
RESEARCH PAPER

Exploring synthetic datasets for computer-aided
detection: a case study using phantom scan data
for enhanced lung nodule false positive reduction

Mohammad Mehdi Farhangi,a,*,† Michael Maynord,a,b,† Cornelia Fermüller,b

Yiannis Aloimonos,b Berkman Sahiner,a and Nicholas Petrick a,*
aFDA, CDRH, OSEL, Division of Imaging, Diagnostics, and Software Reliability,

Silver Spring, Maryland, United States
bUniversity of Maryland, Iribe Center for Computer Science and Engineering,

Computer Science Department, College Park, Maryland, United States

ABSTRACT. Purpose: Synthetic datasets hold the potential to offer cost-effective alternatives to
clinical data, ensuring privacy protections and potentially addressing biases in clini-
cal data. We present a method leveraging such datasets to train a machine learning
algorithm applied as part of a computer-aided detection (CADe) system.

Approach: Our proposed approach utilizes clinically acquired computed tomogra-
phy (CT) scans of a physical anthropomorphic phantom into which manufactured
lesions were inserted to train a machine learning algorithm. We treated the training
database obtained from the anthropomorphic phantom as a simplified representa-
tion of clinical data and increased the variability in this dataset using a set of ran-
domized and parameterized augmentations. Furthermore, to mitigate the inherent
differences between phantom and clinical datasets, we investigated adding unla-
beled clinical data into the training pipeline.

Results: We apply our proposed method to the false positive reduction stage of a
lung nodule CADe system in CT scans, in which regions of interest containing poten-
tial lesions are classified as nodule or non-nodule regions. Experimental results
demonstrate the effectiveness of the proposed method; the system trained on
labeled data from physical phantom scans and unlabeled clinical data achieves
a sensitivity of 90% at eight false positives per scan. Furthermore, the experimental
results demonstrate the benefit of the physical phantom in which the performance in
terms of competitive performance metric increased by 6% when a training set con-
sisting of 50 clinical CT scans was enlarged by the scans obtained from the physical
phantom.

Conclusions: The scalability of synthetic datasets can lead to improved CADe per-
formance, particularly in scenarios in which the size of the labeled clinical data is
limited or subject to inherent bias. Our proposed approach demonstrates an effec-
tive utilization of synthetic datasets for training machine learning algorithms.
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1 Introduction
The recent development of intelligent systems and deep neural networks makes large-scale data-
bases attractive for a variety of applications, including the diagnosis and detection of diseases in
medical imaging. In medical applications, the dataset size can be limited, collecting data can be
expensive, and the data may be subject to inherent bias slowing the progress of this new tech-
nology. The relatively small size of available labeled training datasets in medical imaging is a
major bottleneck for methods based on supervised deep learning. This is mainly due to the higher
cost of medical imaging annotations, which requires significant time and dedication by expert
clinicians to establish reliable reference standards. As a result, methods that can increase the size
of training datasets, such as synthetic datasets1 and weakly labeled datasets,2 are investigated to
mitigate this limitation.

Synthetic datasets have the potential to offer numerous advantages in the research and devel-
opment of machine learning algorithms applied in the healthcare domain.3 First, generating syn-
thetic data could be more cost effective compared with approaches that attempt to cover clinical
data population, both in terms of data collection and data annotation, especially for rare diseases
or hard-to-reach populations. Second, demographic and health-related content in clinical datasets
make it easier to identify individual subjects from real data, which can pose a risk to their privacy.
Synthetic data, on the other hand, do not correspond to any individual subject and can be used
without compromising privacy. Finally, although it can be challenging to obtain unbiased train-
ing data when there are inherent biases in the data collection process–stemming from under/over
representation of different subgroups in clinical facilities–synthetic data may serve as an alter-
native or supplement to either filling gaps in data collection or enlarging samples for a subgroup.

