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Abstract

Purpose: The purpose of our review paper is to examine many existing works of literature pre-
senting the different methods utilized for diabetic retinopathy (DR) recognition employing deep
learning (DL) and machine learning (ML) techniques, and also to address the difficulties faced in
various datasets used by DR.

Approach: DR is a progressive illness and may become a reason for vision loss. Early iden-
tification of DR lesions is, therefore, helpful and prevents damage to the retina. However, it is a
complex job in view of the fact that it is symptomless earlier, and also ophthalmologists have
been needed in traditional approaches. Recently, automated identification of DR-based studies
has been stated based on image processing, ML, and DL. We analyze the recent literature and
provide a comparative study that also includes the limitations of the literature and future work
directions.

Results: A relative analysis among the databases used, performance metrics employed, and ML
and DL techniques adopted recently in DR detection based on various DR features is presented.

Conclusion: Our review paper discusses the methods employed in DR detection along with the
technical and clinical challenges that are encountered, which is missing in existing reviews,
as well as future scopes to assist researchers in the field of retinal imaging.
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1 Introduction

The eyes, an organ of sight, are the most important organ of our body and have several com-
ponents. The retina senses light and creates electrical impulses that correlate with the brain to
handle the pictorial data. There are numerous eye diseases resulting in vision loss but the most
common one is diabetic retinopathy (DR), which is related to diabetes. Each person having
diabetes is at risk of developing DR. It is found that roughly one in three individuals having
diabetes has DR to some extent.1 Biomedical imaging is a powerful way to obtain a visual rep-
resentation of the internal organs of the body for clinical purposes or for study of anatomy and
physiology.

Over the past few decades, there has been an exponential increase in diabetes-caused dis-
eases. In 2014, there existed ~422 million people having diabetes, in contrast to 108 million
people in 1980 (World Health Organization, Global Report on Diabetes). According to the
International Diabetes Federation, widespread appearance of DR from 2015 to 2019 was
∼27%.2 The destructing outcome of diabetes mellitus is pursued as an effect of an anticipated
rise in appearance from 463 million in 2019 to 700 million in 2045.3
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DR is a disorder that harms the blood vessels that are present internally in the retina. In
general, there are two stages of DR: (1) non-proliferative DR (NPDR) and (2) proliferative
DR (PDR), as shown in Fig. 1.

NPDR, which is the primary stage, advances in three types: mild NPDR, moderate NPDR,
and severe NPDR, as shown in Fig. 1. Initially, balloon-like swelling of blood vessels occurs in
the retina; these small swellings, known as “microaneurysms” (MAs), leak fluid into the retina.
When they burst and produce minute blood spots, these are known as “hemorrhages” (HEMs).
As it further advances, the fluid and protein that has caused the swelling leaks from the injured
blood vessels; these are known as “exudates” (EXs). Basically, there are two types of EXs: soft
EXs and hard EXs. Hard EXs appear as bright yellow waxy patches in the retina, whereas soft
EXs have a white fuzzy appearance and paler yellow areas with distracted edges. Mild NPDR is
the primary level of DR. It is specified with one or more MAs, and may or may not have any EXs
or HEMs. Normally, ∼40% of diabetic patients have a slightly mild NPDR indication.4 Moderate
NPDR is a progressive level and it specifies that there exists a number of MAs and HEMs. A
study by Faust et al.5 revealed that ~16% of the patients possessing moderate NPDR are likely to
produce PDR during a year. Severe NPDR is a severe condition where there are several char-
acteristics by which a severe NPDR is identified.6 There is almost a 50% chance that severe
NPDR can turn into PDR over a year.5 PDR is the liberal level where deficiency of oxygen
in the retina causes development of new, delicate blood vessels in the retina and vitreous, where
the gelatinous fluid occupies the back of the eye.7 The different stages of DR, such as mild
NPDR, moderate NPDR, severe NPDR, and PDR, are shown in Fig. 2.

Plenty of people harmed by DR do not visit an eye-care professional unless the DR situation
extends to the severe NPDR or PDR stage. Also the traditional measures to identify DR involve
ophthalmologists for assessment and diagnosing capability, which is time-consuming and very
costly work. Hence, it became crucial to present efficient DL-based methods.

Several review papers presented below have given attention to various techniques of DR
detection, such as image processing, ML, and DL techniques. Image preprocessing is an essen-
tial measure to reduce the noise from images and to improve image characteristics. Image pre-
processing methods for instance green channel, image normalization, histogram equalization,
and morphological operations, and classification methods are briefly presented in Ref. 8. A
three-stage computer-aided screening system that detects and grades retinal images for DR using
ML algorithms, which include Gaussian mixture model,K-nearest neighbor (KNN), and support
vector machine (SVM), was presented in Ref. 9. The comparison of seven papers for DR screen-
ing was done in Ref. 10, based on preprocessing, classifier, image processing technique used,

Fig. 1 Type of DR.

Fig. 2 Different stages of DR: (a) no DR, (b) mild, (c) moderate, (d) severe, and (e) PDR.
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etc. Previously presented review papers give rough ideas on DR classification methods using the
DL approach.11 This field of research has been thoroughly examined in the last few years, and
various techniques have been proposed. But none of the papers include the deep learning (DL)
methodologies along with the DR detection and segmentation methods. This review paper
includes the utility of renowned databases, DL methods, and performance estimation measures
thoroughly.

The significant goals of this review are as follows:

• to address the utility of databases, which are publicly accessible, and to highlight the issues
faced in the context of DR;

• to compare and discuss several existing DR identification methods based on the DL tech-
nique, by taking into account DR features;

• to analyze performance estimation metrics such as classification accuracy, true positive
(TP) rate, and false positive (FP) rate, which are utilized to measure the DR detection
technique;

• to discuss some future scope and challenges that are required to be considered by the forth-
coming researchers in the domain of diagnosis of DR.

The remainder of the paper is arranged as follows. The most used available datasets are dis-
cussed first in Sec. 2. Then the outline of DL methods along with convolutional neural networks
(CNNs) are reviewed in Sec. 3. The previously conducted study on the topic of DR detection and
segmentation methods is discussed in Sec. 4. After that, Sec. 5 includes some of the latest
commercially accessible AI DR systems. Then, the performance metrics are analyzed in Sec. 6,
along with formulas and descriptions. Finally, in Sec. 7, the technical and clinical challenges are
discussed, as well as a few feasible forthcoming pieces of research.

2 Datasets Available

Datasets are collections of information that can be gathered by observations, measurements,
research, or analysis. Several datasets are available for the retina to distinguish between DR
and non-DR. There are two types of retinal imaging: optical coherence tomography photographs
and retinal color photographs. A detailed comparison of various publicly available fundus image
databases in the field of retinal imaging has been made in Table 1.

