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ABSTRACT. Purpose: Our objective was to train machine-learning algorithms on hyperpolarized
3He magnetic resonance imaging (MRI) datasets to generate models of accelerated
lung function decline in participants with and without chronic-obstructive-pulmonary-
disease. We hypothesized that hyperpolarized gas MRI ventilation, machine-learn-
ing, and multivariate modeling could be combined to predict clinically-relevant
changes in forced expiratory volume in 1 s (FEV1) across 3 years.

Approach: Hyperpolarized 3He MRI was acquired using a coronal Cartesian
fast gradient recalled echo sequence with a partial echo and segmented using a
k-means clustering algorithm. A maximum entropy mask was used to generate a
region-of-interest for texture feature extraction using a custom-developed algorithm
and the PyRadiomics platform. The principal component and Boruta analyses were
used for feature selection. Ensemble-based and single machine-learning classifiers
were evaluated using area-under-the-receiver-operator-curve and sensitivity-
specificity analysis.

Results: We evaluated 88 ex-smoker participants with 31� 7 months follow-up
data, 57 of whom (22 females/35 males, 70� 9 years) had negligible changes in
FEV1 and 31 participants (7 females/24 males, 68� 9 years) with worsening
FEV1 ≥ 60 mL∕year. In addition, 3/88 ex-smokers reported a change in smoking
status. We generated machine-learning models to predict FEV1 decline using dem-
ographics, spirometry, and texture features, with the later yielding the highest clas-
sification accuracy of 81%. The combined model (trained on all available
measurements) achieved the overall best classification accuracy of 82%; however,
it was not significantly different from the model trained onMRI texture features alone.

Conclusion: For the first time, we have employed hyperpolarized 3He MRI venti-
lation texture features and machine-learning to identify ex-smokers with accelerated
decline in FEV1 with 82% accuracy.
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1 Introduction
Pulmonary hyperpolarized 3He gas magnetic resonance imaging (MRI) provides a means to
quantify ventilation abnormalities using ventilation defect percent (VDP)1 that stem from abnor-
malities in the large and small airways as well as emphysema.2 Using forced expiratory volume in
1 s (FEV1), it is difficult to predict patients with chronic airflow obstruction that will worsen with
an accelerated decline in lung function. MRI-VDP measurements were previously shown to
progressively worsen in patients with a stable FEV1 and predict worse outcomes over short
time-periods.3,4 While spirometry measurements of lung function are straightforward and
cost-efficient to implement, they do not provide information about the small airways, which are
believed to drive COPD pathogenesis.

In contrast, airway structural changes can be evaluated using established quantitative com-
puted tomography (CT) measurements.5 Conversely, MRI VDP1 provides functional information
and has been shown to predict COPD exacerbations6 and longitudinal changes in quality of life as
well as exercise capacity.3 Recent studies have shown that CT radiomics features are associated
with lung function in COPD,7 emphysema severity,8 and provide complementary information to
established quantitative CT measurements.9,10 Despite these advantages, current predictive
models of COPD progression are usually based on clinical measurements but none incorporate
information derived from pulmonary CT or magnetic resonance imaging (MRI).11

Texture analysis provides a unique opportunity to reveal and quantify hyperpolarized 3He

MRI ventilation patchiness. Several recent investigations in COPD8,10,12 have clearly demon-
strated the advantages of using radiomics approaches on CT images. Since binary VDP mea-
surements do not exploit the full spectrum of information and spatial content that is inherent to
hyperpolarized gas MRI, our main objective was to develop a texture-based machine learning
model to identify ventilation features that can predict patients with an accelerated annual FEV1

decline. Our secondary objective was to generate novel measurements of MRI ventilation hetero-
geneity and test their performance at predicting accelerated FEV1 decline.

In COPD, rapid decliners have been previously defined as patients with a decline in
FEV1 ≥ 4013,14 or ≥60 mL∕year.10,15–18 In general, the annual FEV1 decline is larger in patients
with mild COPD stages and less pronounced airflow limitation.16,18 Therefore, we tested multiple
single and ensemble classifiers to determine the best model for predicting COPD patients who
would experience an FEV1 decline ≥60 mL∕year, over a 3-year period. Such predictive models
may serve as tools for an early detection of rapidly progressing patients and facilitate early treat-
ment options for this subgroup of patients that are at a higher risk of progressing to a greater
disease severity.

2 Materials and Methods

2.1 Study Design and Participants
All participants provided informed written consent to a study protocol approved by a local
research ethics board and in compliance with the Health Canada approved and registered
protocol19 (clinicaltrials.gov NCT02279329, Institutional Review Board IRB00000940).
Inclusion criteria were a history of cigarette smoking >10 pack years, age between 50 and
85 years at baseline. Ex-smoker participants were included who had ceased smoking ≥1 year
prior to the study visit, with no cut-off in terms of smoking cessation. COPD subjects were
classified according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD)
grades.20 Participants also completed a longitudinal follow-up visit at 24� 6 months after the
baseline visit.19 Participants that reported a change in smoking status from ex-smokers to current
smokers at follow-up visit were included in the analysis. The CONSORT diagram for the
Thoracic Imaging Network of Canada (TINCan) study cohort participants is depicted in Fig. 1.

