cation is evaluated using dimension reduction techniques. The evaluation results indicate that
hyperspectral personal identification can achieve good performance. This suggests that cross-
sectional hyperspectral imaging has the capability to differentiate between subjects, potentially
paving the way for innovative, secure, and efficient identification methods.
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