It is found that most of the blood vessel technique uses STARE, DRIVE, and CHASE DB1.
The DRIVE database offers a mask for each photograph to assist the recognition of the field of
view (FOV) region. Contrary to DRIVE, STARE does not provide masks to identify the FOV.
STARE dataset is the more complicated dataset among all the others since some of those patho-
logical photographs undergo reduced sharpness and depreciation because of eye ailment. HRF
dataset is mostly neglected in vessel fragmentation reports since it is comparatively new, and the
resolution of photographs is roughly four times greater than STARE and DRIVE datasets.
Accessible retinal datasets lack adequate training photographs; thus the network overfits training
databases in some situations. Such datasets should be made progressive. The Kaggle dataset is
utilized in the studies to classify DR stages. The datasets such as DIARETDB0, DIARETDB1,
and E-OPHTHA are generally employed for the detection of MAs and EXs. In recent times,
13 duplicated photograph pairs were observed and certain discrepancies in the rating of photo-
graphs of the MESSIDOR database were stated, which the database providers have acknowl-
edged on their website. In DDR database, there are 1151 images that remain ungradable.
Generally, the public datasets are employed for experimentation purposes as these are easily
available and images are of high resolutions. Although, the decision of selecting the datasets
purely relies on the type of issue and the technique employed by researchers.

3 Deep Learning Methods

DL has been broadly employed in DR recognition and classification, and there are various other
applications of DL that involve image identification, bioinformatics, and medical image analysis,
etc. DL can effectively discover the characteristics of input data despite the fact that several
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miscellaneous sources merged.27 A deep family of DL methods has been established since 1990,
for instance, deep neural networks (DNN),28 autoencoders (AEs) and stacked autoencoders,29

CNN,30 restricted Boltzmann machines (RBM),31 and deep belief network (DBN).32 Among
these, a deep CNN illustrates better execution on a diversity of tasks in image processing/signal
processing and computer vision.

The DL methods, such as AE, RBM, and DBN, can be utilized as generative models or
unsupervised learning. Singh and Kaushik33 presented an innovative dual-stage deep CNN
model, which uses de-noising AE as one of the preprocessing stages in DR classification before
passing the images into the CNN model. Reference 34 represented a DL-based technique for
denoising of the retinal images and revival of the features using stack denoising convolutional
AE. The main benefit of the proposed AE model is that it is pretty quick with respect to conven-
tional AE and recovers the badly degraded retinal photographs with a sharp edge, tiny vessels,
and texture details. A stacked AE-based DL scheme for identification of type 2 diabetes database
was performed on Pima Indians Diabetes data35 obtaining 86.26% accuracy. DL-based varia-
tional AE has been suggested36 for retinal image restoration, which aids in increasing the clarity
of retinal pictures by minimizing noise employing a deep training model without losing picture
information along with having a higher convergence rate.

An AE DL system on the basis of the residual path and U-net has been proposed by Adarsh
et al.,37 which is capable of obtaining more particular details that resulted in efficient fragmen-
tation of the retinal blood vessels obtaining 95.63% accuracy. Ortiz et al.38 introduced a tech-
nique on the basis of a deep multi-channel convolutional AE for blood vessel segmentation to
prevent the dependence on the preprocessing stage obtaining 95% accuracy on the DRIVE data-
base. Basha and Ramanaiah39 proposed a new DR detection system with four stages that include
(a) preprocessing, (b) blood vessel segmentation, (c) feature extraction, and (d) classification
where DBN classifier was utilized to categorize the retrieved characteristics into a healthy and
unhealthy image. The ground truth of the introduced method was higher when weighting factor
ss = 0.8, which is 10.01%, 23.41%, and 55.13% better than the accuracy rate when ss = 1.2, 1.0,
and 1.5, respectively. A 2D DBN that depends on mixed-RBM that was able to obtain several 2D
inputs and automatically extracts the relevant characteristics to identify the progression degree of
DR was presented by Tehrani et al.,40 achieving an area under curve (AUC) value of 92.31%.
Syahputra et al.41 presented a DBN network that can detect DR through retinal pictures that
undergo preprocessing by means of grayscale, contrast stretching, median filter, morphological
close operation, and feature extraction utilizing the gray level counseling matrix (GLCM),
obtaining 84% accuracy, 93% sensitivity, and 70% specificity.

Supervised learning involves artificial neural networks (ANNs) and CNNs. Hard EXs42 were
detected by implementing various image processing methods and were classified using a dis-
criminative learning technique involving SVMs and some NN techniques. Chakraborty et al.43

introduced a system in accordance with supervised learning employing ANN, i.e., feed-forward
back propagation neural network to accomplish more correct detection results for the instance of
DR varying error goal, number of neurons, and number of hidden layers, achieving an overall
accuracy of 97.13%. The CNNs have been broadly used in DL methods and highly effective due
to their excellent accomplishment shown in computer vision and their capability to perform in
parallel with GPUs,44 as shown in Fig. 3. Various models of CNN are already available. Patel and
Patel46 gave a complete review of several CNN architectures such as LeNet-5, AlexNet, ZFNet,
GoogleLeNet, VGGNet-16, ResNet50, and their applications for computer vision tasks.
Gayathri et al.47 introduced CNN architecture to extract the characteristics from retinal fundus
images of MESSIDOR, Indian Diabetic Retinopathy Image Dataset (IDRID), and KAGGLE
datasets for binary and multiclass classification of DR and achieves an accuracy of 99.89% and
99.59%, respectively.

In Ref. 48, a deep CNN with 18 convolutional layers and 3 fully connected layers was intro-
duced by Shaban et al. to examine retinal photographs and systematically discriminate between
no DR, moderate DR, and severe DR with a validation accuracy, sensitivity, specificity, quadratic
weighted kappa score of 88% to 89%, 87% to 89%, 94% to 95%, and 0.91 to 0.92, respectively,
when both 5-fold and 10-fold cross validation approaches were utilized, respectively. A CNN
model49 for the classification of healthy and unhealthy retina images was presented based on the
infection of blood vessels. The method was tested on DiaretDB0, DiaretDB1, and DrimDB; and
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the best accuracy that was achieved: for DiaretDB0 was 100%, DiaretDB1 was 99.495%, and
DrimDB was 97.55%. Samanta et al.50 introduced a transfer learning on the basis of CNN archi-
tecture to categorize pictures from a small and skewed database of 3050 training pictures belong-
ing to four classes and achieved a Cohens kappa score of 0.8836 on the validation set along with
0.9809 on the training set. DL architecture on the basis of a recent CNN called EfficientNet51 was
presented by Chetoui and Akhloufi to detect referable DR and vision-threatening DR achieving
an AUC of 0.984 for RDR and 0.990 for vision-threatening DR on EyePACS dataset. A deeply
supervised ResNet technique has been presented by Zhang et al.52 to classify the severity of DR
automatically obtaining around 80% accuracy but the network encounter issues when catego-
rizing the classes of mild and moderate DR.