2.2 Pulmonary Function Tests and Image Acquisition
Spirometry, plethysmography, and the diffusing capacity of the lungs for carbon monoxide (DLCO)
were measured according to the American Thoracic Society/European Respiratory Society
guidelines21 using a whole-body plethysmography system (MedGraphics Corporation, St Paul,
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Minnesota, United States) and attached gas analyzer.22 COPD was defined as post-bronchodilator
spirometry according to the GOLD criteria.20 The 6MWD23 test and St. George’s Respiratory
Questionnaire (SGRQ)24 were administered under supervision.

Anatomic proton (1H) and hyperpolarized 3He MR images were acquired using a whole-
body 3.0 Tesla Discovery MR750 system (GE Healthcare, Milwaukee, Wisconsin, United
States), a whole-body radiofrequency coil and a fast gradient recalled echo (FGRE) sequence
with a partial echo implementation, with acquisition parameters as previously described.25

Hyperpolarized 3He MRI was acquired using a linear bird-cage transmit/receive chest coil
(RAPID Biomedical GmbH, Wuerzburg, Germany). A turn-key system (HeliSpin™, Polarean
Inc, Durham, North Carolina, United States) was used to polarize 3He gas to 30% to 40% and
doses (5 mL∕kg body weight) diluted with N2 were administered in 1.0 L Tedlar® bags.
Hyperpolarized 3HeMRI diffusion-weighted imaging was performed using a 2D multi-slice fast
gradient-echo method, as previously described,25 during breath-hold for acquisition of two
interleaved images with and without additional diffusion sensitization with b ¼ 1.6 sec ∕cm2

(maximum gradient amplitude [G] = 1.94 G/cm, rise and fall-time = 0.5 ms, gradient duration
= 0.46 ms, and diffusion time = 1.46 ms).19 Pulmonary function data and imaging were acquired
during both baseline and follow-up visits.

2.3 Image Analysis and Proposed Algorithm
Baseline and follow-up visit 1H and 3He MR images were processed by a single observer where
the thoracic cavity was segmented from the 1H images using a seeded region-growing algorithm,
and the 3He ventilation region was segmented using k-means clustering.1 The generated maxi-
mum entropy mask was then applied to identify the ventilated region-of-interest (ROI) for feature
extraction. Diffusion-weighted images were automatically processed to generate apparent
diffusion coefficient (ADC) values and images, as previously described.22

MRI VDP was generated using a semi-automated segmentation approach, as previously
described.1 Ventilation defect cluster percent (VDCP), which is the sum of ventilation-defect
cluster volume normalized to the total lung volume, and defect cluster sizes were generated
by an automated in-house custom-developed algorithm, as described in the prior proceedings
paper.26 Briefly, the proposed cluster algorithm iteratively segments unventilated MRI volumes
until the maximum sphere fit (or multiple spheres of the same size) within the unventilated

Fig. 1 CONSORT flow diagram. Of the 266 participants enrolled in the TINCan study, 33 were
enrolled in a sub-study and 61 either cancelled or did not complete all required tests during visit 1.
Of the 172 participants that completed visit 1, 79 participants did not complete a 3-year follow-up
visit 2 and 5 had artifacts present in their images, which were excluded from further analysis.
Eighty-eight ex-smoker participants with visit 1 and visit 2 data were analyzed in this study, of
which 31 had ΔFEV1 ≥ 60 mL∕year and 57 had ΔFEV1 < 60 mL∕year.
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volume is identified. This sphere volume(s) is then removed from the non-ventilated region and
the process is iteratively repeated until the non-ventilated region is filled by spheres. This is
similar in approach to sphere packing previously investigated for radio-surgical treatment
planning.27

The approach was implemented using a naïve greedy algorithm where S ¼ ½b1; b2; : : : ; bn�
is a set with n elements, where each element bn ¼ Bnðr; lÞ is an open sphere of radius r at loca-

tions ~l. Determining the required minimum number of spheres of unequal sizes resulted in the
following minimization problem

EQ-TARGET;temp:intralink-;e001;114;638min
S

fkSk0g∶ S ∈ Rn; (1)

where the cardinality of the set S and ∀ ðb ∈ SÞ ∃ ðr; lÞ is minimized. To ensure that the spheres
completely fill the unventilated region-of-interest R and are within the thoracic cavity, several
constraints were implemented. First, the intersection between the region that is being filled with
spheres ðRÞ and the spheres ðbÞ was set to b. Furthermore, to prevent spheres from overlapping,
the overlap between two spheres (b and b 0) was fixed to result in a null set

EQ-TARGET;temp:intralink-;e002;114;549b ∩ R ¼ b & b ∩ b 0 ¼ ∅: (2)

Avolume constraint was also imposed such that the total volume of spheres was equal to the
volume of the specified unventilated region R

EQ-TARGET;temp:intralink-;e003;114;501

X

b∈S
VðbÞ ¼ VðRÞ: (3)

The specified regions were filled with spheres, where the minimum sphere diameter was
equal to one voxel (5 × 5 × 5 mm3) such that the total volume of spheres with diameter equal
to one voxel was equal to be the total residual volume not clustered into large (>one voxel)
sphere sizes. To further simplify the problem, there were no location constraints on the sphere
spatial position.

We used MATLAB R2021a (MathWorks) to solve the minimization problem and generated
VDCP to calculate cluster-defect-diameter voxel size one (CDD1) or the number of small ven-
tilation defects, which is the cumulative number of defect clusters of one voxel, as shown in
Fig. 2. Low ventilation cluster slopes were also calculated based on the log–log relationship
between the cumulative number of spheres and cluster size.28,29

Further texture feature extraction was conducted using an open-source PyRadiomics soft-
ware, detailed in the next section. Unlike the proposed algorithm that analyzes the unventilated
region, texture features were extracted from the inhaled hyperpolarized gas distribution within
the thoracic cavity.