Synthetic imaging data can be obtained using different approaches; knowledge-based
approaches involve the use of mathematical equations, analytical models, and computer simu-
lations to generate data that mimic real imaging modalities. They rely on principles of physics,
imaging protocols, and simplifying assumptions.4,5 Although these techniques focus on model-
ing imaging systems, other forms of synthetic data, such as physical phantoms, explore data
generation methods that target modeling patients and their associated conditions. These phan-
toms typically consist of tangible objects or materials with known properties that are designed to
simulate patients with specific medical conditions, providing controlled and calibrated synthetic
data, making them potentially valuable for quality assurance, calibration, and algorithm training
and evaluation purposes.6 Deep learning-based approaches are another means that employ deep
neural networks, such as generative adversarial networks (GANs)7 and autoencoders,8 to learn
from datasets of images and generate synthetic data that closely resembles the real data.9

Training robust machine learning models for medical imaging applications often faces the
challenge of only having a limited set of real-world data. In this paper, we study the potential of
using scans of physical phantoms acquired using clinical computed tomography (CT) imaging
systems to obtain labeled data for training neural network classifiers. Our study aims to address
the performance gap of machine learning models that are trained on limited-size clinical training
datasets. By incorporating scans of synthetic abnormalities within the physical phantom as part
of the training data, we enhance the algorithm’s ability to learn the characteristics of target abnor-
malities. Simultaneously, including an unlabeled dataset of clinical scans can be used to comple-
ment the physical phantom data to expose the neural network to clinical data and increase the
variability in the training set. By combining the two sources of data, our proposed algorithm can
be trained at a lower cost while exposing it to cases expected to be found in the clinical settings.

2 Materials and Methods
We investigate the effectiveness of including image data from scans of synthetic physical phan-
toms in training neural networks within the false positive (FP) reduction stage of a multi-stage
computer-aided detection (CADe) system. In this system, shown in Fig. 1, an initial stage of the
region proposal parses the volumetric scans to identify suspicious nodule locations. The initial
stage prioritizes high sensitivity to capture diverse nodule types, often leading to many FPs.
Subsequently, an FP reduction network operates in the second stage by classifying regions
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of interest (ROIs) defined by the initial stage detections as nodule or non-nodule regions. This
second stage refines the identified candidate locations with the goal of more precisely separating
true nodules from FPs.

2.1 Datasets

2.1.1 Phantom and synthetic nodules

The synthetic database used in this study was obtained by imaging a physical anthropomorphic
thoracic phantom6 with a vascular insert attached as shown in Fig. 2(a). In the construction of this
phantom, synthetic pulmonary nodules [Fig. 2(b)] were placed in pre-defined positions either
attached to synthetic vessels or suspended in foam in a non-attached configuration. These nod-
ules vary in size, shape, and density to model a variety of potential nodules in the clinical setting.
The phantom with the inserted nodules was scanned using a 16-detector row helical CT system
(Philips, Mx8000 IDT) with varying combinations of nodule layouts, doses, and pitches; slice
collimation; and then reconstruction using various combinations of slice thicknesses and recon-
struction kernels.10 In total, 48 synthetic nodules including nodules with sizes ranging between

Region 
proposal

False Positive 
Reduction

Fig. 1 Overview of our lung nodule detection framework. The initial stage involves region proposal,
which parses the volumetric CT scan with high sensitivity to identify potential nodule locations.
Subsequently, the second stage aims for high precision, focusing on eliminating FPs generated
in the first stage by classifying the ROIs defined by the initial stage detections as nodule or non-
nodule regions.

(a)

(b) (c)

Fig. 2 (a) Photograph of the thoracic phantom with the vasculature insert attached. (b) Examples
of different synthetic nodule shapes. Clockwise from upper left: spherical, elliptical, spiculated, and
lobulated nodules.10 (c) CT scan slices of synthetic nodules with a variety of shapes and sizes.
From top to bottom, each row represents nodules in spherical, elliptical, lobulated, and spiculated
shapes. Columns from left to right represent nodules of diameters 5, 8, 10, and 20 mm. All images
were shown for the in-plane ROI size of 75 mm and the window level of −1000 to 400 HUs.
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5 and 20 mm diameter; different shapes including spherical, elliptical, lobulated, spiculated; and
densities of −630, −10, 100 HUs were used in this study. Figure 2(c) shows photographs of 16
nodules of varying sizes and shapes with a density equal to −10 HUs. The remaining 32 nodules
consist of identical shapes and sizes but with lower (−630 HU) and higher (100 HU) densities.