DNN is an example of hybrid architecture. Lahmiri53 proposed a CNN-SVM model that can
obtain and figure out a discriminative characteristic that is a feature of standard HEM templates.
In Ref. 54, a hybrid DL-based method for the identification of DR in retinal images of the
EYEPACS dataset has been introduced by combining CNN with SVM (CNN + SVM). It is
observed that less images were misclassified (FP + FN) when we use CNN + linear SVM in
comparison to CNN + Softmax. DNN-random forest (RF) hybrid architecture55 for the handling
of color retinal photographs of the DRIVE database has been proposed by Maji et al. for the
recognition of coarse and fine vessels where the accuracy was 93.27%. This approach does not
achieve the highest accuracy but it does exhibit uniqueness in the ability to learn representations
of vessel appearance model.

It is observed that the supervised learning models are used for detection and segmentation of
DR since they are very simple models. However, while training them, it is hard to enforce them to
achieve the desired output, which is the limitation of supervised learning. On the other hand,
unsupervised learning can build models if provided with enough training samples with higher
discriminative power than supervised models. In retinal imaging applications, hybrid learning
emerges either due to the provision of ample test images with no labels, or more significantly by
chance that there is no assurance about the labels. The semisupervised features are more stable
with reference to performance although they are provided into a supervised classifier.

4 DR Feature-Based Detection and Segmentation Techniques

Generally, the detection and classification of DR images using DL are initiated by data collection
and by employing the necessary preprocessing to advance and boost the images. Afterward, this
is provided to the DL method to achieve the characteristics and to sort the images.

As discussed before, the DR features include MAs, HEMs, EXs, and blood vessels, which
perform a vital role in the detection of DR. Based on these DR features, the thorough analysis

Fig. 3 CNN architecture.45
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concerned with DR recognition and fragmentation approaches have been presented in the sub-
sequent subdivisions. Figure 4 depicts the DR recognition and fragmentation techniques as per
the various retinal characteristics.

4.1 Blood Vessel Segmentation Techniques

Fu et al.56 developed the retinal blood veins segmentation issue as an edge identifying job and
figure out it by employing a unique DL framework. They combined the CNN and conditional
random field (CRF) layers into a unified deep network known as deep vessel. A deep NN-based
system was introduced for retinal blood vein segmentation57 where the preprocessing was done
with zero-phase element study and global contrast standardization, and augmentation was done
by using gamma correction and geometric transmutation. The presented technique attained an
overall ground truth of 94% and results can be increased by adopting different training param-
eters such as learning rate.

Zhang et al.58 introduced a CNN model that utilizes both the bottom and top-level character-
istics and employs atrous convolution to achieve multilevel hallmarks. The method is tried on
three typical parameters and the experiment showed that the method considerably surpasses the
method in Ref. 57. Hu et al.59 presented a CNN and CRFs founded technique for fragmentation
of retinal vessels. To produce a probability map and to acquire more information about retinal
vessels, a multiscale CNN is used in the first step of segmentation, whereas in the second step,
CRFs are used for final binary segmentation, which helps in detecting cardiovascular edges.
A three-simple preprocessing approach introduced by Samuel and Veeramalai60 was utilized to
emphasize the blood vessels before the DNN training was done. The presented multiscale DNN
partitioned the retinal blood vessels without the aid of input-controlled blood vessel character-
istics. The system gains good sensitivity with satisfactory specificity and accuracy.

Oliveira et al.61 carried out segmentation of retinal vessels using stationary wavelet transform
(SWT) along with multiscale fully CNN where the vessel structure direction and variable width
is handled by the system proposed. Also the system is fitted for a rugged training-base, speedy
GPU application, and interrater inconstancy. A deep supervision and smoothness regularization
network (DSSRN) was introduced for fundus veins fragmentation62 where the technique was
generated in association with a holistically nested edge detector employing a VGG system. The
progressive accuracy is obtained, but the average sensitivity obtained is inadequate in contrast to
other traditional methods, but by fine-tuning the system, it can be boosted.

Wang et al.63 introduced a dense U-Net that depends on a patch-based training technique for
fundus vein fragmentation. While learning the system, the training patches are acquired aim-
lessly and the training model was utilized to estimate test patches. By carrying out the super-
imposed-patches serial technique, the segmentation was done. In Ref. 64, an FCN-dependant
system named structured dropout U-Net, i.e., SD U-Net was presented to decrease the overfitting
issue of U-Net that also improves the capability of segmentation of blood vessels. The result
achieved surpasses the method in Ref. 63 as shown in Table 2.

Fig. 4 DR recognition and fragmentation on the basis of DR features.
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Jin et al.72 proposed a deformable U-Net (DUNet) system that depends on CNN for fundus
vein fragmentation that utilized the localized characteristics of retinal veins. The upsampling
operators are employed to enhance the throughput resolution, to record the context-specific
details, and to assist particular regionalization by merging both high- and low-level character-
istics. The method gathers the retinal veins at several levels by balancing the receptive field
suitably. In Ref. 65, a lightweight model called spatial attention U-Net was introduced that gath-
ers the attention maps along the spatial dimension. The result achieved surpasses the latest
methods.57,72 A generative adversarial network had been developed with a U-Net style generator
and various discriminators to support the proficiency of the CNN model.75 It is possible to
increase the result of segmentation by merging the anatomical understanding of the configura-
tion and the optic nerve head and also preprocessing can be applied for noise removal.

A multilevel deeply monitored NN with a bottom-top short association (BTS-DSN) was
introduced in Ref. 73, where the system utilized short associations along with ResNet-101 and
VGGNet framework and attained an AUC value of 0.9859/0.9806 on STARE and DRIVE,
respectively. Samuel and Veeramalai68 partitioned the blood veins from the retinal images as
well as from the coronary angiogram using a single VSSC Net. It is examined that VSSC
Net produces better accuracy and the processing time needed to partition the blood veins is 0.2 s
with the help of GPU. Additionally, the vein extraction level utilizes a minor parameter rate of
0.4 million parameters to correctly partition the retinal veins.

In Ref. 74, a method using round-wise features aggregation on bracket-shaped CNNs (RFA-
BNet) was proposed to eliminate the requirement of patches augmentation while successfully
addressing the irregular and diverse illustration of retinal vessels. The bracket-style decoding
manner blending with thorough aggregation between decoded feature maps of highest-resolution
facilitates the proposed RFA-BNet to spot vessels’ location flexibly and precisely at pixel level.70

Densely connected and concatenated multi-encoder–decoder (DCCMED) comprises multiple
linked encoder–decoder CNNs and compactly associated transition layers. To strengthen the
generalization potentiality of the network, data augmentation technique on the basis of patches
was utilized. In Ref. 69, network followed network (NFN+) method was presented to success-
fully take out multiscale details and fully utilize deep feature maps. NFN+ method employs the
cascaded design and internetwork skip connections to partition retinal vessels more precisely
with the purpose of improving the segmentation accuracy but it remains incapable of ensuring
the linkage of the partitioned retinal vessels. A method based on the multipath CNN was pro-
posed in Ref. 71, where using a Gaussian filter, the low-frequency image and the high-frequency
image were obtained and provided to the constructed multipath CNN achieving the final seg-
mentation map.

