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ABSTRACT. Purpose: Segmentation of ovarian/adnexal masses from surrounding tissue on
ultrasound images is a challenging task. The separation of masses into different
components may also be important for radiomic feature extraction. Our study aimed
to develop an artificial intelligence-based automatic segmentation method for trans-
vaginal ultrasound images that (1) outlines the exterior boundary of adnexal masses
and (2) separates internal components.

Approach: A retrospective ultrasound imaging database of adnexal masses was
reviewed for exclusion criteria at the patient, mass, and image levels, with one image
per mass. The resulting 54 adnexal masses (36 benign/18 malignant) from 53
patients were separated by patient into training (26 benign/12 malignant) and inde-
pendent test (10 benign/6 malignant) sets. U-net segmentation performance on test
images compared to expert detailed outlines was measured using the Dice similarity
coefficient (DSC) and the ratio of the Hausdorff distance to the effective diameter
of the outline (RHD-D) for each mass. Subsequently, in discovery mode, a two-level
fuzzy c-means (FCM) unsupervised clustering approach was used to separate the
pixels within masses belonging to hypoechoic or hyperechoic components.

Results: The DSC (median [95% confidence interval]) was 0.91 [0.78, 0.96], and
RHD-D was 0.04 [0.01, 0.12], indicating strong agreement with expert outlines.
Clinical review of the internal separation of masses into echogenic components
demonstrated a strong association with mass characteristics.

Conclusion: A combined U-net and FCM algorithm for automatic segmentation of
adnexal masses and their internal components achieved excellent results compared
with expert outlines and review, supporting future radiomic feature-based classifica-
tion of the masses by components.
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1 Introduction
Adnexal masses can be found in the ovary, fallopian tube, or surrounding tissue and represent a
heterogeneous spectrum of benign, borderline, and malignant entities.1 They are common, with
an incidence of 35% in premenopausal and 17% in postmenopausal women.2 Pathologies differ
across age ranges and geographical areas,1,3,4 but most adnexal masses (∼85%) are benign and
without symptoms. Most can be managed conservatively with a follow-up by clinical exam and
sequential imaging, without surgical intervention.5–7 It is estimated that 10% of all women will be
operated on for an adnexal mass during their lifetime,7 potentially resulting in peri- and post-
operative morbidity (e.g., infections, injury to adjacent organs, and anesthetic complications).
However, although most adnexal masses are benign, and ovarian cancer is a rare disease with
an incidence of one case per 91 women, it is the most lethal gynecology malignancy, with
a 5-year survival rate of only 30% when diagnosed in advanced stages.8,9

Ultrasound imaging plays a key role in the evaluation of patients with adnexal masses.6 It is
noninvasive, widely available, safe, and low cost. Assessments are based mainly on qualitative
features, including mass morphology, margins and echogenicity, the presence of solid elements,
acoustic shadowing, vascular flow signals, and interaction with the surrounding tissues.10 Given
that ultrasound imaging is used early during the evaluation of any lower abdominal, back, or
flank pain,11 the incidental detection of adnexal masses has substantially increased. Several
ultrasound-based risk models have been developed to standardize adnexal mass assessment, such
as the International Ovarian Tumor Analysis (IOTA) Simple Rules,12 the IOTA Assessment of
Different NEoplasias in the adneXa model,13 and the American College of Radiology Ovarian-
Adnexal Reporting and Data (O-RADS)14 risk stratification system with the goal of reducing
false positive and false negative assessments. Recent studies comparing the performance of the
risk stratification systems in differentiating between benign and malignant adnexal masses in
cohorts in the United States reported strong performance of all models.15,16 However, these mod-
els rely on qualitative assessments of the masses, which are subject to inter- and intra-observer
variability,17 and achieving expertise in ultrasound interpretation takes time to gain and is not
ubiquitously available.6,18,19

Artificial intelligence (AI)-based automation for the assessment of adnexal masses on ultra-
sound images may provide decision support tools that are more quantitative, more robust, and
better performing than qualitative-based systems, similar to other advances in oncology, such as
breast cancer,20–22 lung cancer,23 and melanoma.24 Our long-term goal is to develop an AI-based
pipeline that improves diagnostic accuracy for adnexal masses and decreases unnecessary sur-
geries for asymptomatic benign masses while being efficiently integrated into a clinical work-
flow. The first step is to automatically (i.e., objectively) outline the area of interest, the adnexal
mass. This segmentation task includes identifying the extent of the abnormal tissue and distin-
guishing it from the surrounding tissue. When done manually, segmentations require expertise,
are time-consuming, and are prone to errors even when done by experts.25,26 Moreover, because
adnexal masses are heterogeneous, a reproducible system that separates the internal components
by echogenicity will enable additional radiomic analysis by components, such as size and shape.