Figure 3 shows the process of obtaining training data from this database. To ensure con-
sistent pixel spacing across the scans in these datasets, a normalization step, in which all scans are
normalized to have a uniform 0.625 mm × 0.625 mm in-plane pixel size and a slice spacing of
2 mm, is performed. In addition, the HU intensities are clipped to the range of ½−1000; 400� and
rescaled to ½−1.0; 1.0�. From a total of 569 physical phantom nodule layouts and scans,10 4254
ROIs of size 30 mm3 are extracted and form the nodule-positive synthetic training samples.
Negative ROIs (ROIs without nodules) are obtained by randomly sampling the remaining areas
of each phantom scan, such that they do not overlap with any inserted synthetic nodule location.
Each scan is sampled 1000 times in this manner to obtain a total of 569,000 negative candidates
across the phantom scan dataset. To account for the imbalance among positive and negative
ROIs, the nodule-positive ROIs are over-sampled 250 times.11

2.1.2 LIDC-IDRI database

In addition to images obtained from scanning the physical phantom, the proposed method incor-
porates clinical data into the training in a semi-supervised fashion in which unlabeled clinical
data and labeled phantom data were included in the algorithm training. This is motivated by the
intention to mitigate the labor-intensive effort associated with clinical data annotations while still
exposing the neural network to a diverse set of abnormalities. To achieve this, unlabeled CT scans
from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-
IDRI)12 were included as part of the training data. The LIDC-IDRI dataset is a publicly available
database consisting of 1018 cases of clinical thoracic CT scans. Although the LIDC-IDRI dataset
contains lesion labels, we utilized this data in an unlabeled manner as part of our training process
to better assess the potential benefits of including phantom scan data and limiting the need for
clinical data labeling. We processed this database following the same filtering criteria as the
LUNA16 challenge.13 This preprocessing involved filtering out scans with slice thicknesses
greater than 2.5 mm, inconsistent slice spacing, or missing slices. After filtering, 888 CT scans
remained; of these, 400 were selected as unlabeled clinical training data. To ensure consistent
pixel spacing and intensity values across the datasets, the LIDC-IDRI scans are normalized in a
similar fashion to the phantom database and as shown in Fig. 3. To obtain the ROIs from this
dataset, we used the candidates provided by the LUNA16 challenge. These candidates are the
results of screening the scans by five different detectors13 and combining their outputs. These

569 CT Scans 400 CT Scans

4,254 positive 
ROIs

569,000 nodule-
negative ROIs

Intensity 
and voxel spacing 

harmonization

569 normalized 
CT scans

ROI extraction
Pre-marked nodule

locations

ROI extraction
Random locations

Intensity 
and voxel spacing 

harmonization

400 normalized 
CT scans

ROI extraction
Screening algorithms

342,272 ROIs with 
no label

Phantom Dataset LIDC Dataset

Fig. 3 Training data pre-processing and ROI extraction.
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algorithms were developed using hand-engineered features including shape index and curved-
ness local features;14 intensity, shape, and texture features;15 thresholding and morphological
operations;16 nodule enhancement engineered filters;17 and region growing with adaptive
threshold.18 The combination of these carefully designed hand-crafted features, each designed
to target specific types of nodules, such as juxta-pleural, juxta-vascular, solid, and non-solid
nodules, resulted in ∼750 candidate ROIs per scan. We extracted 30 mm3 ROIs centered at each
candidate location, again to match the process used with the phantom data.

The remaining 488 scans in this database are split into two sets for tuning (88 scans) and the
final evaluation dataset (400 scans); each scan in this database was annotated by four radiologists,
in a two-stage process: in the first stage, each of the four annotators annotates the scan inde-
pendently; in the second stage, annotators view the annotations for all annotators and reassess.
This process produces higher quality annotations and allows for a robust benchmarking of the
proposed algorithm. Following the nodule selection in the LUNA16 challenge, the nodules in the
testing set are filtered according to diameter >3 mm and annotated by >3 of four annotators.
Findings that do not pass this filtering are excluded from consideration, and their detection is not
counted as either FP or true positive.

Table 1 summarizes the distribution of training and testing scans, derived from the LIDC-
IDRI and phantom databases. The CT scans in the phantom database are used solely for training,
whereas the LIDC-IDRI scans are divided into three non-overlapping sets: unlabeled training,
labeled tuning, and labeled test sets. As mentioned above, annotations were available for the
entire LIDC-IDRI database, but the 400 scans assigned to the “training unlabeled” set were used
without labels to investigate the impact of unlabeled clinical datasets in mitigating distributional
differences between the training and testing data.