A model dependent on supervised learning was introduced by Tamim et al.67 that utilizes a
hybrid feature vector and a multilayer perceptron NN where a 24D vector of features was con-
structed for each and every pixel. Wang et al.63 proposed a system using Zernike moment-based
shape descriptors. The system conducts a categorization by estimating an 11D vector of features
consisting of statistical and shape-based features. The method employed DRIVE and STARE
databases achieving accuracies of 0.945 and 0.9486, respectively. Atli and Gedik66 introduced a
DL framework for fully automated blood vein segmentation. They proposed a method, known as
Sine-Net, which initially makes use of upsampling and later proceeds with down-sampling
layers. The detailed analysis of databases, techniques employed for blood vessel segmentation,
and performance is described in Table 2.

Sine-Net66 is ∼263 and 3.14 times faster than the work of Liskowski.57,59 Contrary to work in
Ref. 57, in which preprocessed picture patches are employed for training the CNN, Sine-Net66

anticipates all pixels at once rather than employing a patch to anticipate the central pixel alone.
The vein sections 68 at the crossing points in the DCA1 are fragmented with large preciseness by
the VSSC Net in comparison to DUNet,72 which accomplishes relatively higher performance due
to the initiation of deformable convolutional blocks in the U-Net. The multiscale FCN with deep
monitoring and enhanced loss function59 missed a few of the thin veins but the deep supervised
FCN with short connections raises the execution of the multiscale vessel fragmentation.73 The
multilevel and multiscale FCN60 attains maximum sensitivity values for the STARE dataset.
Minimum parameter count is acquired for the persistent multiscale FCN presented by Hu et al.,59

and patch input fed FCN suggested by Oliveira et al.61 and Jin et al.72 The inappropriate
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management of thin veins by the FCN61 and CNN57 could be considered. The CNN in Refs. 57
and 72 is compute-intensive as a result of the patch-based technique utilized to partition the
vessels. If patch input is provided to the FCN framework,72,73 it requires a long time since the
recombining occurs at last.

4.2 Microaneurysm Detection Techniques

Habib et al.76 proposed a unique merging of algorithms operated on a public database for com-
puterized identification of MA in color retinal photographs of the retina. The presented method
primarily identifies an initial set of candidates and then classifies it. Detection was performed
utilizing a Gaussian matched filter and classification by using the RF ensemble classifier. Sreng
et al.77 presented a method to find an MA on the basis of its characteristics in retinal images.
Initially, preprocessing such as grayscale conversion, inverse discrete 2D wavelet transforms,
and medians filter was done to decrease noise from the image and to increase the contrast.
Segmentation with the aid of canny edges detection and maximum entropy thresholding was
performed. Finally, the morphological process was done to outline these indications. The out-
come was examined by an ophthalmologist and as per the outcome, the accuracy was 90% and
the normal running time was 9.53 s per image. Kumar and Kumar78 introduced a DR identi-
fication strategy by extracting the precise area and number of MA from color retinal pictures.
MA identification utilizes CLAHE, principal component analysis (PCA), morphological
method, averaging filtering, and also SVM classifiers. The sensitivity and specificity of the
DR detection system are observed as 96% and 92%, respectively.

Xu et al.79 introduced a parallel technique to distinguish MAs turnover relying on the sub-
sequent retinal photographs and longitudinal medical conditions. The presented computerized
study on MAs turnover merging two dissimilar techniques can considerably strengthen the con-
dition and so was primary for the filtering of a huge diabetic patient population for DR. The
results on the Grampian diabetes database prove that the presented photograph analysis tech-
nique obtained a 94% sensitivity and 93% specificity, whereas the classification method obtained
sensitivity and specificity of 89% and 88%, respectively. Dai et al.80 presented a unified clinical
report directed method where specialist learning from clinical text reports was extracted by
means of text mining method and map visual features. Keywords integration from text reports
and retinal images aids to enhance the accuracy of detection with assuring achievement with
regards to precision and recall. Cao et al.81 studied MA recognisability using a little
25 × 25 pixel area retrieved from retinal images of the DIARETDB1 database. Raw pixel mag-
nitudes of the retrieved area were straightaway fed as input to a NN, RF, and SVM. PCA and RF
were utilized for decreasing dimensionality of input and; with the help of leave-10-patients-out
cross-validation and conventional ML approaches, the system AUC parameter increased from
0.962 to 0.985.

Hatanaka et al.82 proposed an MA detector that merges three current detectors that include the
double-ring filter, shape index based on the Hessian matrix, and Gabor filter. The introduced
model is designed with a two-layer DCNN and three-layer perceptron. In the two-level DCNN,
the early DCNN is for primary MA identification and the secondary DCNN is for FPs reduction.
The technique was performed on the DIARETDB1 database and obtained the sensitivity of 84%
of 8.0 FPs per image. Gupta et al.83 proposed a DL technique to distinguish the lesions with
higher accuracy. To fulfill the work, DL model VGG19 was trained on the IDRID database to
retrieve the characteristics from the color retinal eye images. These characteristics are then deliv-
ered into distinct classifiers, such as logistic regression, SVM, and KNN, to distinguish the
lesions accurately. The ground truth for classifying MA photographs was 96.7% using LR.
Eftekhari et al.84 introduced a model that embeds a unified method employing a two-level
approach with two datasets that outcomes in correct detection. The outcomes revealed a suitable
sensitivity of about 0.8 for an ordinary of >6 FPs per image. Qiao et al.85 introduced the prog-
nosis of MA and early diagnostics system for NPDR competent of efficiently making DCNNs
for the fragmentation of retinal images that can enhance NPDR recognition effectively. Here a
PCA-based method for detecting MAwas introduced. After that, any variation from the conven-
tional MA is identified by statistical surveillance; a scarce PCA is utilized to discover the hidden
pattern of MA data.
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An MA detection framework using ML based on directional local contrast (DLC) was intro-
duced by Long et al.86 Initially, blood vessels were improved and fragmented using a function on
the basis of examining eigenvalues of the Hessian matrix. After the blood vessels got excluded,
MA candidate areas were achieved employing shape features and linked components analysis.
After image segmentation, the characteristics of each and every MA candidate patch were
retrieved and were categorized into MA or non-MA FROC scores of 0.374 and 0.210 on the
two databases, respectively. In Ref. 87, a method was introduced for the recognition of MAs on
fundus images by studying directional cross-sectional profiles. The number of pixels to be ana-
lyzed is mainly decreased by considering the local maximum intensity pixels. The peak is iden-
tified and its features are taken into account for the realization of feature space. The performance
parameters sensitivity, specificity, and accuracy achieved were 94.59%, 96.56%, and 95.80%,
respectively, for E-optha MA database. Mazlan et al.88 proposed a computerized identification of
MAs in the retinal images. The method involves preprocessing on image, segmentation using
H-maxima and thresholding approach, postprocessing, feature extraction, and classification
phases. The MLP classifier attained the highest result of 92.28% when compared with the SVM
of 89.08%. The relative analyses of the database, techniques employed for MA detection, and
their performance are stated in Table 3.