2.4 Feature Extraction and Selection Pipeline
The complete pipeline for processing the baseline and follow-up visit images is summarized in
Fig. 3. First, we generate a maximum entropy mask by segmenting the 3He ventilation image as
previously described.1 We then use a custom-developed algorithm to calculate the ventilation
defect clusters, described above, and the PyRadiomics platform30 for extracting texture features.
Texture features were calculated from gray-level histograms and matrices generated from the
ROI of the original image.

We generated first-order texture features from the gray-level histograms and also evaluated
the texture features calculated from run-length, gap-length, co-occurrence, size-zone, depend-
ence, and neighborhood gray tone matrices using the PyRadiomics open-sourced platform
(version 2.2.0) in Python environment (version 3.7.5).30 Image processing filters were also
applied for the extraction of wavelet band-pass filtering texture features. This further quadrupled
the number of extracted features due to permutations of high-pass and low-pass filters for wavelet
decomposition, resulting in 376 additional MRI texture features. Low-pass filtering in both direc-
tions (LL) assesses the lowest frequencies, low-pass filtering followed by high-pass filtering
(LH) assesses horizontal edges, high-pass filtering followed by low-pass filtering (HL) assesses
vertical edges and high-pass filtering in both directions (HH) assesses diagonal details.31
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Fig. 3 Image processing and model generation pipeline. Hyperpolarized noble gas MR images
were analyzed using custom-developed algorithms to calculate ventilation defect clusters and tex-
ture features. Raw MR images and corresponding binary lung masks were used to generate the
regions-of-interest (ROI), which were analyzed via the PyRadiomics platform to calculate shape
and first- and higher-order texture features. Feature selection was performed using the training set,
combined with PCA and Boruta analysis. Classification learner application was used for model
generation, which was trained using a fivefold cross-validation scheme, with 20% of data reserved
for the testing set.

Fig. 2 Ventilation defect cluster volume output from custom-developed algorithm. A representative
66-year old male ex-smoker participant with COPD: FEV1 ¼ 1.93 L, VDP = 25%, ΔFEV1 ¼
−0.22 L, and ΔVDP ¼ 1% between visits. Three-dimensional isotropic ventilation volume shown
in cyan and ventilation defects represented by different sphere sizes ranging from small (yellow =
sphere diameters of 3 to 5 voxels) to large (red = sphere diameters of 9 to 13 voxels).
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The resulting data and 496 extracted features were randomly assigned into training and test-
ing sets with 80%/20% data split. Participants were randomly divided into five groups and mod-
els were trained using the training set and a fivefold cross-validation scheme. Therefore, training
was performed during five iterations, whereby for each iteration, the model was trained on four
groups and validated on one group. Classification learner application (MATLAB R2021a) was
used for generating all the models using the training dataset, with 20% of unseen data reserved as
the final testing set to determine model accuracy. Feature selection was performed on the training
set using principal component analysis (PCA) and Boruta analysis to rank and determine non-
redundant texture features significantly contributing to the predictive power of the machine learn-
ing models.

PCA begins by standardizing the data and calculating the covariance matrix, which
describes the relationships between features. This matrix is decomposed into eigenvectors and
eigenvalues, representing the directions of maximum variance and their magnitudes, respectively.
The top eigenvectors, known as principal components, are selected based on their corresponding
eigenvalues to capture the most variance in the data. These principal components are used to
transform the original data into a lower-dimensional space while preserving as much variance
as possible. Boruta analysis is a feature selection technique designed to identify pertinent var-
iables amidst high-dimensional datasets and used a two-step correction for multiple testing.
Leveraging a random forest algorithm in conjunction with shadow feature creation, Boruta eval-
uates the importance of predictor variables iteratively, distinguishing between genuine predictors
and random noise. This methodological approach enhances model interpretability and reduces
the risk of overfitting. After creating shadow features using the original features, they are con-
catenated with the original dataset and used for training the random forest classifier. Feature
importance is computed for the highest-rated shadow features and all original features that are
more important than the corresponding shadow features are kept. This is repeated for multiple
iterations, keeping track of the most important features using z-score statistics to determine the
final subset of features [number of trees in the forest = 200, maximum iterations = 300, maximum
tree depth = 10 (branches), percentage of shadow feature threshold = 95%, and alpha-level =
0.05]. We utilized all wavelet band-pass filtering features that were available in the PyRadiomics
platform (version 2.2.0), with the detailed mathematical descriptions of all the selected and
extracted texture features provided in Table 3 and Table S1 in the Supplementary Material.30

2.5 Machine learning and Statistical Analysis
Once all the features and parameters were selected, machine learning models were generated
based on (1) demographic measurements alone, (2) spirometry measurements alone, (3) imaging
and texture measurements alone, and (4) combination of all available measurements. Fivefold
cross-validation training was performed using several machine learning algorithms, including
single classifiers and ensemble classifiers, to determine the best model for identifying accelerated
disease progression. The data were standardized and hyper-parameter optimization was per-
formed through MATLAB R2021a (Classification Learner App) for each model individually.
We compared the performance of multiple machine learning algorithms, including variations
of: logistic regression, Naïve Bayes,32 support vector machines (SVMs),33 decision trees,34