2.2 Training Framework
We build our FP reduction network via a semi-supervised learning framework and a combination
of stochastic augmentations. The unlabeled clinical data in our training set aim to help the net-
work learn the characteristics of a variety of abnormalities actually observed in the clinical data
that go beyond the simple shapes found in our phantom. The augmentations, on the other hand,
are introduced to enrich and add variability into the training set and better account for the visual
appearance of the abnormalities in the phantoms as they are overly simplified compared with
clinical data.

The training framework is inspired by the consistency prediction introduced in the
fixMatch.19 Specifically, the proposed loss function to update the neural network weights is
defined on two streams of labeled and unlabeled datasets:

EQ-TARGET;temp:intralink-;e001;117;316L ¼ ls þ λ1lu þ λ2lp; (1)

where ls corresponds to the loss term defined on the labeled stream of data and functioning as a
conventional fully supervised loss function. The second term in Eq. (1) is the consistency loss
(lu) defined on the unlabeled dataset, which ensures that predictions for unlabeled data remain
consistent across different transformations on input ROIs. This is achieved by passing the unla-
beled stream of data through a set of weak augmentation operations and a set of strong augmen-
tation operations, as shown in Fig. 4. The weak and strong augmentations used in this work are
defined below. Predictions obtained from each transformation are forced to agree by the con-
sistency loss in this figure. To ensure that the network updates based on the consistency loss

Table 1 Number of CT scans from the LIDC-IDRI and anthropomorphic phantom datasets.
Phantom scans are exclusively used for training.

Training labeled Training unlabeled Tuning Test Total

LIDC-IDRI — 400 88 400 888

Phantom 569 — — — 569

The LIDC-IDRI dataset represents clinical data, with non-overlapping scans allocated for unlabeled training,
labeled tuning, and labeled test for the evaluation of the method.
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occur for samples in which the network predictions are stable, this term is applied only to ROIs
with predictions in the weakly augmented path that surpass a confidence score empirically set to
0.95. This allows the neural network to rely primarily on labeled data in cases in which pre-
dictions on unlabeled data have a lower confidence. For example, in the initial stages of training
when the network predictions are closer to random guessing, the network is primarily driven by
the labeled data. However, as training progresses and the network predictions on unlabeled data
achieve higher levels of confidence, the contribution from the consistency loss is activated.19

In addition to the previous loss terms, the samples in the unlabeled stream are assigned
pseudo-labels prior to the training, as shown in the third term of Eq. (1) (lp); the neural
network11 fully trained on physical phantom data is applied to the unlabeled dataset, and the
samples with a prediction score above a threshold are labeled as nodule and non-nodule, allowing
the model to learn directly from the unlabeled data and improve its predictions. To avoid noise in
the assigned pseudo-labels, a high threshold value is determined empirically with the values of
0.01 and 0.99 assigning the negative and positive pseudo-labels, respectively.

The neural network architecture for the FP reduction application task is identical to the clas-
sification network presented in our previous work.11 The architecture of this network is presented
in Fig. 5 and consists of three convolutional and one fully connected blocks. Each convolutional
block consists of two 3D convolutions, each followed by a Leaky ReLU activation function. The
outputs from the second convolution layers in each block are sub-sampled through 3D Max
Pooling. The dense block consists of two fully connected layers, preceded by 3D average pool-
ing. We selected the hyperparameters of this network identical to our previous work,11 which
include 32, 64, and 128 kernels of size 3 × 3 × 3 in each convolutional block, respectively.
Within each block, dropout layers with a rate of 0.3 are applied during training. In the dense
block, each fully connected layer consists of 128 nodes, and during training, a dropout value of
0.9 is used. The only adjustment to the training hyperparameters is introduced in the loss term
controlling the contribution of the labeled and unlabeled stream of data. We derive, from our
tuning set, the parameters λ1 ¼ 0.5 and λ2 ¼ 0.5 to update the network parameters during the
training phase. The higher value of λ1 in proportion to λ2 implies that the network relies more on
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Fig. 4 Diagram of the consistency loss (l u) in Eq. (1). The unlabeled stream of data is passed
through different strengths of augmentation, and the network is updated for consistent predictions.