ML-based DLC86 is a simple, time saving method in contrast to image segmentation.87 The
multisieving DL80 and CNN84 solve the issue of imbalance dataset. The pixel intensity rank
transform method greatly reduced the FP rate when compared with Eftekhari et al.84 The multi-
level thresholding and multilayer perceptron method perform fast even when the FP rate is high,
contrary to the method by Hatanaka et al.82 For detection of NPDR only, the method presented in
Ref. 78 works best.

4.3 Hemorrhage Detection Techniques

A unified technique for the computerized identification of the HEMs from the retinal pictures
was presented by Kaur et al.89 The paper presented an adjustable and effective technique for
HEMs identification. The research includes the study of 4546 blobs from 50 retinal pictures
picks up from the database. A united technique of morphological process and RF-based clas-
sification was utilized. In Ref. 90, a technique to enhance and boost the CNN training for clinical
image review by energetically choosing incorrectly classified negative samples during training
was proposed. Weights are allocated to the training samples and valuable samples are more
possible to be involved in the further CNN training repetition. The presented technique was
evaluated and compared by training a CNN by means of a selective sampling technique.
Xiao et al.91 introduced a unique HEMs identification model on the basis of ML where the
authors emphasized the advancement of identification of the HEMs, which are near to or linked
with retinal veins. A precursory test was carried out on the photographs from two datasets where
one achieved 93.3% sensitivity and 88% specificity and the other 91.9% sensitivity and 85.6%
specificity.

Gargeya and Leng92 presented a DL-based computerized feature learning for DR identifi-
cation where the method handled color retinal pictures and categorized them as without DR
or with DR. The method attained an AUC of 0.97; having a sensitivity of 94% and specificity
of 98%, on fivefold cross validation employing the database MESSIDOR 2 and E-Ophtha.
Godlin Atlas and Parasuraman93 reviewed HEMs detection in fundus photographs with the help
of classifier and segmentation methods. The photographs were fed to the preprocessing steps and
significant features were taken from the photographs. After that, an ANFIS classifier and a modi-
fied region growing model were utilized to achieve greater accuracy of 92.56%. Murugan94 pro-
posed an effective motion pattern generation technique to identify HEMs. The innovativeness of
the technique is to decrease the dimensionality span in accordance with picture resoluteness
thereby, strengthening the fast track of the HEM identification. MATLAB was utilized for exe-
cution purposes, and validation was done on the MESSIDOR database. The presented technique
achieved superior execution assessment unlike other boundary techniques

In Ref. 95, the technique especially emphasizes on retrieval of blood vessel patterns and
HEMs using object detection method where green channel images were extracted from
RGB images for preprocessing. After segmenting the objects, the local binary pattern features
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were categorized as HEMs and non-HEMs. The database utilized was IDRID and 92.31%
ground-truth was achieved. A supervised ML method on the basis of retinal HEM detection
and classification was introduced in Ref. 96. Splat was utilized to identify HEM in the prepro-
cessed retinal picture. In this, color pictures of the retina are partitioned into various segments
involving the entire picture. By means of splat level and GLCM characteristics obtained from the
splats, three classifiers were utilized for training and testing with the help of appropriate char-
acteristics. The accuracy was determined using a retinal proficient; with the aid of database and
medical pictures, the verification was performed, and the results achieved beyond 96% sensi-
tivity and accuracy. A three-level hybrid model was introduced for the categorization of digitized
retina photographs with HEMs and with no HEMs.53 The observational outcome from the 10-
fold cross-validation approach demonstrated that CNN-SVM surpasses CNN-LDA, CNN-NB,
and CNN-KNN. The introduced model is quick and exact. The comparative studies of the data-
base, techniques employed for HEM detection, and their performance are described in Table 4.

The CNN-SVM surpasses CNN-LDA, CNN-NB, and CNN-KNN.53 DLMethod in Ref. 92 is
cost effective as high computational hardware is not required in contrast to other methods. More
works need to be done to increase the efficiency in morphological operation and RF89 method
and object detection techniques and machine learning (ML) method.95 Rule-based and ML
methods91 detect the individual HEM segmentation, which is not performed in CNN using selec-
tive data sampling.90

4.4 Exudate Detection Techniques

EXs are a kind of lipid fundus lesion evident through retinal imaging, varying in color from
white to yellow with irregular patterns, size, contrast, and shapes. They are the lesions possessing
highest intensity value with fairly diverse margins.

Hard EXs are the lipoproteins and some other proteins leaking out of the retinal vessels, which
prohibits light from approaching the retina and thus leads to visual impairment. They are frequently
irregularly shaped and shiny, discovered nearby to the MAs or at the borders of retinal edema. Soft
EXs appear to be in the severe stages of DR. They arise as a consequence of blockage of arteriole.
The reduced blood flow to the retina outcomes into ischemia of the retinal nerve fiber layer
(RNFL), which ultimately impacts the axoplasmic flow and thereby aggregates axoplasmic debris
across the retinal ganglion cell axons. Such collection can be viewed like fluffy white lesions in the
RNFL, which are generally referred to as cotton wood spots.6 Several approaches to identify the
soft EXs and hard EXs have been reviewed in this section.

4.4.1 Soft exudates

There is a very limited number of papers in which soft EXs are discussed. Some of them are
discussed in this section. In Ref. 97, hard and soft EXs were identified and classified using k-
means clustering method. At first, the CIELAB colored spaced retinal picture was preprocessed
to exclude noise followed by blood vessel network elimination, which simplifies spotting and
removal of the optic disc (OD). OD elimination was performed by employing Hough transform
method and then by applying k-means clustering, EXs are recognized. Finally, the EXs are cat-
egorized as hard and soft EXs subject to their edge energy and threshold. Thomas et al. proposed
a system,98 where they identified and classified EXs as normal, soft EXs, and hard EXs. The
system comprised of two basic stages where initially morphological image processing tech-
niques were employed for identification of EXs that incorporate eradication of OD and later
fuzzy logic algorithm was utilized for classification purpose. The fuzzy logic principle exploits
RGB colored space values of retinal pictures, for the fuzzy set. In Ref. 99, a successful approach
for recognizing the soft/hard EXs from abnormal retinal photographs was introduced. First, the
preprocessing was conducted by means of Gaussian filtering, which enhances the input retinal
photograph. Then, by exploiting region segmentation, feature extraction, and Levenberg–
Marquardt-based neural network classifier, normal/abnormal identification is carried out.
After that, soft and hard segmentations are accomplished from abnormal retinal photographs
by utilizing fuzzy c-means clustering. To perform hierarchical classification into soft or hard
EXs from the abnormal retinal photographs, Levenberg–Marquardt-based neural networks were
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used. Borsos et al.100 introduced a procedure for segmentation of lesion, i.e., hard and soft EXs,
which includes three major steps. Initially, the several luminance patterns discovered in retinal
images are counterbalanced in preprocessing phase by employing backdrop and forefront pixel
extraction and a data normalization operator. Then, to offer analogous superpixels in the image, a
modified simple linear iterative clustering (SLIC) algorithm is utilized. Finally, pixel classifi-
cation based on ANN is performed, employing 15 features taken from the adjacency of the pixels
acquired from the equalized images and from the properties of the superpixel where the pixel
belongs. Erwin101 presented various techniques for exudate detection including the adaptive
threshold method, multithreshold Otsu, top-hat and bottom hat, and fuzzy c-means. Among
available exudate identification approaches in DR images, the fuzzy c-means procedure is the
foremost approach for discovering EXs in the STARE database, whereas in DIARETDB1 data-
base, the top hat and bottom hat approaches are the best for discovering EXs.

