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Abstract. Retinex algorithms have been widely applied in many
aspects of image processing. Based on the iterative Retinex algo-
rithm, we propose an edge-preserving illumination estimation method.
Inspired by the anisotropic diffusion, an edge-stopping function is
introduced in the iterative computation. This modification enables
the preservation of abrupt edges when computing the upper envelope
of a given image. Based on the illumination-reflectance decomposi-
tion, a high-dynamic-range (HDR) radiance map can be easily
tone-mapped to be a low-dynamic-range image by compressing
the range of the estimated illumination. Artifacts are effectively sup-
pressed using the proposed method. Meanwhile, we also propose a
jumping-spiral iteration manner to improve the symmetry of the edge
response. Experimental results show that the proposed tone mapping
algorithm is very effective in reproducing HDR scenes, and has a
better performance compared with some similar operators. © The
Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.JEI.22.2.023006]

1 Introduction
The dynamic range of natural scenes varies accordingly with
different lighting conditions, from lower than 40 dB for
ordinary uniformly lit scenes to higher than 120 dB for
mixed indoor-outdoor scenes. However, human observers
can cope well with such tremendous difference through
local adaptation embedded in retina and cortex. Powered
by sophisticated mechanisms, the human visual systems
(HVS) can perceive a very large intensity range simultane-
ously, and even larger after long-time adaptation.1,2 On the
other hand, the dynamic range of current image displays and
other reproduction media is rather limited. Consequently,
there is a great demand for high-fidelity dynamic range
reduction in many media-related applications, such as remote
imaging, medical imaging, virtual reality, and digital photog-
raphy.3–5

Algorithms that map high-dynamic-range (HDR) input
intensities to low-dynamic-range (LDR) displayable signals
are called tone mapping operators (TMOs). Tone mapping
has become a hot topic during the past two decades,
and abundant publications about this topic can be found.

Comprehensive reviews of the state of the art in this field
are given in Refs. 1, 4, and 6. Among the tone-mapping lit-
erature, some TMOs apply a certain method to decompose
the original image into several layers with different scales,
and produce results by manipulating the dynamic range of
these layers independently.3,7–10

In this paper, similar to decomposition-based TMOs, we
propose an illumination-reflectance decomposition method
based on the iterative Retinex algorithm for HDR tone map-
ping. The iterative Retinex algorithm11 is combined with the
anisotropic diffusion12 in computing the illumination. The
discontinuities in the illumination can be well described
using the proposed estimator. Moreover, a jumping-spiral
iteration is proposed to improve the symmetry of the edge
response over aligned directions. The proposed illumination
estimation is later adopted in HDR tone mapping. Results
show that the proposed algorithm is able to produce good
results. Meanwhile, undesirable artifacts are effectively sup-
pressed, which are usually not avoided using the standard
Retinex algorithms. The proposed algorithm also outper-
forms some similar TMOs, evaluated by the state of the
art objective metric.13

The rest of this article is arranged as follows. In Sec. 2, the
related work is briefly reviewed. Then the computational
background of the proposed method is presented in Sec. 3.
In Sec. 4, the proposed illumination-reflectance decomposi-
tion method is derived in detail. It is then applied in HDR
tone mapping later in this section. Experiments are done
in Sec. 5, where the effectiveness of the proposed algorithm
in tone mapping is approved, and encouraging results are
produced compared with some other similar algorithms.
Finally, conclusions are drawn in Sec. 6.

2 Related Works

2.1 Retinex Theory and Its Variants
Land’s Retinex theory is one of the most famous attempts
to explain and simulate the perception of lightness and
color of the HVS.14–16 After about 50 years of evolution,
many different variants are proposed. According to their
implementation forms, the standard Retinex algorithms
can be roughly categorized as path-based algorithms,15,17,18

iterative algorithms,11,19,20 center/surround algorithms,21,22

and PDE-type algorithms.23–26
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Together with many extensions for other purposes, the
huge family of Retinex-type algorithms are now widely
applied in many aspects of image processing, such as
color constancy,17,18,20,25 general image enhancement,5,21,27

HDR image rendering,28–31 and shadow removal,32–34 among
others.