K-nearest neighbors (KNNs),35 and four ensemble-classifiers: bagged and boosted trees,36 sub-
space discriminant,37 subspace K-nearest-neighbors,37 and random under-sampling boosted
(RUSBoosted) trees. Model performance was evaluated using the mean cross-validation area
under the receiver-operator curve (AUC) from training, as well as sensitivity, specificity, and
F1-score using the test set and models’ confusion matrix. The DeLong’s test was used to com-
pare the performance of all machine learning models.38

Statistical analysis was performed using SPSS Statistics v28.0 (IBM Statistics, Armonk,
New York, United States). Shapiro–Wilk tests were used to determine the normality of the data
and non-parametric tests were performed for data that were not normal. Differences between
subject groups were determined using analysis of variance with post-hoc analysis using the
Benjamini–Hochberg correction. The relationship between measurements was determined using
Pearson and Spearman coefficients for parametric and non-parametric data, respectively. Holm–

Bonferroni correction was applied for multiple comparison tests for the selected texture features.
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Results were considered significant when the probability of two-tailed type I error was less than
5% (p < 0.05).

3 Results
A CONSORT diagram provided in Fig. 1 shows that 266 ex-smokers were enrolled and 94 were
excluded from analysis due to enrollment in another sub-study (n=33) and due to cancellation or
not completing all required tests per protocol (n ¼ 61). Of the 172 participants that completed
visit 1, 79 participants did not complete a 3-year follow-up visit and 5 had poor image quality and
were excluded from further analysis.

3.1 Participant Demographics
We evaluated 88 ex-smoker participants, of which 49 had spirometry evidence of COPD and 39
with no spirometry evidence of COPD. As shown in Table 1, 57 participants (22 females/35
males, 70� 9 years) demonstrated a smaller FEV1 decline (<60 mL∕year) and 31 participants
(7 females/24 males, 68� 9 years) demonstrated a rapid decline in FEV1 (≥60 mL∕year),
between baseline and follow-up visit 31� 7 months later. At baseline, there were significant
differences only in forced vital capacity (FVC) between subgroups [FVC (L) p ¼ 0.003 and

Table 1 Baseline participant demographics and pulmonary function measurements.

Parameter
mean (±SD)

All participants
(n ¼ 88)

ΔFEV1 < 60 mL∕yr
(n ¼ 57)

ΔFEV1 ≥ 60 mL∕yr
(n ¼ 31) p-value

Age 69 (9) 70 (9) 68 (9) 0.2

Female n (%) 29 (33) 22 (39) 7 (23) 0.1

Height (m) 169 (8) 168 (8) 171 (7) 0.2

BMI (kg∕m2) 28 (4) 28 (4) 29 (5) 0.4

SpO2 (%) 96 (3) 95 (4) 96 (2) 0.8

Pack years 36 (26) 37 (26) 35 (21) 0.8

Years since quit 15 (13) 14 (14) 16 (13) 0.7

Pulmonary function and QoL

FEV1 (L) 2.3 (0.8) 2.2 (0.8) 2.5 (0.8) 0.1

FEV1 (%pred) 84 (26) 82 (26) 86 (27) 0.5

FVC (L) 3.6 (0.9) 3.4 (0.9) 3.9 (0.8) 0.003

FVC (%pred) 95 (17) 92 (16) 100 (17) 0.03

FEV1∕FVC (%) 65 (17) 66 (17) 63 (17) 0.5

TLC (L) 6.7 (1.3) 6.5 (1.3) 7.0 (1.2) 0.06

TLC (%pred) 109 (16) 108 (17) 111 (14) 0.4

RV/TLC (%) 43 (10) 45 (10) 42 (9) 0.2

DLCO (%pred) 68 (21) 67 (21) 70 (23) 0.6

6MWD (m) 405 (81) 404 (84) 405 (75) 0.9

SGRQ 28 (21) 28 (20) 28 (23) 0.9

BMI, body mass index; SpO2, blood oxygen saturation; QoL, quality-of-life; FEV1, forced expiratory volume in
1 s;%pred, percent of predicted value; FVC, forced vital capacity; RV, residual volume; TLC, total lung capacity;
DLCO, diffusing capacity of lung for carbon-monoxide; 6MWD, 6-min walk distance; and SGRQ, St. George’s
respiratory questionnaire.
p = uncorrected values showing significant differences between ΔFEV1 < 60 mL∕yr and ΔFEV1 ≥ 60 mL∕yr
groups. Significance level p < 0.05.
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FVC (%pred) p ¼ 0.03, respectively]. As summarized in Table 2, these subgroups did not have
any statistically significant differences at follow-up.

3.2 Imaging Measurements and Texture Features
Table 3 and Fig. S1 in the Supplementary Material summarize the texture feature definitions and
descriptions used throughout the text. Table 4 summarizes quantitative MR imaging measure-
ments and ranked texture features after feature selection step. Ex-smokers with accelerated lung
function decline had significantly different local homogeneity normalized (Idmn, p ¼ 0.048)
feature, large unventilated region emphasis (LGLZE, p ¼ 0.01) feature, small unventilated
region emphasis (SRLGLE, p ¼ 0.007) feature, and local distribution of unventilated regions
[small dependence low gray level emphasis (SDLGLE), p < 0.001] feature. As summarized
in Table 5, these subgroups did not have any statistically significant differences between imaging
measurements at follow-up. Hyperpolarized gas MRI for representative participants in the stable
and rapid decliner groups are shown in Fig. S1 in the Supplementary Material.

Table 2 Participant demographics and pulmonary function measurements at follow-up visit.