4.4.2 Hard exudates

The EXs identification system was introduced by Prentašić and Lončarić,102 employing DCNN.
Additionally, DL facilitates architectural landmark identification. The planned technique pri-
marily recognizes the EXs from retinal fundus images. With the purpose of incorporating a great
degree of anatomical information about potential exudate locations, the result of the CNN was
united with the result of the OD identification and vessel identification process obtaining a sen-
sitivity of 0.78. In Ref. 103, CNN was utilized to identify the EXs in retinal photographs, and an
amplified training technique to enhance and increase the speed of CNN training was used. The
trained structure has been estimated on a personal annotated database and three free public data-
bases. Abbasi-Sureshjani et al.104 proposed a technique for EXs partition in fundus photographs
where the system comprises 20 convolutional layers (9 ResNet blocks), and the results showed
that the system accomplishes really good decision making regarding the existence of EXs, which is
usually sufficient for clinicians to take measures. The technique could readily be utilized for the
identification of another kind of lesion, provided that their manual segmentations were possible. In
Ref. 105, deep CNN was introduced to accomplish pixel-wise EX detection where the CNN sys-
tem was initially trained with proficient marked EXs pictures marks. For the sake of achieving
pixel-level ground truth simultaneously decreasing processing time, best EX candidates were
initially taken out with the help of morphological opening operations. After that, the local areas
(64 × 64) around the candidate points were processed to the trained CNN system for detection.

In the study of DR, Kaur and Mittal106 proposed a ruling method for faithful and correct
segmentation of EXs where the threshold values were selected vigorously. The inputted data
of the proposed technique comprise 1307 fundus images having disparity in color, size, location,
and shapes. Observational findings at the lesion level are shown in Table 5. The fragmentation
findings for image-based assessment with an average sensitivity of 94.62, the specificity of
98.64, and an accuracy of 96.74 demonstrate the clinical potency of the technique. The proposed
system117 used various combinations of characteristics and SVM was used for partitioning of
EXs near the macular area of the eye. The system was tested on four databases and achieved an
accuracy of 100% employing the DRIVE dataset, and an accuracy of 95% for DIARETDB1 and
MESSIDOR, respectively, whereas 94% accuracy for the AFIO dataset was achieved. A DL
framework has been proposed116 that identifies hard EXs in retinal pictures by employing the
Tensorflow DL algorithm, and the database used was IDRiD. The system accuracy obtained was
96.6% over test photograph patches.

In Ref. 115, the databases used are DiaRetDb1 and DiaRetDb0, and CLAHE technique was
used to enhance the RGB image. Later, the green channel was extracted. A median filter with a
large kernel was applied to remove the background effect. The resulting image was deducted
from the retinal image to enhance the contrast. Global thresholding was found manually to detect
the hard EXs. To find OD, the local variance method was used. Decorrelation was done to
remove the false candidates and recursive region growing algorithm for identification of EXs.
In Ref. 114, the STARE database was used where at first RGB pictures were transformed to
gray-scale pictures, and later Gaussian filtering, edge detection, and thresholding is done.
Texture feature extraction method was used, which merges both histogram of gradient and
GLCM. Using KNN and CNN, classification of segmented areas into abnormal and normal areas
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was done, and to calculate the NN, the comparison was performed between KNN and CNN. The
primary aim of this study113 was to produce a unique technique to identify EXs lesions in color
fundus photographs by utilizing a morphology mean shift algorithm (MMSA). The MMA
parameters assist an improved accuracy outcome from the uniquely MSA technique by 13.10%.

Khojasteh et al.112 employed residual networks (ResNet-50) along with SVM to acquire
superior outcomes for the identification of fundus EXs. They studied several CNN, pretrained
ResNets, and discriminative RBM and later obtained a greater method with the increased effi-
ciency of EXs detection. In Ref. 111, the databases used were DiaRetDb1, DiaRetDb0, and HRF,
and to find EXs, peak intensity value using the histogram is considered as threshold and was
used for segmentation. CLAHEmethod was used for detecting an optic disk. For the two datasets
chosen, the sensitivity and specificity were found for gamma values 0.49, 0.5, and 0.51. The best
result was obtained for a gamma value of 0.49.

The pretrained CNN-based framework had been proposed by Mateen et al.110 for the iden-
tification of EXs where at first information preprocessing was carried out for normalization of EXs
patches and later transfer learning was conducted for characteristics extraction employing pre-
trained CNN systems. Additionally, the combined characteristics from fully connected layers were
provided to the softmax classifier for the classification of EXs. The observational outcome showed
that the presented pretrained CNN-based model surpasses the existing methods for EX detection.
Alzami et al.109 proposed the method in multiclass DR detection using EX candidates. EX can-
didates can be obtained by utilized CLAHE and wiener filter to enhance the fundus images. Then
to improve the candidates, region growing, segmentation, and clustering methods, which consider
circularity, areas, and eccentricity are utilized. Finally, those candidates were extracted for features
using statistical features and fed into an ensemble learning process. The results demonstrated that
the method with XGBoost as an ensemble classifier is able to grade the multiclass DR severity
level and comparable with other research that uses MESSIDOR datasets.

The method presented in Ref. 108 permits the building of a prophetic system for basic and
subsidiary hindrance of DME with greater classification ground truth and conception of intensity
grading. Datasets used include Indian Diabetic Eye Diseases Dataset (IDEDD), IDRID, and
DIARETDB1. ML methods of RF and SVM were utilized for classification. The proposed
method107 successfully detects the EXs by nullifying the OD because the OD and EXs are of
the same intensity. Image processing and linear regression, an ML technique is involved, which
is used to train a machine to differentiate between OD and EXs. Here, the supervised learning
technique called linear regression, which could overcome some of the disadvantages that had
occurred in SVM, CNN, KNN, and so on, is used. The detailed reviews of the database, tech-
niques employed for EXs detection, and their performance are stated in Table 5.