2.2 Retinex-Based TMOs
Sobol31 introduces several effective improvements based on
the Frankle–McCann Retinex algorithm, including the ratio
modification operator (RMO), the spatially varying contrast
gain, and the partial contrast strength mask. The RMO trun-
cates the intermediate values of the contrast ratios to a limited
range. Consequently, the dynamic range of the original
image is reduced, while fine details are preserved. Similar
to Sobol’s RMO, Drago et al.28 propose a soft contrast clip-
ping function to automatically manipulate local contrast and
suppress artifacts for tone mapping. However, the contrast
clipping operation of these two TMOs changes the nature
of the contrast of the original intensity. As a result, the
appearance of the scene may be changed significantly.

Based on the center/surround Retinex, Meylan and
Susstrunk30 introduce the adaptive filtering in computing a
surround-like contrast mask. More recently, Kim et al.29

apply a single-scale Retinex on intermediate data to enhance
the naturalness of the result images. In both methods, a large
support of the surround function is used. Though methods
are applied to reduce the complexity, the computational bur-
den of these TMOs is relatively heavy.

2.3 Decomposition-Based TMOs
There are a number of previous works for HDR tone map-
ping based on multiscale image decomposition.3,7–10,35 The
original image is often decomposed into several layers
corresponding to different scales. The dynamic range of
the output is manipulated by reweighting these layers.

In order to avoid artifacts in tone mapping using this
type of operators, edge-preserving local smoothing is often
employed in pursuing the base layer. Durand and Dorsey3

propose a very efficient approximate of the bilateral filter to
compute the piece-wise smooth base layer. Farbman et al.7

propose an effective edge-preserving operator based on
the weighted-least-square optimization. Xu et al.10 employ
L0 gradient minimization in computing the base layer.
However, the number of layers is arbitrary, and no indicative
selection of the weights is presented for perceptual matching
in anyone of these works.

3 Computational Background

3.1 Preliminaries
The Retinex theory is employed to compensate the effects of
uneven illumination. Following some previous works,11,23,24

a given image I can be decomposed into the reflectance R
and the illumination L, such that I ¼ RL. The decomposi-
tion is often done in logarithmic space, such that:

i ¼ rþ l; (1)

where i ¼ logðIÞ, r ¼ logðRÞ, and l ¼ logðLÞ, respectively.
Since objects never reflect more energy than the incident
light, many Retinex algorithms discount the illumination

estimated using the upper envelope of the original
image,5,11,23,36 where the estimated illumination satisfies l ≥
i for all pixels in the image domain.

3.2 Iterative Retinex Computation
The first iterative Retinex algorithm is an efficient variant of
the Retinex algorithm, which was developed by Frankle and
McCann.19 It is generalized by Funt et al.20 to handle images
with arbitrary resolution. The formulation of the generalized
Frankle–McCann algorithm is given as follows:

rkþ1
p ¼ Rðip − iq þ rkqÞ þ rkp

2
; (2)

where p is the neighborhood center pixel index and q is the
index of one of the neighboring points.Rð·Þ is the reset oper-
ation, which truncates the data exceeding a preset upper
bound. The computation proceeds in a inward spiral manner,
where only the neighboring pixels in four aligned directions
are processed. Equivalently, Eq. (2) can be rewritten as

rkþ1
p ¼ minfCw; ip − iq þ rkqg þ rkp

2
; (3)

where Cw is the preset upper bound, which is referred as the
perceived lightness of the brightest points in the scene.

Cooper and Baqai37 propose some extensions to the
Frankle–McCann Retinex algorithm. They introduce the dis-
tance weighting to enhance local contrast, the soft reset to
reduce halos, and the dual-spiral iteration manner to improve
the symmetry of the spatial response.

McCann and Sobel adapt the iterative scheme to first
estimate the illumination using the upper envelope of
the original image.11 The iterative update operation of the
McCann–Sobel Retinex algorithm is given as below:

lkþ1
p ¼ lkp þmaxfip; lkqg

2
: (4)

Combined with Eq. (1), the above equation can be rewrit-
ten as

rkþ1
p ¼ minf0; ip − iq þ rkqg þ rkp

2
: (5)

Note that Eq. (5) is exactly the formulation of the
Frankle–McCann Retinex algorithm when Cw ¼ 0 in
Eq. (3). Consequently, the McCann–Sobel algorithm is a
special case of the Frankle–McCann algorithm.