The purpose of this study was to develop an automated two-step segmentation technique for
adnexal masses using (1) a supervised deep learning (DL) algorithm to automatically segment
the masses from surrounding tissue and (2) an unsupervised algorithm to automatically separate
the interior parts of the masses by echogenic components.

2 Methods

2.1 Dataset
The research used a retrospectively collected, deidentified dataset from a previously described
database, including clinical information and ultrasound images of more than 500 consecutive
patients undergoing evaluation for an adnexal mass in the Department of Obstetrics and
Gynecology at the University of Chicago Medical Center in the Section of Ultrasound,
Genetics, and Fetal Neonatal Care Center.16 The data had been collected under an IRB-approved
protocol, with all images having been acquired using either GE Voluson E8 or E10 or Samsung
Elite WS80 ultrasound systems between January 2017 and June 2023. Borderline masses were
considered malignant for the purposes of this study, as they require surgery. Exclusion was
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conducted at the patient, adnexal mass, and image levels. Patients were excluded if they were
managed conservatively (i.e., no surgery after imaging), if no follow-up information was avail-
able, or if the patient received imaging outside of the University of Chicago. Pelvic masses were
excluded if they were not considered adnexal in origin. Images were excluded if the entire border
of the mass was not visible, if the image had been acquired by transabdominal approach, or if the
image had Doppler or measurement markups visible. Given the low prevalence of ovarian cancer,
the dataset was also enriched by reviewing any contralateral malignant masses that were not
excluded at the mass or image level. This resulted in the addition of three malignant masses
into the dataset. There was a total of 133 patients with 136 unique adnexal masses in the dataset
of images after the exclusion criteria and data enrichment were applied.

Note that this imaging dataset of 133 patients was collected for overall AI pipeline research
and development, including both a segmentation stage and a classification stage. Thus it was
prospectively and manually split into a classification training and validation (classification
TV) set (a total of 95 patients) and an independent classification test set (41 patients). This split
was conducted to balance the sets by mass pathology subtype and clinical parameters, such as
menopausal status and race, and to ensure equal distribution for a future AI-based classifica-
tion model.

U-net segmentation techniques do not require a large number of masses for training,
especially when training data is augmented, due to the operations being conducted at the
pixel level.27,28 From the classification TV set, a subset of adnexal masses was chosen for
the automated mass segmentation development. Thus, the resulting final dataset for the
segmentation component of the pipeline development consisted of only 54 adnexal masses
(36 benign and 18 malignant) from 53 unique patients with a median age of 43 years (range:
20 to 79 years) (Fig. 1) leaving 82 masses from 80 patients reserved for the future classifi-
cation stage.

The final dataset of masses assigned for segmentation pipeline development was automati-
cally split into a training set and a test set. The masses were separated by patient and by mass
subtype into training (goal: 65%) and test (goal: 35%) for segmentation by stratified sampling29

(Table 1). This split proportion was chosen to ensure that each mass pathology subtype was
included in the training and test sets whenever possible.

Fig. 1 Consort diagram reporting the selection of adnexal masses used in the study. The final
cohort for the U-net segmentation study was 54 unique masses (from 53 patients).
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2.2 Supervised Model for Segmentation of the Entire Adnexal Mass

2.2.1 Model training

The borders of the adnexal masses were outlined by an experienced clinical researcher (RYB)
followed by consensus from clinicians with more than 40 years of experience (JSA) and more
than 20 years of experience (REL) in gynecological ultrasound interpretation. These consensus
outlines were used as the reference to assess the segmentation of adnexal masses from surround-
ing tissue. Bounding boxes were placed around each mass, which served as the region of interest
(ROI) for each mass.

Each image was cropped to the bounding box outline and resized to 256 × 256 pixels. The
resized ROIs of the masses in the U-net training set were augmented using flips (left-right and
up-down) and rotations (12 combinations total). For AI-based segmentation of the mass from
the surrounding tissue, we used a U-net algorithm30 because of the large amount of data that
the pixel-based method provides to the pipeline. The U-net model was trained to identify
pixels within the resized expert ROI as either within or outside the mass. Parameters were
set as follows: Adam optimizer, initial learning rate: 0.001; maximum epochs: 120; and mini-
batch size: 12 (MATLAB R2022b, MathWorks, Natwick, Massachusetts). The trained U-net
was applied to the resized expert ROIs of the masses in the test set, resulting in a prediction
mask.