Both the methods image processing and linear regression algorithm107 and a tree-based for-
ward search algorithm108 require less memory but the method in Ref. 118 achieved high accu-
racy. Morphological operations111 and DIP115 method can improve their performance using ML
techniques. A method using DCNN102 and a different mixture of features and SVM117 requires
more time contrarily to DCNN105 and image processing and linear regression algorithm.107

The retinal blood vessels identification and segmentation is an important aspect since it helps
in identifying the disease affecting the eye that includes glaucoma, hypertension, and DR. MA,
caused by the leakage of retinal veins, is the early sign of DR and its identification is a tedious
job. Preprocessing of data plays a vital role that helps in removing noise in the retinal images and
also helps in enhancing image contrast and quality of fundus image. It is found that most of the
scholars have utilized green channel extraction and CLAHE preprocessing techniques as the
green color plane maintains the highest contrast and lowest noise to obtain the correct veins
in contrast to the red and blue color plane, which are occupied with the background texture.
Hence it became tough to identify either the thinner pixels are veins or not in the red and blue
color plane. Contrast enhancement performs a vital position in retinal imaging, which is
employed to enhance the quality of the image or pulls the small information in degraded images.
CLAHE preprocessing method aids in stretching the image contrast and normalizing the gray
levels. Even though CLAHE is applicable for enhancing fine details, texture, and local contrast
of the images well, it raises the clarity of the major lesion at a price of concurrently establishing
small yet false intensity in-homogeneities in the background leading to greater FPs. The exist-
ence of in-homogeneities can also misinform the fragmentation computation as to the location of
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the actual lesion under examination. Because CLAHE removes noise in substitute for raising the
in-homogeneities, there is a trade-off among the accuracy of the improved image and the in-
homogeneities in the background.

5 Commercially Available AI DR Screening Technologies

Artificial intelligence (AI) using ML and DL have been endorsed by diverse groups to establish
automated DR detection systems. There are several state-of-the art AI DR screening technologies
that are present commercially. Recently, two automated AI-based DR screening algorithms
acquire United States Food and Drug Administration (FDA) approval. Although more additional
algorithms are receiving attention in clinical service in other countries, their actual world func-
tioning has not been estimated consistently.

In April 2018, the first ever autonomous AI system IDx-DR, suitable to take diagnostic deci-
sions, received approval from U.S. FDA. IDx-DR is ML algorithm fitted with independent
fundus camera susceptible to screen the referable DR and is utilized by prime care medics
to determine clients demanding a recommendation to an ophthalmologist for additional
supervision.118 A survey in which a screening of 900 patients was performed by IDx-DR device
achieved a sensitivity of 87.2% and specificity of 90.7%. The second AI-based DR system
named EyeArt received FDA approval in June 2020, which was developed by Eyenuk Inc.,
based in Los Angeles, USA. In a study with over 100,000 consecutive patient visits, EyeArt
reports 91.3% sensitivity and 91.1% specificity for referable DR and 98.5% sensitivity for
vision-threatening DR.119

In Ref. 120, the commercially available latest DR screening technologies are summarized,
which include IDx-DR, RetmarkerDR, EyeArt, Google, Singapore SERI-NUS, Bosch DR algo-
rithm, and Retinalyze. All these systems were modeled employing a variety of training datasets
and proficient approaches. Liu et al.121 presented a brief description of historical and ongoing
aspects of AI for DR screening. Furthermore, the detailed performance in developing and val-
idating AI DR algorithms was considered along with regulatory approval and clinical validation
and future outlook. Lee et al.122 introduced the one-on-one, multicenter study of comparison of
recent AI DR screening where 5 companies presented 7 algorithms among which one was FDA
approved and a total of 23,724 patients were confronted. Also the effectiveness of these seven
methods was compared contrary to the single teleretinal grader (human). The accuracy outcome
differed remarkably between the algorithms where only three out of seven attained comparable
sensitivity and one attained comparable specificity to the original teleretinal graders.

A detailed analysis and comparison of two leading, commercially available screening
systems—IDx-DR and Retinalyze—has been published by Grzybowski and Brona.123 The two
screening strategies for Retinalyze were assumed for comparison purpose where from four
images either one or two were essential to be labeled positive by the model for altogether positive
outcome at the patient level. IDx-DR needs all four images to carry out the screening. The out-
comes are per-image and each image is screened individually. The results for DR positive and
DR negative cases for IDx-DR were 93.3%, 95.5%; for Retinalyze strategy 1 was 89.7% and
71.8% and for Retinalyze strategy 2 was 74.1% and 93.6%, respectively.

6 Performance Evaluation Metrics

In the area of health informatics, the data utilized in clinical therapy are categorized as with no
disease and with the disease, and similar is suitable for DR identification. The correctness124 of
a technique is considered by examining the following parameters:

• TP = overall amount of true identifications as with the disease

• FP = overall amount of false identifications as with the disease

• TN = overall amount of true identification as with no disease

• FN = overall amount of false identification as with no disease.

The performance estimation measures employed in the presented research are described in
Table 6 to aid the explorers.
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7 Conclusion

In the last few years, several diabetic-related health issues have been rising worldwide. DR,
caused by diabetes, may lead to blindness, and for preventing this, early diagnosis is necessary.
MAs, HEMs, EXs, etc. are the lesions available in DR. The traditional measure to identify DR
involves ophthalmologists for assessment and diagnosing capability, which is time-consuming
and costly work. Hence, it became crucial to present efficient DL-based methods. DL has now
become an interesting research area and has achieved superb performances in the domain of
image processing, especially in DR identification. Innovative and intricate DNN frameworks
are being designed to resolve several computerized works. In this review paper, first the col-
lection of retinal datasets is briefly outlined and then DL methods are discussed. After that, the
adoption of various approaches has been explored to identify the retinal irregularity that includes
retinal blood vessels, HEMs, MAs, and EXs. Then the performance evaluation metrics have been
briefly reviewed for automated detection models. In the report, it was examined that almost a
scholarly job has been carried out by utilizing CNN models to produced deep multilevel models
for the detection of DR employing digital retinal photographs. Advantages of carrying out
DL-based methods in DR-screening include reduced reliance on human power, expenses of
screening, and concerns related to intra- and intergrader variability. Despite the fact that the
significance of DL is rising and various positive outcomes in its research are reaching heights,
there remain challenges that need to be addressed. Automated diagnosis of a DR image encoun-
ters two major challenges: technical fluctuation in the imaging procedure and patient-to-patient
inconstancy in pathological indications of illness.

• Clinical challenges

• Variation in DR classification systems leads to minor differences on each of
the DR severance scales. As a result of which, models developed by employing one
DR classification system cannot carry out as expected when tested on a database
ranked utilizing a different classification system, though both systems apparently

Table 6 Most used performance metrics in studies.