3.3 Another Look into the Iterative Retinex
Computation

Consider the formulation of the McCann–Sobel Retinex
algorithm given as Eq. (4). Without the nonlinear operation
for the upper envelope, it can be simplified as follows:

lkþ1
p ¼ lkp þ lkq

2
: (6)

Alternatively, Eq. (6) can be rewritten in a differential
form:

lkþ1
p − lkp ¼ 1

2
ðlkq − lkpÞ: (7)
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This can be interpreted as directional isotropic diffusion.
Its asymmetric effect is compensated by the spiral iteration
manner. Combining the progressively shortened shift dis-
tance, Eq. (7) can be considered as an efficient approximate
of the discrete isotropic diffusion with isometric step size.
The initial shift distance, together with the number of iter-
ation, controls the number of diffusion steps, and further
controls the support size and the scale of the smoothing
kernel.

Furthermore, the nonlinear operations are introduced to
truncate the intermediate data to fit a preset interval. The
reset operation restricts that the value of the estimated reflec-
tance does not exceed the maximum brightness. Similarly,
the operator maxf·g of the McCann–Sobel algorithm corre-
sponds to the physical constraint that the objects never reflect
more energy than the incident light. Thus the illumination
estimation is a Gaussian-like upper envelope of the original
image.

4 Adapting the Iterative Retinex Computation
for Tone Mapping

The basic assumption applied by Retinex theory is that the
illumination is spatially smooth. In most cases, however, the
abrupt edges in HDR scenes are caused by the illumination
discontinuities. As a consequence, in reproducing these
scenes, the results will inevitably disrupted by halos using
the standard Retinex algorithms.

In order to obtain better results in tone mapping, we make
several modifications based on the McCann–Sobel Retinex
algorithm. First, in order to better compensate the asymmet-
ric effect of the spiral iteration without increasing the com-
putational complexity, we slightly modify the order of the
computation process. Second, an edge-stopping function
is introduced into the iterative smoothing computation.
Such modification enables the representation of the abrupt
edges of the illumination. Third, the estimated reflectance
is not directly used as the tone-mapped result. Instead, it
is relit by the range-compressed version of the estimated
illumination to produce visually more pleasing results.
Moreover, the proposed algorithm is only performed in
the luminance component of the original image rather
than individually applied in three color channels as done
in the standard Retinex algorithms. The color information
is reproduced according to the original image using an
existing technique.

4.1 Jumping-Spiral Iteration
The original iterative Retinex algorithm proceeds in a
spiral manner and produces asymmetric spatial response.
This can easily cause distortions. Although this kind of
asymmetric response can be reduced by increasing the num-
ber of iterations, the computational complexity will increase,
and the strength of the detail enhancement will weaken
as well.

The dual-spiral iteration manner proposed in Ref. 37 is
axial-symmetric. However, the edge responses in horizontal
directions are different from that in vertical directions.
Furthermore, the dual-spiral iteration manner is less effective
than the single-spiral one with comparative computational
burden using the McCann–Sobel algorithm.

We propose a jumping-spiral iteration manner as illus-
trated in Fig. 1. After every loop where neighboring pixels

with the same shift distance are processed once, the process
jumps to the opposite side of the starting direction of the pre-
vious loop. The dashed arrows denote the jumps.

In order to test the symmetry of different iteration man-
ners over directions, a computer-generated image is used
in this experiment, as shown in Fig. 2(a). The test image is
a 128 × 128 monochrome image. The size of the bright
box in the center of the image is 32 × 32. Then, following
the McCann–Sobel algorithm, the three different iteration
manners are adopted in computing the illumination estima-
tion of the test image. The results are respectively shown
as Fig. 2(b)–2(d), which are all produced with two
iterations.

To give an objective evaluation of the nonsymmetry of the
iteration manners, we define an asymmetric error measure of
a square matrix as follows:

1

2
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8

5

6

9

Fig. 1 The proposed jumping-spiral iteration manner: This figure
depicts the case that only one iteration is taken.