Conv3D

Leaky ReLU

Conv3D

Leaky ReLU

MaxPool3D

Dropout

AvgPool3D

Dense

Dropout

Dense

Dropout

Dropout

3D ROI

Classification

Conv3D

Leaky ReLU

Conv3D

Leaky ReLU

MaxPool3D

Dropout

Dropout

Conv3D

Leaky ReLU

Conv3D

Leaky ReLU

MaxPool3D

Dropout

Dropout

Fig. 5 Architecture of the FP reduction classification network.11 Three blocks of convolutional
layers are applied consecutively followed by two fully connected layers.
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the labeled dataset to update its weights during training. In addition, we introduce a weight decay
over the kernel weights as a regularizer to improve the training stability.11 The classification loss
terms of ls, lu, and lp in Eq. (1) are implemented using focal loss:20

EQ-TARGET;temp:intralink-;e002;117;523FLðp; yÞ ¼ −αð1 − ptÞγ logðptÞ: where pt ¼
�
p if y ¼ 1

ð1 − pÞ otherwise
: (2)

In Eq. (2), p corresponds to network predictions, and y corresponds to the ground truth or
pseudo-labels. This function focuses the training on less-represented examples by adjusting the
parameter α, empirically set to 16.0. The parameter γ (empirically set to 2.0) controls the degree
of emphasis on hard examples, i.e., samples in which the network assigns less confident scores.
This function can be seen as a generalized form of the binary cross-entropy function, in which
setting α and γ to 1 simplifies the function to a standard binary cross-entropy.

The training framework employs a range of augmentations in both the labeled and unlabeled
data streams, each parameterized and applied with varying strengths during training. Figure 6
shows these augmentations, displaying three versions of the perturbed image with different aug-
mentation strengths. In the unlabeled data stream, the flip and translate augmentations, shown as
weak augmentations in Fig. 4, serve as the baseline for the consistency loss computations.
Following a weak augmentation, additional augmentations from Fig. 6 are randomly selected,
transforming the image further; these are termed as strong augmentations in Fig. 4. In the labeled
data stream, with the addition of “identity transformation” representing no operation, these aug-
mentations are applied uniformly across all input samples—both positive and negative ROIs—
selected at random with equal probability. This enriches the training dataset, exposing the model
to diverse data variations and better utilization of the training data.

3 Experimental Results
We benchmark the performance of the proposed algorithm with two experiments. First, we study
the performance of the algorithm when trained only on physical phantom and unlabeled clinical
data and evaluate it on clinical scans obtained from the LIDC-IDRI database. The second experi-
ment illustrates the potential benefit of using physical phantom data to enlarge a small clinical
labeled dataset derived from the LIDC-IDRI database.

3.1 Training on Phantom and Unlabeled Clinical Scans
This section reports on the experimental results when the labeled training data are obtained from
the physical phantom as outlined in Sec. 2.1.1. The algorithm is evaluated on a test set that
consists of 400 clinically scanned subjects from the LIDC-IDRI database, containing a total
of 520 nodules. For this testing dataset, an average of 750 candidates per scan was generated
using the algorithms detailed in Sec. 2.1.2. In reporting the performance, we count a candidate
location as a detection success (true positive) if the center of the detection lies within the boun-
dary of annotations provided in the reference standard. The effectiveness of the proposed method
is assessed using the free receiver operating characteristic (FROC) curve and is summarized by

Translate RotateFlip Rescale Contrast Blur Brightness Equalize Posterize Sharpness Cutout

Original

Fig. 6 Visualization of the parameterized augmentations. Each column illustrates three instances
of the augmentation. Each image shows the central slice of the transformed volumetric image.
The “translate” and “flip” augmentations are referred to as weak augmentations in the unlabeled
data stream. When followed by any of the other augmentations, they are referred to as strong
augmentations.
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the competition performance metric (CPM).21 The CPM measures the average sensitivity at
seven operating points of the FROC curve: 1

8
, 1
4
, 1
2
, 1, 2, 4, and 8 FPs per scan. Figure 7 shows

the FROC performance of the proposed training method, including augmentations and unlabeled
data [please refer to Eq. (1)], indicating a CPM value of 0.773. For reference, the figure also
includes the performance of a random prediction classifier on this set of candidates, represented
by the red curve. This classifier assigns each nodule candidate a random confidence score
between 0 and 1. Given the heavily imbalanced nature of positive and negative candidates in
the testing set, with about 750 FPs per scan, the random score assignment leads to a significantly
lower performance. The comparison between the two curves highlights the discrimination power
gained by training the neural network using labeled phantom scan data.