Parameter
mean (±SD)

All participants
(n ¼ 88)

ΔFEV1 < 60 mL∕yr
(n ¼ 57)

ΔFEV1 ≥ 60 mL∕yr
(n ¼ 31) p-value

Age 72 (9) 73 (9) 70 (9) 0.2

Female n (%) 29 (33) 22 (39) 7 (23) 0.1

Height (m) 169 (8) 168 (8) 170 (7) 0.2

BMI (kg∕m2) 28 (4) 28 (4) 29 (5) 0.3

SpO2 (%) 95 (3) 95 (4) 95 (2) 0.9

Pack years 36 (26) 37 (26) 35 (21) 0.6

Years since quit 17 (14) 17 (14) 17 (13) 0.9

Current smokers 3 (3) 2 (3) 1 (3) 0.9

Pulmonary function and QoL

FEV1 (L) 2.2 (0.8) 2.2 (0.8) 2.1 (0.7) .4

FEV1 (%pred) 84 (25) 87 (29) 77 (27) .07

FVC (L) 3.3 (0.9) 3.3 (0.9) 3.4 (0.8) .5

FVC (%pred) 94 (19) 95 (19) 92 (19) .4

FEV1∕FVC (%) 65 (16) 66 (17) 62 (17) .5

TLC (L) 6.4 (1.3) 6.3 (1.3) 6.6 (1.2) .3

TLC (%pred) 105 (16) 105 (17) 106 (14) .8

RV/TLC (%) 45 (10) 45 (10) 45 (9) .7

DLCO (%pred) 80 (21) 77 (25) 84 (28) .6

6MWD (m) 398 (83) 396 (84) 400 (75) .8

SGRQ 30 (21) 27 (20) 37 (23) .08

BMI, body mass index; QoL, quality-of-life; SpO2, blood oxygen saturation; FEV1, forced expiratory volume in
1 s;%pred, percent of predicted value; FVC, forced vital capacity; RV, residual volume; TLC, total lung capacity;
DLCO, diffusing capacity of lung for carbon-monoxide; 6MWD, 6-min walk distance; and SGRQ, St. George’s
respiratory questionnaire.
p = uncorrected values showing significant differences between ΔFEV1 < 60 mL∕yr and ΔFEV1 ≥ 60 mL∕yr
groups. Significance level p < 0.05.
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Table 3 MRI texture feature descriptors for machine-learning modeling.

Feature name Short name Description

Shape-major axis
length

Longest distance across
ventilated lung

Measures the largest axis length of the ellipsoid within the
ROI, calculated using the voxel centers defining the ROI.

It provides information about the elongation or stretching of
shapes within the image, where a small value indicates that
the shapes are less elongated or more compact along their
major axis.

CDD1 No. of small ventilation
defects

Measures the number of spheres with diameter of one
voxel that can fit within the unventilated region of the lung,
as visualized on hyperpolarized gas MR imaging.

It provides information about the relative number of small
ventilation defects and their clustering within the lung.

GLCM-Idn Local homogeneity Measures the local homogeneity of an image by
normalizing the differences between the neighboring
intensity values and dividing over the total number of
discrete intensity values.

It provides a measure of the overall smoothness or
uniformity of texture patterns in an image, with higher
values indicating a homogeneous texture.

GLCM-Idmn Local homogeneity
normalized

Measures the inverse difference moment of GLCM after it
has been normalized by the sum of squared elements,
which helps to mitigate the effects of image size and
intensity variations.

It provides information about the similarity of neighboring
pixel values in the image. When the texture change in the
image is not significant, the stronger the homogeneity of
image information, the higher the value of Idmn.

LL-SZM-LGLZE Large unventilated region
emphasis

Measures how large areas of similar brightness or color are
spread out across the image.

It quantifies the distribution of large zones with low gray-
level values within an image. A high value indicates that
large zones with low gray-level values are prominent and
spread out throughout the image.

LL-RLM-SRLGLE Small unventilated region
emphasis

Measures how short sequences of pixels with similar
brightness or color and low gray-level values are distributed
across the image.

It quantifies the joint distribution of short runs with low gray-
level values within an image. A high value indicates that
short runs with low gray-level values are prominent in the
image.

LL-GLDM-SDLGLE Local distribution of
unventilated regions

Measures the joint probability distribution of small
dependences with low gray-level intensity values.

It provides information about how frequently short runs with
low gray-level values occur, as well as their spatial
arrangement. A higher value indicates a greater emphasis
on short runs with low gray-level values, suggesting the
presence of localized dark regions or texture patterns in the
image.

CDD1, cluster-defect diameter of one voxel; GLCM, gray level co-occurrence matrix; SZM, size zone matrix;
RLM, run length matrix; GLDM, gray-level dependence matrix; Idn, inverse difference normalized; Idmn,
inverse difference moment normalized; LL, low-low-pass filter; LGLZE, low gray level zone emphasis;
SRLGLE, short run low gray level emphasis; and SDLGLE, short distance low gray level emphasis.
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3.3 Machine learning Modeling
As summarized in Table 6, the best performing machine learning model trained on demographic
measurements (age, sex, BMI, % SpO2, pack years, and years since quit) achieved 64% predic-
tion accuracy. Best performing spirometry model (FVC, TLC, FEV1, %pred IC, SVC, and RV/
TLC) was cosine KNN algorithm with 68% accuracy, which was not statistically different from
the models based on demographics measurements. The texture-based model achieved the highest
sensitivity (86%) and an 81% accuracy via the ensemble RUSBoosted trees algorithm, exclu-
sively trained on selected MR image texture features. The combined model achieved the highest
accuracy of 82% using the Medium-Gaussian SVM algorithm, trained on FVC, age, longest
distance across ventilated lung, local homogeneity, large unventilated region emphasis, and local
distribution of unventilated regions.