(a) test input

(b) single spiral (c) dual spiral (d) jumping spiral

Fig. 2 The spatial behavior of the iterative smoothing with different
iteration manners; (a) is the input image, (b), (c) and, (d) are, respec-
tively the results of the single-spiral iteration manner, and the pro-
posed jumping-spiral iteration manner.
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m ¼ EðIÞ þ EðIfÞ
2

; (8)

where I and If are the square matrix to be tested and its
flipped version, respectively. Eð·Þ is an error norm measuring
the diagonal symmetry of a square matrix, which is defined
as

EðIÞ ¼
�Z

jIðx; yÞIðy; xÞj2
�1

2

: (9)

Since the test image is a diagonal-symmetric square
matrix, the asymmetric error of the results over directions
can be predicted by the corresponding value of m. The
smaller m indicates the better symmetry of the result.

The asymmetric errors of the three iteration manners
decrease as the number of iteration increases, as plotted in
Fig. 3. It is shown that the proposed jumping-spiral iteration
manner produces less asymmetric error than the other two
when the number of iterations n ≥ 2. Consequently, the sym-
metry of the spatial response of the spiral iteration can be
further improved using the jumping-spiral manner.

4.2 Iterative Data-Dependent Smoothing
Without nonlinear operations, the iterative Retinex compu-
tation can be interpreted as an asymmetric isotropic diffu-
sion, as depicted in Eq. (7). The diffusion procedure is
data independent, and thus smooths over edges. Inspired
by the anisotropic diffusion, an iterative data-dependent
smoothing method is proposed.

The discrete form of the anisotropic diffusion proposed by
Perona and Malik12 can be formulated as follows:

Ikþ1
p − Ikp ¼ λ

jηpj
X
q∈ηp

gðjIkq − IkpjÞðIkq − IkpÞ; (10)

where λ is the step size of the discrete time steps. ηp denotes
the spatial neighborhood of the pixel at p, and jηpj is the
number of neighbors. gð·Þ is the edge-stopping function,
which is generally a Gaussian function.

The anisotropic diffusion is very effective in edge-
preserving local smoothing. Comparing Eq. (10) with
Eq. (7), the corresponding asymmetric anisotropic diffusion
is formulated as follows:

lkþ1
p − lkp ¼ 1

2
gðjlkq − lkpjÞðlkq − lkpÞ: (11)

The above formulation is a nonlinear data-dependent
smoothing. In order to reduce the blocking and ringing
effects, it is further modified to be a linear data-dependent
smoothing method:

lkþ1
p − lkp ¼ 1

2
gðjiq − ipjÞðlkq − lkpÞ: (12)

The data-dependent smoothing formulation is then
adopted in the iterative procedure. Given a natural mono-
chrome image as shown in Fig. 4(a), the data-independent
smoothing, as given by Eq. (7), produces an overall
smoothed image, as shown in Fig. 4(b). On the contrary,
the data-dependent smoothing, as described by Eq. (12),
is able to preserve sharp edges, as shown in Fig. 4(c).

4.3 Edge-Preserving Illumination Estimation
Similar to Eq. (6), the asymmetric linear anisotropic diffu-
sion described in Eq. (12) can be formulated as a weighted
sum of the intermediate values at the neighborhood center
and at one of its neighboring point as follows:

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

number of iterations

va
lu

e 
o

f 
m

single-spiral
dual-spiral
jumping-spiral

Fig. 3 Asymmetric errors versus number of iterations.

Fig. 4 Data-dependent smoothing versus data-independent smooth-
ing: (a) is the original natural image, which is downloaded from http://
image.baidu.com, (b) and (c) are respectively the spatial behavior of
the data-dependent smoothing method depicted in Eq. (7) and the
data-independent smoothing method depicted in Eq. (12).

Journal of Electronic Imaging 023006-4 Apr–Jun 2013/Vol. 22(2)

Pan, An, and He: Adapting iterative retinex computation for high-dynamic-range tone mapping

http://image.baidu.com
http://image.baidu.com
http://image.baidu.com
http://image.baidu.com


lkþ1
p ¼

�
1 −

gðjiq − ipjÞ
2

�
lkp þ

gðjiq − ipjÞ
2

lkq: (13)

In order to characterize the discontinuities in the illumi-
nation, the data-dependent smoothing is adopted in com-
puting the upper envelope of the input image. Following
the McCann–Sobel algorithm, the proposed edge-preserv-
ing estimator for the upper envelope is formulated as
follows:

lkþ1
p ¼

�
1−

gðjiq − ipjÞ
2

�
lkpþ

gðjiq − ipjÞ
2

maxfip; lkqg: (14)

It is experienced that local structures can be over-
smoothed in the illumination estimation with a small number
of iterations, and thus the corresponding reflectance is over-
exaggerated. When increasing the number of iteration,

however, the depth of the reflectance map is enlarged, and
thus the effectiveness and the efficiency of the algorithm
are reduced as well. In order to better handle these problems,
the final illumination estimation is obtained by averaging the
output with a small number of iterations and the original
intensity:

l ¼ iþ l̂
2

; (15)

where l̂ is the edge-preserving upper envelope estimation
by Eq. (14).