The results in Fig. 7 show that the algorithm achieved a relatively high sensitivity of 80% at
one and 90% at eight FPs per scan. Given the limited clinical relevance of a higher number of
FPs, the evaluation in this figure focuses on the range of FP rates of up to eight FPs per scan.
However, we noted that the algorithm failed to detect and retrieve 12 nodules from the list of
available candidates even at 250 FPs per scan. Figure 8 shows the central slice images of all 12
false negatives. The failure to detect the two calcified nodules—shown in the bottom row of the
figure—may be attributed to their high density as the synthetic nodules in our training phantom
dataset6 were set to a maximum density of 100 HU as detailed in Sec. 2.1.1. The remaining false
negatives all represent small nodules (<7 mm in diameter) that are either attached to the chest
wall or obscured by other organs. The occurrence of these false negatives may be attributed to the
under-representation of nodules with attachment to the pleural surface and near other organs as
they were not part of the anatomical context specifically modeled in the phantom scans.6

Figure 9 shows the impact of parameterized augmentations and the inclusion of the unla-
beled dataset in the final model’s performance. For this experiment, the training data are passed
through translation, rotation, and flip augmentations, which are the typical augmentation meth-
ods for the lung nodule detection applications, referred to as CNNAug−. In comparison, CNNAugþ

shows the performance of the network when all transformations introduced in Sec. 2 are applied
during training. In the second pair of comparisons, the neural network is trained when the unla-
beled clinical scans are deleted from the training set (CNNUnlab−), and it is compared against a
training set in which the LIDC-IDRI scans are included as unlabeled data, CNNUnlabþ . Note that
CNN

Augþ
Unlabþ is the performance curve shown in Fig. 7.
The comparison between the CNNAug−

Unlab− and CNN
Augþ
Unlab− performances in Fig. 9 shows that

training with the parameterized augmentations resulted in a higher performance with the

Fig. 7 Free response operating characteristic (FROC) performance of the algorithm trained on
synthetic data, unlabeled clinical data and augmentations. The performance is on test data from
400 clinical LIDC-IDRI scans. For reference, the performance of a random prediction classifier is
shown with the red curve.
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Fig. 8 Central slices of nodules that were missed by the algorithm. In all images, the nodule is
centered in an ROI of an in-plane dimension of 75 mm2. Images are shown with the same window
level of −1000 to 400 HU.

Fig. 9 FROC performance for different scenarios of training using the phantom CT data:
CNNAug−

Unlab− shows the baseline FROC performance when training was performed by flip, rotation,
and translation augmentations without the inclusion of unlabeled clinical scans, resulting in CPM
performance = 0.654. CNNAug−

Unlabþ shows the performance when unlabeled clinical scans were
added to the baseline training framework with CPM = 0.698. CNNAugþ

Unlab− shows the performance
when training data were enriched with all of the proposed augmentations without inclusion of unla-
beled data with CPM = 0.734. CNNAugþ

Unlabþ shows the performance of the proposed approach with
the summary performance of CPM = 0.773.

Farhangi et al.: Exploring synthetic datasets for computer-aided detection. . .

Journal of Medical Imaging 044507-9 Jul∕Aug 2024 • Vol. 11(4)



performance summary of CPM = 0.654 versus CPM = 0.734. We estimated the confidence inter-
val (CI) of the CPM difference of the two training strategies by bootstrapping the difference in
CPM 1000 times. The estimated 95% CIs of the CPM difference of the training strategies was

[0.052, 0.102], confirming a statistically significant improvement for CNNAugþ
Unlab− compared with

CNN
Aug−
Unlab−. Adding the unlabeled CT scans of the LIDC-IDRI database to the training

CNN
Augþ
Unlabþ also led to a higher detection performance as shown in the figure, with a CPM score

of 0.773 compared with a CPM score of 0.734 for CNNAugþ
Unlab−. We estimated the 95% CI of the

CPM difference of the two training strategies (CNNAugþ
Unlab− versus CNNAugþ

Unlabþ ) as [0.024, 0.055],
thereby confirming that the improvement obtained with the inclusion of unlabeled LIDC-IDRI
data was statistically significant. These improvements are attributed to the simplified nature of
the phantom data that is enhanced by the stochastic augmentations and the inclusion of the clini-
cal data within the training framework.