For each image in the test set, the resized ROI that contained the U-net prediction of pixels
within the mass was returned to the original size of the ROI. The prediction mask was filled in so
that no holes were present. The boundary of the prediction mask was smoothed by applying a
Gaussian kernel with a window size of 15 pixels to a two-dimensional convolution of the mask,
and the final U-net prediction mask was set with a threshold of pixels >0.5. The final U-net
prediction boundary for each mass was the outline of the boundary of the final U-net prediction
mask for that image. Figure 2 shows the workflow for the U-net segmentation of masses.

Table 1 Description of the adnexal mass dataset used for the segmentation pipeline development
for adnexal masses. Percentages may not add to 100% due to rounding. Splitting was conducted
at the patient level according to pathologist-reported findings.

Mass type Pathologya

Training set Test set

Masses
(#)

Percent of the
training set (%)

Masses
(#)

Percent of
test set (%)

Benign Physiologic functional cyst or other
miscellaneous massb

5 13 1 6

Endometrioma 5 13 2 13

Epithelial origin mass 7 18 3 19

Sex-cord stromal or germ cell mass 7 18 3 19

Extra-ovarian benign pathologyc 2 5 1 6

Total 26 67 10 63

Malignant Borderline ovarian tumor 1 3 1 6

Epithelial invasive ovarian cancer 6 16 2 13

Non-epithelial invasive ovarian cancer 4 11 1 6

Secondary metastasis to the ovaries 1 3 2 13

Total 12 33 6 37

aPathologist reported findings.
bIncludes denuded simple cysts, hemorrhagic cysts, and luteinized follicular cysts.
cIncludes hydrosalpinx and periadnexal soft tissue lymphangioma.
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2.2.2 Model testing

The U-net performance on the masses in the test set was compared to the expert outlines using
(1) the Dice similarity coefficient (DSC)31 and (2) RHD-D, defined as the ratio

EQ-TARGET;temp:intralink-;e001;117;320RHD-D ¼ HD

Deq

; (1)

where for each mass, HD is the average Hausdorff distance32,33 and Deq is the effective diameter,
i.e., the diameter of a circle with the same area as the region of the expert outline (Eq. 1). RHD-D

was useful as a dimensionless metric of the distance of the U-net prediction outline from the
expert outline, consistent with the nature of the DSC.

2.3 Unsupervised Model for Segmentation of Internal Components

2.3.1 Model development

After the U-net described above was applied to each image, an unsupervised fuzzy c-means
(FCM) algorithm34–36 was applied in a discovery mode to categorize pixels inside the segmented
mass as belonging to one of the two components. The use of two components in the FCM was
prospectively chosen due to the nature of most adnexal masses as containing low and high echo-
genic components. Three versions of the ultrasound image cropped to the expert bounding box
outline were used as input to an unsupervised FCM algorithm: original grayscale, entropy-fil-
tered, and standard-deviation filtered. These filtered versions were calculated using nine-pixel
sliding neighborhoods of the entropy and standard deviation of each pixel. Entropy and standard
deviation filters were chosen to emphasize the structure and magnitude, respectively, of the com-
ponents within the mass. The mean of the pixels in each component was obtained, and the group

Fig. 2 Workflow for supervised U-net segmentation of the adnexal mass.

Whitney et al.: AI-based automated segmentation for ovarian/adnexal masses. . .

Journal of Medical Imaging 044505-5 Jul∕Aug 2024 • Vol. 11(4)



of pixels with the lowest mean was identified as the relative “hypoechoic component.” From this,
the other group of pixels was identified as the “hyperechoic component.” That is, hypoechoic
pixels tended to have low grayscale, variation, and entropy, whereas hyperechoic pixels tended to
have high grayscale, variation, and entropy. Figure 3 shows the workflow for identifying and
segmenting the internal components of the masses.

2.3.2 Clinical assessment

The associations of the hypoechoic and hyperechoic components in each image were reviewed
by a clinical researcher (RYB) and expert clinician (JSA) for potential association with adnexal
mass tissue properties, such as cystic, solid, or mixed components. This was conducted for the
entire dataset.

Fig. 3 Workflow for segmentation of masses into internal components using an unsupervised
FCM algorithm.
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3 Results

3.1 Supervised Model for Segmentation of the Entire Adnexal Mass
The Dice coefficient (median [95% confidence interval]) was 0.91 [0.78, 0.96] and RHD-D was
0.04 [0.01, 0.12] in the test set (Fig. 4), indicating strong performance of the U-net in the task of
segmenting adnexal masses from the surrounding tissue compared to expert outlines.