Note that the result of Eq. (15) is still an upper envelope of
the original image. Given the same natural image as shown in
Fig. 4(a), the illumination estimation and the corresponding
reflectance are produced by the proposed algorithm, which
are respectively shown in Fig. 5(a) and 5(b). Notice that the
illumination estimation inherits the edge-preserving property
of the asymmetric anisotropic diffusion depicted in Eq. (12).
Furthermore, the illumination discontinuities are well
described in the estimated illumination. As a result, the cor-
responding reflectance image is a halo-free LDR image.

4.4 Tone Mapping Based on the Proposed Algorithm
In order to avoid gray-world violation problems when han-
dling the color images, the original image in RGB color
space is first converted into a grayscale image. The color-
to-gray conversion model employed in this paper is given
as follows:

I ¼ 0.299Rþ 0.587Gþ 0.114B: (16)

Then the illumination estimation of I is computed using
the proposed upper envelope estimator. As illustrated in
Fig. 5, the proposed variant of the iterative Retinex algorithm
is able to decouple the HDR illumination and the LDR
reflectance. Unlike the standard Retinex algorithms, the

Fig. 6 Window scene: the original HDR radiance map is displayed in linear scale, from (a) to (d), normalized, ×10, ×100, and ×1000, respectively.
The details all around the scene cannot be simultaneously represented in any one of the left four linearly scaled images, (e) is the color-coded
intensity map. The numbers on the right side of the color bar denote the log10 units of the intensity. It is shown that the dynamic range of the original
radiance map is about 100 dB.

Fig. 7 Validation of the proposed tone mapping algorithm: (a) Illumination estimation, in which the abrupt variations of the original intensity are
mainly encoded. (b) Corresponding reflectance map in linear space, which has a much lower dynamic range than the original map and the illumi-
nation estimation. (c) Tone-mapped result produced by the proposed algorithm, where fine details can be perceived without visible artifacts. (d)
Globally mapped image using the same γ as in producing (c). However, details are diminished.

Fig. 5 The illumination-reflectance decomposition using the pro-
posed edge-preserving illumination estimation; (a) is the estimated
illumination and (b) is the corresponding reflectance.
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estimated reflectance is not directly taken as the output, but
relit using the range-compressed version of the estimated
illumination. For simplicity, the range of the illumination
is reduced using a Gamma mapping. The modified intensity
can be computed as follows:

i� ¼ l
γ
þ r; (17)

where γ > 1, which can be tuned to obtain various strength
of contrast reduction.

Finally, the color information is reproduced according to
the original HDR radiance map. In color reproduction, we
follow the method employed in Refs. 3, 9, and 29, which
can be formulated as follows:

Cout ¼
�
Cin

Lin

�
S
Lout; (18)

Fig. 8 Belgium house: results illustrating the effect of varying the strength of the illumination range reduction. From (a) to (d) γ ¼ 2, 4, 8, and 12,
respectively, where σ ¼ 1, n ¼ 1 and S ¼ 0.8. Larger γ leads to stronger compression of the dynamic range, while smaller γ produces a result closer
to the original image. HDR radiance map courtesy of Dani Lischinski.

Fig. 9 Atrium night: results illustrating the effect of varying the sigma of the edge-stopping function. From (a) to (d), where σ ¼ 0.1, 0.5, 2.5, and
12.5, respectively, where γ ¼ 5, n ¼ 1 and S ¼ 0.8. Halos are eliminated with smaller σ, but details may diminish in the tone-mapped result and the
ringing artifacts may be elevated at the same time. On the contrary, larger σ produces better overall contrast, but the halos may become visible as σ
increases. HDR radiance map courtesy of Karol Myszkowski.