As summarized in Table 7, the machine learning models trained exclusively on MRI texture
features outperformed the machine learning models trained using participant demographic and
spirometry measurements (p < 0.05). In addition, the combined model trained on all available
measurements also outperformed the demographic and spirometry-based models (p < 0.05);
however, the performance of the combined model failed to show a significant difference
(p ¼ 0.9) to the machine learning models trained exclusively on MRI texture features.

The ensemble models outperformed the single machine learning models, indicating the pres-
ence of more complex and non-linear relationships of texture features and accelerated lung func-
tion decline. Logistic regression models for predicting accelerated lung function decline were
generated for individual clinical and imaging texture measurements with the receiver-operator
characteristic curve AUC, which is summarized in Fig. 4. The best performing clinical measure-
ments for predicting patients with accelerated FEV1 decline were FVC (AUC = 0.68) and TLC
(AUC = 0.65). The overall best predictive measurement was wavelet-based local distribution of

Table 4 Imaging measurements of participants with stable and accelerated lung function decline.

Parameter
mean (±SD)

All Participants
(n ¼ 88)

ΔFEV1 < 60 mL∕yr
(n ¼ 57)

ΔFEV1 ≥ 60 mL∕yr
(n ¼ 31) p-value p-value*

MRI VDP (%) 12 (9) 11 (8) 14 (11) 0.2 0.6

MRI ADC (cm2∕s) 0.34 (0.10) 0.33 (0.08) 0.36 (0.12) 0.1 0.4

ΔVDP (%) 4 (5) 3 (5) 4 (5) 0.9 0.9

ΔADC (cm2∕s) 0.02 (0.04) 0.02 (0.04) 0.02 (0.05) 0.3 0.6

Selected texture features

Shape-major axis length 98.9 (7.5) 97.7 (7.7) 101.4 (7.1) 0.1 0.3

CDD1 4771 (3212) 4316 (2751) 5528 (3097) 0.1 0.3

GLCM-Idn 0.956 (0.008) 0.958 (0.008) 0.954 (.007) 0.095 0.3

GLCM-Idmn 0.995 (0.002) 0.995 (0.002) 0.997 (0.001) 0.048 0.2

Wavelet-filtered

LL-SZM-LGLZE 0.00017 (0.00010) 0.00015 (0.00008) 0.00020 (0.00010) 0.01 0.03

LL-RLM-SRLGLE 0.00017 (0.00009) 0.00015 (0.00008) 0.00020 (0.00009) 0.007 0.01

LL-GLDM-SDLGLE 0.00016 (0.00007) 0.00014 (0.00006) 0.00019 (0.00007) <0.001 0.01

MRI-VDP, ventilation defect percent; ADC, apparent diffusion coefficient; CDD1, cluster-defect diameter of one
voxel; GLCM, gray level co-occurrence matrix; SZM, size zone matrix; RLM, run length matrix; GLDM, gray-
level dependence matrix; LL, low-low-pass filter; Idn, inverse difference normalized; Idmn, inverse difference
moment normalized; LGLZE, low gray level zone emphasis; SRLGLE, short run low gray level emphasis; and
SDLGLE, small dependence low gray level emphasis.
p = uncorrected values showing significant differences between ΔFEV1 < 60 mL∕yr and ΔFEV1 ≥ 60 mL∕yr
groups.
p* = Holm–Bonferroni corrected p-values. Significance level p < 0.05.
Note: bold denotes statistically significant.
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Table 6 Machine-learning performance at predicting accelerated lung function decline.

Best performing models AUC Sens. (%) Spec. (%) F1-score Acc. (%)

Demographics modela

Logistic regression 0.64 66.7 46.2 75.7 63.6

Spirometry modelb

Cosine KNN 0.68 68.9 63.6 79.1 68.2

Texture-based modelc

RUSBoosted trees 0.80 85.7 71.9 85.5 80.7

Combined modeld

Medium-Gaussian SVM 0.81 80.6 85.7 87.1 81.8

AUC, area under the receiver-operating curve; KNN, K-nearest neighbors; RUS, random under sampling; and
SVM, support vector machine. *Bold values indicate highest performance in a specific metric.
aVariables used for training included: age, sex, BMI, % SpO2, pack years, and years since quit.
bVariables used for training included: FVC, TLC, FEV1, %pred IC, SVC, and RV/TLC.
cFeatures selected for training included: MRI cluster-defect diameter of one voxel (CDD1), shape-major axis
length, gray level co-occurrence matrix-inverse difference normalized, gray level co-occurrence matrix-inverse
difference moment normalized, wavelet-low-low-size zone matrix-low gray level zone emphasis, wavelet-low-
low-run length matrix-short run low gray level emphasis, and wavelet-low-low-gray level dependence matrix-
small dependence low gray level emphasis.
dCombined model included: FVC, sex, shape-major axis length, gray level co-occurrence matrix-inverse differ-
ence normalized, wavelet-low-low-size zone matrix-low gray level zone emphasis, wavelet-low-low- gray level
dependence matrix-small dependence low gray level emphasis.

Table 5 Imaging measurements of participants with stable and accelerated lung function decline
at follow-up visit.