3.2 Unsupervised Model for Segmentation of Internal Components
The components of the masses from the unsupervised FCM algorithm largely corresponded with
the underlying mass characteristics in terms of echogenicity (Fig. 5). Most cystic and solid com-
ponents in both benign and malignant mass pathology were correctly separated as hypoechoic
and hyperechoic respectively, for example as seen in a benign epithelial mass [a cystadeno-
fibroma, Fig. 5(a)] and an epithelial ovarian cancer [malignant clear cell carcinoma, Fig. 5(b)].
Note that retracted blood clots in a hemorrhagic cyst were correctly separated as a hyperechoic
component [Fig. 5(c)]. Similarly, the hyperechoic area seen in a germ cell mass [a benign tera-
toma, Fig. 5(d)] was correctly separated from the hypoechoic area. Additional interesting results
were the high-quality detection of intra-mass septations, such as seen in a sex cord-stromal mass
[malignant granulosa cell tumor, Fig. 5(e)] as well as the depiction of slight differences in the
echogenicity of solid components as seen in ovarian metastasis of gastric carcinoma [Fig. 5(f)].

Different cystic content and echogenicity may influence the clustering of the pixels. For
example, mucinous cystadenoma, a benign epithelial mass, that contains mucin gelatinous
material with heterogeneous viscosity, often appear on ultrasound as a cystic lesion with low-
level internal echoes.37 When using the FCM algorithm for two components, some of the mucin
particles were labeled as belonging to the hyperechoic component along with the edges of the
mass [Fig. 5(g), two example collections of mucin particles indicated with white arrows].

Fig. 4 U-net segmentation performance in the test set in the task of segmenting the entire adnexal
mass from the surrounding tissue, compared to expert outlines. (RHD-D: ratio of the average
Hausdorff distance to the effective diameter of the mass.) Images of the four masses with the best
performance (highest Dice coefficient and lowest RHD-D) and lowest performance (lowest Dice
coefficient and highest RHD-D) are shown. Clockwise from top left with pathology (with patient
diagnosis) details: borderline ovarian mass (borderline serous tumor), epithelial ovarian mass
(benign serous cystadenoma), epithelial ovarian cancer (high-grade serous ovarian cancer), and
metastasis to the ovaries (cancer of gastro-intestinal primary origin). B, benign and M, malignant.
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Comparably, cystic lesions containing blood products, such as in an endometrioma, also dis-
played components consistent with separation in the aged blood accumulation [Fig. 5(h)].
Lastly, we observed that in some cases [e.g., benign ovarian fibroma, Fig. 5(i) and benign tera-
toma, Fig. 5(j)] acoustic shadowing, which is usually correlated with benign pathologies,38 was

Fig. 5 (a)–(j) Example results of internal component segmentation using an unsupervised FCM
algorithm. Mass pathology subtypes are as given in Table 1 (i.e., the pathology subtypes used for
dataset splitting). Specific patient diagnoses for these masses are described further in the text.
B, benign and M, malignant.
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identified as hypoechoic. We anticipate that this differentiation of acoustic shadowing from other
aspects of the masses will enhance the ability of a radiomics pipeline to distinguish between
malignant and benign features.

4 Discussion
Adnexal mass assessments are challenging tasks requiring knowledge and expertise. Thus there
is a rising interest in developing computer-aided diagnosis tools to ease and improve sonographic
evaluations, diagnostic accuracy, and patient outcomes. The first and crucial step in a machine
learning pipeline is an accurate outlining of the region of interest, the adnexal mass borders. The
study results show that using a U-net architecture for automatic segmentation of adnexal masses
on ultrasound images has excellent agreement with expert manual outlines, with a Dice score of
0.91 and RHD-D of 0.04. This approach has the potential to improve operational efficiency and
clinical workflow as it only requires the clinicians to define a bounding box surrounding the
adnexal mass, thus also reducing the variability in manually outlining the region of interest.
Several groups have studied the use of the U-Net architecture or its variations for segmentation
of areas of interest on medical images across a variety of anatomies and physiologies as well as
modalities,39–42 including ultrasound,43 computed tomography,44,45 and magnetic resonance
imaging46 of ovarian masses. However, the use of U-net segmentation for adnexal mass assess-
ments on ultrasound has been limited. In addition, most ultrasound-based radiomics classifica-
tion studies for adnexal masses have used manual segmentation.47–52 One recent study examined
the reproducibility of radiomics features extracted from ultrasound images after U-net-based
segmentations from 127 patients diagnosed with ovarian cancer.53 Although they evaluated dif-
ferent variations of the U-Net algorithm, resulting in mean Dice scores between 0.81 and 0.87
compared to the expert outlines, their segmentation of benign adnexal masses was not assessed,
and classification performance for the prediction of benign versus malignant masses was not
reported. Recently, Barcroft et al.54 reported a segmentation and classification approach for
adnexal masses on ultrasound; they evaluated several DL architectures for the segmentation task,
and their best-reported U-net model resulted in a median Dice score of 0.85 in an external test set
(184 masses) compared to manual expert outlines.