Fig. 10 Desk scene: results illustrating the effect of varying the number of iteration. From (a) to (d), n ¼ 1, 4, 16, and 128, respectively, where γ ¼ 5,
σ ¼ 1 and S ¼ 0.8. Smaller number of iteration leads to better photographic look of the scene. Larger number of iteration will increase the depth of
highlight, and results in better fidelity regarding to the original scene. HDR radiance map courtesy of ILM.
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where C ∈ fR;G; Bg denotes the three independent color
components in RGB space. Lin and Lout denote the lumi-
nance before and after tone mapping, respectively. And S
is a parameter controlling the saturation of the repro-
duced color.

5 Experimental Results
In order to illustrate the effectiveness of the proposed algo-
rithm in HDR tone mapping, we experiment on the method
in three aspects. First, the validity of the proposed method is
tested using a common HDR radiance map. Second, the
effects of varying the parameters are illustrated and dis-
cussed. Third, the proposed algorithm is objectively evalu-
ated and compared with some closely related TMOs.

First of all, given an HDR radiance map as shown in
Fig. 6, It is first converted into a monochrome intensity
map according to Eq. (16). Then it is decomposed into
two portions using the proposed algorithm, an HDR illumi-
nation map and an LDR reflectance map, as shown in
Fig. 7(a) and 7(b), respectively. Then the dynamic range
of the illumination estimation is reduced using a Gamma
mapping. Afterwards, the reflectance map is relit by the
range-compressed version of the estimated illumination,
thus leads to a new intensity map with relatively much
lower dynamic range. Finally, the color information is
reproduced according to the original radiance map as dis-
cussed in the previous section. The corresponding tone-
mapped result using the proposed algorithm is shown as
Fig. 7(c), which is produced with S ¼ 0.8, γ ¼ 5, σ ¼ 1,
and n ¼ 1. Compared with the global Gamma-mapped
result as shown in Fig. 7(d), all details are preserved
while the overall dynamic range is significantly reduced
without visible artifacts.

Second, several parameters are used in the proposed algo-
rithm, which can be tuned to obtain better tone-mapping
results. The strength of the dynamic range reduction can
be tuned by the parameter γ in Eq. (17). The value of σ indi-
cates the threshold determining the magnitude of edges to be
preserved in the illumination. And the number of iteration
can also slightly affect the appearance of the output image.
The results obtained using different parameter settings can be
illustrated in Figs. 8–10. Although the saturation of the
reproduced color can be tuned by varying S in Eq. (18),
it is not discussed in detail in this paper. Users can easily
experience the performance of different color saturation
and tune the value of S as needed.

Third, as stated in Ref. 1, a good TMO should reproduce
realistically the color sensation and detail visibility of the
original scene. Thus, in order to evaluate the performance

of a TMO, one should quantitatively measure its ability in
reproducing these two features. Color reproduction of the
proposed algorithm is done simply following the existing
works. The quality of the reproduced color sensation is
not further discussed in this paper.

With respect to contrast reproduction, several subjective
metrics can be found in the literature.38–40 The authors ask
subjects to tell the differences between the tone-mapped
images and the corresponding HDR real-world scenes or
the corresponding linear reproductions on an HDR display.

Table 1 Default parameter setting.

Parameter Value Description

S 0.8 Color saturation

γ 4 Illumination discounting strength

σ 1.5 Sigma of the edge-stopping function

n 1 Number of iterations

Fig. 11 Some results obtained by the proposed algorithm: Images in
the first column are the tone-mapped results produced by the pro-
posed algorithm, while the images in the second column are the dis-
tortion maps corresponding to the first column, respectively. As shown
in the tone-mapped images, details can be observed without visible
artifacts. Thus only a few visible differences are reported by the
evaluation metric in the corresponding distortion maps. First row:
Foggy night, HDR radiance map courtesy of Jack Tumblin. Second
row: Cathedral, HDR radiance map courtesy of Dani Lischinski.
Third row: Stanford memorial, HDR radiance map courtesy of Paul
Debevec.
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However, sometimes it is not applicable to ask subjects
to evaluate the computer-generated HDR images, or real-
time HDR imaging pipelines. Meanwhile, the prototypes
of the HDR display are now still too expensive for low-
cost applications, and they are not yet commonly available.
Fortunately, objective evaluation metrics are proposed.
Cadik et al.41 propose a method based on a basic set of
attributes, which is built on the statistics of subjective

experiments. Aydin et al.13 proposed a quantitative measure
of the quality of the tone-mapped images based on psycho-
physical experiments. In this remarkable work, the original
HDR radiance map can be directly used as the reference, and
the corresponding tone-mapped image obtained by some
TMO is compared using a carefully calibrated perceptual
model. The visible differences between the two images
are categorized into three types. As noted by the authors,