3.2 Enlarging a Labeled Training Set with Phantom Scans
To illustrate the effectiveness of including phantom scans to expand a small clinical dataset, we
conducted a set of experiments that combined a number of labeled baseline clinical scans with
phantom scans during the training process. In these experiments, the baseline labeled training
sets consist of an increasing number of labeled LIDC-IDRI scans, and the algorithm test per-
formance is reported based on the same 400 scans as outlined in the previous section. In the first
set of experiments, we train the classification network using augmentations of flip, rotation, and
translation (i.e., CNNAug−

Unlab−). The results of these experiments are reported in Table 2. Each row
of the table reports the sensitivity and CPM performance when the given number of LIDC-IDRI
scans is used for training, followed by the results when the training datasets are expanded with
569 phantom scans. In consecutive rows, we incrementally add more scans from the LIDC-IDRI
database into the training.

The results demonstrate that augmenting small-sized LIDC-IDRI training data (i.e., 5, 25,
and 50 scans) with phantom scan data improves all of the performance metrics. However, this
improvement diminishes as more clinical LIDC-IDRI scans are added to the labeled training
data. Furthermore, the experiments reveal that including training phantom scans produces a
greater sensitivity improvement at higher numbers of FPs per scan, compared with the relatively
smaller improvement observed at lower FP rates in most of our experiments. For example, when
only five LIDC-IDRI scans are used for training, the improvement in sensitivity at 8 FPs/scan is

Table 2 Performance of the FP reduction algorithm trained with flip, translation, and rotation aug-
mentations, CNNAug−

unlab−.

Training scans Sensitivity at different FPs per scan

CPM 95% CILIDC-IDRI Phantom 0.125 0.25 0.5 1 2 4 8

5 — 0.468 0.557 0.623 0.662 0.717 0.756 0.789 0.653 (0.037, 0.125)
569 0.517 0.606 0.688 0.759 0.815 0.859 0.894 0.734

25 — 0.553 0.625 0.674 0.721 0.751 0.793 0.830 0.707 (0.036, 0.113)
569 0.569 0.665 0.746 0.813 0.863 0.891 0.910 0.780

50 — 0.578 0.668 0.726 0.778 0.814 0.853 0.875 0.756 (0.032, 0.088)
569 0.624 0.700 0.789 0.847 0.892 0.912 0.936 0.814

100 — 0.695 0.767 0.813 0.864 0.890 0.903 0.920 0.836 (−0.031, 0.012)
569 0.641 0.722 0.790 0.866 0.898 0.929 0.946 0.827

400 — 0.775 0.848 0.898 0.926 0.947 0.968 0.973 0.905 (−0.029, −0.008)
569 0.723 0.813 0.878 0.921 0.939 0.962 0.970 0.886

Each row represents the test performance when different numbers of LIDC-IDRI scans are selected for training
and compared against a training set that is enlarged with 569 phantom scans. The comparison is reported in
terms of sensitivities at different FPs per scan and the overall CPM. The scores of the best model in each
comparison pair are shown in bold. The last column shows the 95% CI of the CPM difference of the two training
strategies (i.e., with and without phantom scans).
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10.5% (0.894 to 0.789), whereas the improvement is only 4.9% (0.517 to 0.468) at 0.125 FPs/
scan. This trend, observed to some extent in all experiments, ultimately resulted in a lower overall
CPM performance with the addition of phantom scans in the training set (i.e., 400 LIDC-IDRI
scans in the last row of the table). This trend is likely a result of the simplified appearance of
phantom scans, particularly concerning negative/FPs ROIs. Unlike the negative ROIs extracted
from the LIDC-IDRI database, which represents various anatomical structures and hard mimics
such as blood vessels, airways, and scar tissues, the negative ROIs from the phantom scans lack
such diversity in anatomy. These hard mimics may exhibit appearances similar to lung nodules in
CT images, making their discrimination from true positives challenging for the neural network
classifier. Consequently, during training, the classifier may become overwhelmed by the sub-
stantial number of simple phantom FPs when an abundance of these samples serves as negatives
in the training data. This results in a network with less discriminatory power between true pos-
itives and more challenging FPs compared with a network trained on a larger number of labeled
clinical scans.

4 Discussion
In this study, we introduced a novel method for training neural networks using CT scans obtained
from a physical anthropomorphic phantom. To address the challenge posed by the simplified
appearances of the manufactured lung nodules in the phantom, we conducted an investigation
into the potential benefits of enriching the training dataset. This enrichment involved the incor-
poration of a broad range of randomized and parameterized augmentations. In addition, we
explored the integration of unlabeled clinical data, providing an alternative when data annota-
tions are prohibitively expensive or challenging to obtain.