Unsupervised FCM clustering automatically identified clinically-relevant internal mass
components, which we hypothesize to be important for the future differentiation of these hetero-
geneous mass aspects via feature extraction and merging. By our implementation design, the
FCM algorithm did not differentiate between types of hyperechoic components, i.e., between
solid elements, solid-appearing, and mimickers at the same FCM level.10,14,55 Future work will
explore the differences in the radiomic features of the various hypo- and hyper-echoic compo-
nents by pathology subtype and their effect on malignancy prediction. Additionally, gelatinous
material within a mucinous cystadenoma was hyperechoic, along with the rim of the mass. This
may point to the need to differentiate the hyperechoic component along the edges of the mass
from any presence of hyperechoic material inside the mass when conducting future feature
extraction.

To our knowledge, this study is the first to combine a supervised U-net segmentation
approach with an unsupervised FCM approach for the segmentation of mass components for
both benign and malignant masses prior to feature extraction and AI classification tasks.
Chiappa et al.49 studied the importance of a separate feature analysis by the tissue constituent
in ovarian masses from 241 patients. They developed three classification systems based on mass
appearance: cystic, solid, or mixed. However, in that study, the masses were outlined manually,
while our approach is fully automated and requires no labels for the internal components. Lebbos
et al.26 also used a U-net model for the segmentation of ovarian masses from 222 patients, along
with synthetic images, while additionally identifying the internal components as cyst locules,
solid elements, or papillary projections based upon manual labels.

Our study has some limitations, typical for an investigation of this nature. First, the study
was limited to a segmentation task (i.e., segmentation of adnexal masses from the background,
followed by internal component segmentation). By design, it did not incorporate a mass detection
task or mass classification task, as we are especially interested in segmenting masses based upon
user-provided ROIs around the masses, and we are currently engaging in an in-depth study of
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component-based radiomic feature extraction and merging for mass classification. Second, it was
a single-center retrospective study. Future work will apply the model to images acquired at other
institutions, pivotal for generalizability. Third, our dataset represented the inclusion of only
adnexal masses that fit specific criteria, with exclusions applied at the patient, mass, and image
levels. Ultrasound images of a given pelvic mass can vary by the equipment manufacturer, sonog-
rapher expertise and preferences, image acquisition factors such as transvaginal versus transab-
dominal approach, and image processing parameters including but not limited to depth and gain.
Ultrasound is also affected by sound wave traits in biological tissue, which can result in speckle
noise, artifacts, and acoustic shadowing. All of these factors impact any AI pipeline for ultra-
sound in medical imaging.56 In this study, we sought to control the impact of these factors
through stringent exclusion criteria. Future steps will address these limitations by (a) investigating
the application of the segmentation and future classification model to masses that were conserva-
tively managed (i.e., did not progress to surgery); (b) incorporating additional pelvic mass eti-
ologies; (c) studying the impact of user variability and training on segmentation performance
(including at the level of the sonographer’s choice of images to archive for the patient); (d) includ-
ing other image acquisition modes, such as Doppler-based acquisition; and (e) expanding the
segmentation task to incorporate edge detection at the edge of the ultrasound image when rel-
evant. The latter, in particular, will expand the model’s applicability to real-world scenarios in
which complete visibility of the lesion edge is not always possible. Fourth, we did not study other
variations of U-net algorithms or investigate the impact of user variability in ROI selection. These
will be our focus in the near future.

5 Conclusion
Using a U-net algorithm to automatically outline adnexal masses from a bounding box had an
excellent agreement with expert outlines based on performance metrics of DSC and RHD-D.
Furthermore, an unsupervised, automated approach for segmenting internal mass components
correlated well with the clinical review of the components. Future work will apply the combined
U-net and FCM methods to a larger dataset and investigate radiomic feature-based ultrasound
classification of adnexal masses as malignant or benign, potentially providing a comprehensive
and simple physician’s decision-support tool that can improve the differentiation between benign
and malignant adnexal masses.
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