Fig. 12 Comparison results using the dynamic-range-independent metric in Ref. 13. First column: tone-mapped results produced by the proposed
algorithm. Second column: results produced by Sobol.31 Third column: results produced by Durand and Dorsey.3 Fourth column: results produced
by Farbman et al.7 Images in the first, the third and the fifth rows are tone-mapped results, while their corresponding distortion maps are illustrated in
the second, the fourth and the sixth rows, respectively. First row: Nave, HDR radiance map courtesy of Paul Debevec. Third row: Rosette, HDR
radiance map courtesy of Paul Debevec. Fifth row: Tree, HDR radiance map courtesy of ILM.
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they are loss of visible contrast, amplification of invisible
contrast, and contrast reversal, respectively. A distortion
map of the same size as the original image is given as the
output. The distortion type and the corresponding magnitude
are respectively coded using certain color and its saturation.

To save the computational cost, we simply set n ¼ 1 and
S ¼ 0.8. After experiencing the visual appearance of the
results with different γ and σ, we come to a parameter set
as listed in Table 1. In the rest of this paper, the results of
the proposed algorithm are produced using these parameters,
unless otherwise noted. Afterward, the performance of the
proposed algorithm is evaluated using the objective metric
proposed in Ref. 13. Following the original work of this met-
ric, we use green for loss of visible contrast, blue for ampli-
fication of invisible contrast, and red for contrast reversal,
when illustrating the distortion maps of the tested images.
These types of distortion errors, together with the average
error, are denoted by El, Ea, Er, and Eavg, respectively, in
the following texts. Some of the tone-mapping results
by the proposed algorithm on commonly available HDR
radiance maps with the corresponding distortion maps are
illustrated in Fig. 11.

The iterative Retinex algorithms in Refs. 11, 19, 20,
and 37 are not designed for HDR tone mapping, thus
their performance is not discussed here. Nevertheless, the
improvements in Ref. 31 are very effective in HDR ren-
dering. This remarkable variant of the iterative Retinex
algorithm is then involved in the comparison. Moreover,
decomposition-based TMOs3,7–10 are very similar to the pro-
posed one. Two noticeable methods among them are selected
for comparsion: that of Durand and Dorsey3 and that of
Farbman et al.7 The evaluation metric by Aydin et al. is
once again employed to evaluate the performance of the
four algorithms.

Although parameters can greatly affect the final results,
we use the recommended parameters given by the authors
when producing the results of the other three algorithms.
Some results of the proposed TMO and the other three,
together with the corresponding distortion maps, are illus-
trated in Fig. 12. In the comparison experiment, a test set
is formed comprising 10 HDR radiance maps mentioned
in the previous texts. Finally, a perspective summation of
the numerical results on the test set is given in Table 2,
where the numbers are obtained by averaging the error per-
centages over the test set. The numbers in boldface denote
the best ones in the corresponding columns. Although the
averaged loss error percentage of the proposed algorithm
is greater than that of Ref. 7, the other three terms are all
smaller than that of the other methods. The normalized aver-
age error rates of the four algorithms are plotted together in

Fig. 13 as well. Results show that the proposed algorithm
outperforms the other three methods.

6 Conclusions
In this paper, inspired by anisotropic diffusion, an edge-pre-
serving upper envelope estimator is proposed based on the
McCann–Sobel iterative Retinex algorithm. With several
modifications, the iterative Retinex computation is made
more effective for HDR tone mapping. The proposed mod-
ifications include the jumping-spiral iteration manner for bet-
ter symmetry of edge response over directions, the data-
dependent smoothing for edge preservation when estimating
the illumination, and illumination-reflectance decomposi-
tion for HDR tone mapping. The effectiveness of the pro-
posed method was evaluated using established protocols,
and encouraging results are produced compared with some
related methods.
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