Parameter
mean (±SD)

All participants
(n ¼ 88)

ΔFEV1 < 60 mL∕yr
(n ¼ 57)

ΔFEV1 ≥ 60 mL∕yr
(n ¼ 31) p-value p-value*

MRI-VDP (%) 16 (13) 15 (9) 18 (14) 0.1 0.4

MRI ADC (cm2∕s) 0.35 (0.11) 0.34 (0.07) 0.36 (0.10) 0.4 0.9

ΔVDP (%) 4 (5) 3 (5) 4 (5) 0.9 0.9

ΔADC (cm2∕s) 0.02 (0.04) 0.02 (0.04) 0.02 (0.05) 0.3 0.9

Selected texture features

Shape-major axis length 97.9 (7.7) 97.5 (7.5) 99.8 (7.3) 0.6 0.6

CDD1 5037 (3866) 4616 (2951) 6128 (3298) 0.2 0.6

GLCM-Idn 0.956 (0.008) 0.954 (0.008) 0.957 (0.007) 0.3 0.6

GLCM-Idmn 0.995 (0.002) 0.995 (0.002) 0.996 (0.001) 0.1 0.4

Wavelet-filtered

LL-SZM-LGLZE 0.00016 (0.00010) 0.00015 (.00008) 0.00019 (0.00010) 0.2 0.2

LL-RLM-SRLGLE 0.00016 (0.00010) 0.00015 (0.00008) 0.00019 (0.00010) 0.1 0.2

LL-GLDM-SDLGLE 0.00015 (0.00008) 0.00014 (0.00007) 0.00018 (0.00008) 0.07 0.2

MRI-VDP, ventilation defect percent; ADC, apparent diffusion coefficient; CDD1, cluster-defect diameter of one
voxel, GLCM, gray level co-occurrence matrix; SZM, size zone matrix; RLM, run length matrix; GLDM, gray-
level dependence matrix; LL, low-low-pass filter; Idn, inverse difference normalized; Idmn, inverse difference
moment normalized; LGLZE, low gray level zone emphasis; SRLGLE, short run low gray level emphasis; and
SDLGLE, short distance low gray level emphasis.
p = uncorrected values showing significant differences between ΔFEV1 < 60 mL∕yr and ΔFEV1 ≥ 60 mL∕yr
groups.
p* = Holm–Bonferroni corrected p-values. Significance level p < 0.05.
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Table 7 DeLong’s test for comparing the models for predicting accelerated
disease progression in ex-smokers.

Best model comparisons p-value

Demographics model versus spirometry model 0.7

Demographics model versus texture-based model <0.001

Demographics model versus combined model <0.001

Spirometry model versus texture-based model 0.04

Spirometry model versus combined model 0.03

Texture-based model versus combined model 0.9

Significance level p < 0.05.
Note: bold denotes statistically significant.

Fig. 4 Receiver-operator characteristic curves of clinical and texture measurements. Top panel:
logistic regression analysis of individual top-performing demographic and spirometry variables at
predicting ΔFEV1 ≥ 60 mL∕year in ex-smoker participants. Bottom panel: logistic regression of
selected top-performing MR imaging and texture features at predicting ΔFEV1 ≥ 60 mL∕year.
Individual texture features clearly outperformed established clinical variables available to physi-
cians at predicting accelerated lung function decline. FVC, forced vital capacity; TLC, total lung
capacity; FEV1, forced expiratory volume in 1 s; LL, low-low pass filter; SDLGLE, short distance
low gray level emphasis; SRLGLE, short run low gray level emphasis; Idmn, inverse difference
moment normalized; CDD1, cluster-defect diameter of one voxel; LGLZE, low gray level zone
emphasis; and MAL, major axis length.
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unventilated regions (SDLGLE, AUC = 0.77), which also outperformed standard imaging mea-
surements, such as MRI VDP (AUC = 0.63).

3.4 Relationships with Clinical Measurements
Spearman correlations were used to evaluate the relationships between well-established clinical
measurements and MRI texture features identified as significant predictors of clinically relevant
FEV1 changes. As shown in Fig. 5, the best performing clinical measurements of FVC and TLC
correlated with ΔFEV1 between visits (ρ ¼ −0.24, p ¼ 0.01; ρ ¼ −0.23, and p ¼ 0.03, respec-
tively). Similarly, texture features from the original unfiltered image representing the number of
small ventilation defects and the longest distance across ventilated lung correlated with ΔFEV1

(ρ ¼ −0.20, p ¼ 0.047; ρ ¼ −0.21, and p ¼ 0.046, respectively). The best performing wavelet-
based local distribution of unventilated regions (SDLGLE) feature exhibited the strongest

Fig. 5 Relationships between selected texture features and change in FEV1.Top panel:
Spearman correlation for FVC and TLC with ΔFEV1 (ρ ¼ −0.24, p ¼ 0.01; ρ ¼ −0.23, and
p ¼ 0.03, respectively) between baseline and follow-up visits. Middle panel: Spearman correlation
for custom CDD1 feature and shape-major axis length with ΔFEV1 (ρ ¼ −0.20, p ¼ 0.047;
ρ ¼ −0.21, and p ¼ 0.046, respectively) between baseline and follow-up visits. Bottom panel:
Spearman correlation for wavelet-LL-filtered-GLDM-SDLGLE and Δwavelet-LL-filtered-GLDM-
SDLGLE with ΔFEV1 (ρ ¼ −0.29, p ¼ 0.006; ρ ¼ 0.27, and p ¼ 0.041, respectively) between
baseline and follow-up visits. FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity;
TLC, total lung capacity; CDD1, cluster-defect diameter of one voxel; LL, low-low pass filter;
GLDM, gray level dependence matrix; and SDLGLE, short distance low gray level emphasis.
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correlation with ΔFEV1 (ρ ¼ −0.29, p ¼ 0.006), and only the longitudinal change in this
specific texture correlated with the clinically relevant changes in FEV1 (ρ ¼ 0.27, p ¼ 0.041).