Our experimental results demonstrate the promise of training neural networks with, or par-
tially with, physical phantom scan data; using our proposed method, a CPM performance of
0.820 was obtained with only 25 labeled clinical scans (the second row in Table 3). This per-
formance surpassed the baseline framework even when the size of the training set in the baseline
was increased to 50 labeled clinical CT scans (the third row in Table 2, CPM = 0.756) and was
only slightly worse than the performance when the size of the labeled training set increased to
100 scans (the fourth row of Table 2, CPM = 0.836).

The contribution of the phantom data was more pronounced when training was performed
with traditional augmentations, such as flip, rotation, and translation (CNNAug−), as shown in

Table 3 Performance of the FP reduction algorithm trained with all augmentations and when
including the unlabeled clinical data, CNNAugþ

unlabþ .

Training scans Sensitivity at different FPs per scan

CPM 95% CILIDC-IDRI Phantom 0.125 0.25 0.5 1 2 4 8

5 — 0.592 0.662 0.772 0.777 0.822 0.861 0.888 0.761 (−0.014, 0.040)
569 0.574 0.658 0.742 0.800 0.849 0.884 0.903 0.773

25 — 0.640 0.716 0.786 0.830 0.864 0.899 0.910 0.806 (−0.011, 0.039)
569 0.661 0.717 0.777 0.850 0.897 0.913 0.922 0.820

50 — 0.703 0.773 0.830 0.870 0.908 0.920 0.940 0.849 (−0.035, 0.009)
569 0.661 0.733 0.791 0.871 0.915 0.939 0.949 0.837

100 — 0.723 0.780 0.858 0.910 0.923 0.936 0.954 0.869 (−0.034, 0.002)
569 0.674 0.747 0.823 0.883 0.924 0.943 0.961 0.851

400 — 0.757 0.844 0.897 0.933 0.955 0.963 0.971 0.903 (−0.027, 0.003)
569 0.730 0.814 0.871 0.920 0.951 0.965 0.971 0.889

Each row represents the performance when different numbers of LIDC-IDRI scans are selected for training and
compared against a training set that is enlarged with 569 phantom scans. The comparison is reported in terms
of sensitivities at different FPs per scan and the overall CPM. The scores of the best model in each comparison
pair are shown in bold. The last column shows the 95% CI of the CPM difference of the two training strategies
(i.e., with and without phantom scans).
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Table 2. This was primarily evident in the reported 95% CIs calculated for the CPM difference
between the two training strategies. For example, the improvement obtained by adding phantom
scans to the training set of 50 clinical scans had a CI of (0.032, 0.088). However, as the number of
clinical scans increased or training was conducted with a stronger set of augmentations, the ben-
efit of the phantom dataset diminished, as indicated by the paired comparisons shown in Table 3.
This trend could be attributed to the variability present in the training set; when there is limited
variability due to a smaller number of training samples or restricted augmentation, the added
benefit of phantom scans is more pronounced. Although some experiments in Table 3 show slight
improvements in the CPM performance, these improvements remain too small to draw any sub-
stantive conclusions.

To evaluate the performance of our neural network compared with existing methods, we
conducted an additional study using the LIDC-IDRI database. Here, the entire clinical database,
consisting of 888 scans, was divided into 10 folds, and 10-fold cross-validation was employed to
assess the network’s performance across the entire dataset. This setup aligns with established
practices in the literature22–24 for comparing our neural network with existing methods. The
10-fold cross-validation yielded a CPM score of 0.915, a performance level comparable to
state-of-the-art results in this application and clinical data.22–24

5 Conclusion
Synthetic data, such as physical anthropomorphic thorax phantoms, may help reduce the number
of labeled clinical datasets needed for training neural networks. In this work, we investigated a
novel method to expand clinical datasets using data containing synthetic lung nodules to effec-
tively expand the training set and improve the performance for CADe systems. To address dis-
tribution differences between clinical and phantom data, in which phantom and synthetic nodules
represent simplified versions of clinical lung CT data, our method incorporates image augmen-
tations. These augmentations introduce perturbations and enhance variability in the appearances
of abnormalities. Furthermore, our approach adopts a semi-supervised learning approach, expos-
ing the neural network to real clinical data without associated labels. This integration brings
the advantages of real-world data variability and characteristics to the training process without
incurring substantial annotation costs. The combination of these three strategies shows real prom-
ise in overcoming challenges related to a small training dataset and the costly annotation of
medical data.
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