Performance metric Symbol Formula Description

Classification accuracy Acc Acc ¼ ðTPþTNÞ
ðTPþTNþFPþFNÞ � 100 Section of true results, both TP and TN,

within the total number of examined cases

Sensitivity or true
positive rate

SE or
TPR

SE∕TPR ¼ TN
ðTPþFNÞ Section of positives, both TP and FN,

that are appropriately identified

Specificity or false
positive rate

SP or
FPR

SP∕FPR ¼ TN
ðTNþFPÞ Section of negatives, both TN and FP,

that are appropriately identified

Precision P P ¼ TP
ðTPþFPÞ Portion of TP from the total quantity of

TP and FP

Recall R R ¼ TP
ðTPþFNÞ Portion of TP from the total quantity of

TP and FN

Peak-signal-to-noise ratio PSNR PSNR ¼ 10 ðpeak valueÞ2
MSE Estimate the operation of an algorithmic

procedure

Area under curve AUC AUC ¼ ∫ −∞
∞ TPRðT Þ �

FPRðT Þ � dT
Numerical representation of the
performance of the binary classifier

F score/F1 score F∕F1 F ¼ 2 � ðTP�FPÞ
ðTPþFPÞ Harmonic mean of precision and recall

Positive predictive value PPV PPV ¼ TP
ðTPþFPÞ Chance of disease given a positive test

Negative predictive value NPV NPV ¼ TN
ðTNþFNÞ Chance of no disease following

a negative test

Kappa score K Kappa score ¼
ðAcc − AccprobÞ∕ð1 − AccprobÞ

Comparisons of a discovered accuracy
with an anticipated accuracy
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measure the equal clinical situation. Thus it is essential to assure the normalization of
the accuracy among the training and testing databases to assure the robustness of the
models being developed.

• Various reference standards, with accuracy achieved from a type of retinal expert,
general ophthalmologists, professional graders, and optometrists remain a challenge.

• There exist several opinions even when functioning under an equal classification
structure; for instance, an intergrader agreement among professionals may dispute
the medical ground truth.

• Retinal photography routinely generates photographs of diverse quality because
of environmental parameters such as operator experience and patient behavior.
Defocused blurred photographs and different imaging artifacts, such as dust, dirt,
condensation, and smudges, can degrade the image quality. The images used by
researchers for the DR detection models are of high resolution and generally free
from moving artifacts, which is not always possible in a real scenario. Hence, tech-
niques must be developed for removing the artifacts and making images suitable for
model training, which will increase the overall accuracy of the real system.

• Most of the techniques discussed are semiautomatic methods and require skilled
employees to implement the process. This becomes a disadvantage especially in rural
areas where there is a lack of skilled people. Telemedicine is becoming vital in the
assessment of DR, particularly in patients who live in rural areas as it permits clini-
cians to identify DR in a non-ophthalmological environment and therefore permits
them to assist patients in rural, remote, and hard-to-reach locations.

• Public access to scientific data comprising retinal photographs is a significant region
in the global research schedule. Despite that, the clinical information is basically and
legally different, therefore, presenting a challenge for “open access.”

• The medical validation and real-time implementation of DL methods in clinical prac-
tice remain the important challenge as it depends on the understanding of the patients
to entrust medical concerns to machines.

• Technical challenges

• DR identification and classification employing DL resolves the issue of choosing
reliable characteristics for ML. But extensive annotated data volume is needed for
training DL algorithms since they learn progressively and achieving a great number
of retinal picture data is often complicated. One general technique is the usage of
pretrained models. Inadequate data may also be tackled by producing supplementary
data, i.e., data augmentation techniques.

• Another constraint of usage of DL with health sector encounters is the size of retinal
databases required for training of DL models. As the outcome of the DL model relies
on the quality and size of the training data, the present public database sizes are
required to be increased, whereas the big size database such as Kaggle is required
to remove the unlabeled and low-quality data.

• Although DL systems may be very proficient and capable of developing an appro-
priate solution to a specific challenge after data training is done, they are incompetent
to do so for a similar issue and need retraining.

• Another limitation is the requirement of large processing power. As the DR database
is complex, training a DL model requires high computational resources such as high
RAM and core processors. The powerful hardware such as GPU gobbles up a lot of
power and thus is costly. Quantum computation appears very convenient for decreas-
ing processing time and intricacy required by DL.

• Redesigning architecture from scratch involves numerous efforts and takes time. To
evade the building of models from scratch, the same model structure can be employed
by finely tuning the model or by implementing transfer learning models.

On the other hand, there requires some understanding prior to the realization of DL about
choosing the model, setting the number of convolutional layers, pooling layers, nodes per layers,
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etc. Additionally, the computer hardware employed in previous studies was not sufficiently pro-
ficient and pioneering to treat DR, but currently, they have also become proficient and have
achieved a significant state-of-art results. Furthermore, the effectiveness of existing DL systems
can be enhanced by merging large-sized DL related systems in a cascade way. Thus the computa-
tional expenditure and the training requisite for every DL system get decreased for performing
the work separately. A feasible choice to conquer the challenge with DL-based diagnosis would
be to include a transportable and affordable fundus imaging device. A portable imaging device
would make it simple to offer a point-of-care diagnosis. Although online diagnosing frameworks
connect with a central server to categorize retinal photographs, offline diagnosis offers an imme-
diate service that is conducted on a mobile device, beginning from capturing images to dem-
onstrating diagnosis outcome. Offline systems are preferable over internet-based DR diagnosis
systems for regions with lack or no accessibility of internet connection. Although portable retinal
cameras can be inexpensive than traditional retinal cameras, one drawback they have is the lower
quality of fundus photographs they grab. If the quality of images of portable fundus cameras
could attain that of traditional cameras, it could direct the way toward offering a cheaper
machine-driven DR diagnosis for diabetic persons inhabiting rural regions.

In this review paper, we made every effort to include all of the ongoing and existing
approaches designed for DR detection using ML and DL methods. From this survey, we discov-
ered that there are an immense number of varieties of methods for DR. Each of the methods has its
own benefits and shortcomings. It is certainly tough to determine the all over most effective
method as evaluation measures and the computational facilities employed differ from method
to method and are very much in accordance with data. For this reason, to adopt a particular
method is extremely complex. At the same time, when picking an intelligent DR screening model,
higher sensitivity and specificity metrics are essential elements. Taking into account both pros and
cons in addition to the high throughput of DL-based methods, automated DR classification
employing DL could be viable in an actual screening framework. In future work, researchers
should pay attention to upgradation of camera systems for premature diagnosis retinopathy.
Potency of the current techniques is in ambiguity. To further have greater accuracy, hybridization
of algorithms may be impressive. Moreover, research may emphasize advancing innovative
schemes toward conquering the shortcomings of current state-of-the-art technology.

This review paper discusses and makes a comparative analysis of the databases used, per-
formance metrics employed, and ML and DL techniques adopted recently in DR detection, along
with challenges and future scopes, which can be taken up by the researchers in near future. The
current work reviewed 122 research articles in total from which 63 are employed for DR feature-
based detection and segmentation techniques. From the studies involved in the current work,
40% of them employed single public datasets, and 60% of them employed two or more public
datasets to surpass the issue of data size and to examine the DL methods on several datasets as
shown in Fig. 5. 67% of the current studies identified the DR lesions while 33% identified the
segmented vessel structures as shown in Fig. 6.

Fig. 5 The percentage of studies employing one and more public datasets.
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