4 Discussion
In this study, we developed an MRI texture analysis pipeline to reveal a subset of ventilation
patterns that can help predict ex-smokers that will experience accelerated lung function decline.
We observed that RUSBoosted trees algorithm trained solely on texture features outperformed all
other existing models at predicting clinically relevant changes in FEV1 (81% accuracy). Overall,
ensemble machine learning classifiers outperformed single classifiers, indicating the existence of
complex non-linear relationships between ventilation patterns and lung function. Our findings
suggest that texture-based features provide unique information about early functional changes
occurring in the lungs, which may be used alongside established clinical measurements to iden-
tify ex-smokers at-risk of accelerated lung function decline.

We identified seven unique texture features residing within hyperpolarized 3He MR ven-
tilation images in order to predict ex-smokers at risk of accelerated lung function decline.
Standard MRI-derived measurements were outperformed by MRI texture features during the
feature selection step. While model test accuracy was moderate, sensitivity remained high, which
underscores the potential of this approach and hyperpolarized noble gas MRI. The values and
equations30 of selected texture features represent large unventilated region emphasis, small
unventilated region emphasis, and local distribution of unventilated regions within the lung.
Collectively, these features can quantify the distribution of low intensity values or the clusters
and sizes of poorly-ventilated lung regions. Local homogeneity (Idn) and local homogeneity
normalized (Idmn) features quantify the inherent texture heterogeneity and can be thought of
reflecting ventilation patchiness or non-uniformity within the lung. The novel extracted feature
reflecting the number of small ventilation defects (CDD1) reflects the cumulative number of
defect clusters of one voxel in size (5 × 5 × 5 mm3) and describes defect clusters of low
gray-level or signal void regions. Thus, MRI texture analysis provides quantitative information
related to the patterns of gas distribution in the ventilated lung. In contrast, the proposed novel
measurements analyze the unventilated regions of the lung, providing a holistic evaluation of the
entire thoracic cavity volume on MRI.

Our results showed that MRI ventilation texture features were often selected as the most
important features for predicting rapid lung function decline, even in the combined model.
Previous studies have shown that CT radiomics features are associated with lung function in
COPD,7 emphysema severity,8 and provide additional complementary information to established
quantitative CT measurements.9 In more recent COPD studies, CT texture features were able to
predict rapid lung function decline,10 whereas the combination of CT and MR imaging texture
features were able to predict 10-year mortality risk.39 To our knowledge, this study is the first to
show that MRI ventilation texture features predict accelerated lung function decline across a
relatively short 3-year period. Compared to previous studies predicting a clinically relevant
decline in FEV1 of ≥60 mL∕year,16,17 our proposed model trained exclusively on MRI texture
features exhibited a higher performance (AUC = 0.80) than existing clinical models by Lindberg
et al. (AUC = 0.68)40 and CT radiomics-based models proposed by Makimoto et al. (AUC =
0.74).10 Furthermore, the best performing texture feature independently predicted and signifi-
cantly correlated with longitudinal worsening in lung function. Interestingly, upon investigation,
only the longitudinal changes in this specific MRI wavelet-based local distribution of unventi-
lated regions feature coincided and correlated with longitudinal worsening in lung function. We
showed that MRI texture features change along with changes in lung function and can differ-
entiate rapid progressors, whereas previous work showed that MRI textures can also predict
future mortality.39 Taken together, this suggests that MRI texture features offer unique informa-
tion, not provided by established clinical measurements, and may serve as sensitive imaging
biomarkers for early detection of patients at-risk of rapid worsening.

There were several study limitations. Our study included a relatively small sample size, and
regardless of statistical techniques to prevent overfitting (univariate analysis, fivefold cross-
validation, Boruta analysis, etc.), the machine learning classifiers could be optimized using larger
datasets in the future. The generalizability could be further enhanced by incorporating an external
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dataset; thus, the generalizability of the machine learning models remains to be evaluated in
future studies. Furthermore, three participants reported a change in smoking status from ex-
smokers to current smokers at follow-up, with only one participant in the rapid decliner group
and two participants in the stable decliner group. We acknowledge that smoking status is an
important factor; however, in our study, it was not statistically different between groups and
had minimal impact on results. Finally, the MR modality use in clinical settings is limited due
to the availability and associated costs. Utility of hyperpolarized gas MRI is further limited due to
additional personnel and equipment requirements. Therefore, although MRI-derived measure-
ments provide unique prognostic value and are radiation-free, they are not nearly as readily avail-
able. However, with the recent FDA regulatory approval for the clinical use of 129Xe and
associated equipment, we may see a shift in the near future in the utilization of MRI-derived
measurements and biomarkers for evaluating lung diseases.

5 Conclusions
For the first time, machine learning and texture features from hyperpolarized 3He MRI venti-
lation images were used to predict ex-smokers who would experience accelerated FEV1 decline
over a short 3-year period. Our work contributes to the growing body of evidence and is an
important step for using imaging measurements to generate predictive models of lung function
decline in ex-smokers with and without COPD.
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