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Abstract. This work involves the development of a finite-element method model to examine
the optical properties of two-dimensional photonic crystals (PCs). The model is capable of
studying the effect of a finite number of periods in a PC structure. The new design minimizes
computational resources by modeling a PC with one infinite dimension with periodic boundary
conditions while modeling the second with finite dimensions. This allows for calculation of
transmission and reflection spectra across the PC structure. A finite difference frequency
domain (FDFD) model has been created for calculation of the photonic band structure.
This is compared with the reflection spectra obtained through the reflection model and is
found to closely match. The reflection model capabilities are demonstrated by calculating
the reflection spectrum for various parameters: period length, number of periods, incident
light polarization, and material properties. Effects of varying these parameters are demon-
strated. For example, the reflectivity of a GaAs/Air PC was found to reach greater than
95% when the PC has 10 periods; it exceeds 99% with 13 periods and reaches 99.9% at
15 periods. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JNP.10.046012]
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1 Introduction

Photonic crystals (PCs) are periodic structures of dielectric material that can reflect light with
high efficiency due to optical interference effects; this allows PCs to bend and control light
with high precision. PCs can be designed to have forbidden optical frequency bands that are
known as photonic band gaps (PBGs). In addition to commercially available low-loss PC fibers,
other applications of PCs include low-threshold lasers,1 single-mode light emitting diodes,2,3

Bragg mirrors,4–6 optical filters,7–9 and efficient planar antennas.10 PCs two-dimensional (2-D)
periodicity can guide light in a plane. The propagated light inside the PC structure is affected
mainly by material properties (refractive index) and the period size of the crystal structure. In
addition, the direction of light polarization and wavelength has a significant effect on reflectivity
of a PC waveguide.11–13

Various numerical computation methods exist for studying the optical properties of PCs.
Transfer matrix methods,14,15 finite-element methods (FEMs),16–20 finite difference time
domain,21–28 finite difference frequency domain (FDFD) methods,29–32 and plane-wave
expansion methods33–36 have been developed over the past few decades for this purpose.
When modeling 2-D PCs, infinitely periodic boundary conditions are often used in both dimen-
sions,26,30,33,37 or the models can be finite in both directions.38–40 Yet, it is impossible to fabricate
a PC with an infinite number of periods, and it is challenging and expensive to fabricate highly
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uniform PCs with many periods. Therefore, investigating the effects of varying the number of
periods in a PC is important for optimally fabricating them. The model introduced here can help
precisely determine how many periods are needed to achieve the desired reflectivity for a given
incident wavelength. Others have made use of semi-infinite models to study PC properties, but
none of these specifically investigates the precise effect on the number of periods relative to
reflection spectra.41–43 This work introduces a useful model to calculate the reflectivity spectrum
for a 2-D PC with a finite number of periods in one dimension and an infinite periodicity in the
perpendicular direction. The effects of varying the situational parameters (polarization, material
properties, number of periods, and so on) can be easily investigated, as demonstrated in this
work. Incorporation of wavelength-dependent dielectric functions is a key benefit of the model.
The results are compared to the photonic band structure calculated through a FDFD model to
compare the reflectivity spectrum with the photonic band structure.

2 Reflection Model

Reflection spectra from various PC configurations were calculated using a FEM model (geom-
etry created and discretized through COMSOL Multiphysics). The model, shown in Fig. 1(a), is
a semiperiodic lattice of circles (cylinders, if the infinite z-dimension is considered) of one
material within a matrix of another material. The y-dimension has a finite number of periods,
whereas in the x-direction, it is modeled to be infinitely periodic by assigning periodic boundary
conditions. This model has been developed to study the effects of variable geometric and
material parameters, especially the number of periods and the period size, on the reflection
spectra of light incident on the structure in the negative y-direction. The materials chosen were
GaAs due to its relatively high refractive index in the visible range, nH ≈ 3.5 to 5, and air with
nL ¼ 1.0.44 The large nH∕nL ratio improves the overall reflectivity of the PC.45

The model consists of a vertical unit cell of a square crystal lattice with periodic boundary
conditions in one dimension (�x directions). The number of periods in the y-direction, N, is
varied, as shown in Fig. 1(a). Light is incident in the negative y-direction. Materials studied in
this work include a GaAs, Si, or SiO2 slab with air holes, and GaAs posts surrounded by air (the
model extends infinitely in the z-direction). The thickness of the simulation space is a function of
the number of periods inside the unit cell so that the distance between the incident light port and
the PC is always four times the period (4P). In this model, the incident light is polarized in either
the transverse electric (TE) or transverse magnetic (TM) direction, with respect to the z-axis.

Fig. 1 (a) Depiction of the model geometry. Perfectly matched layers are shown in yellow at the
top and bottom of the geometry. The PC was modeled as a GaAs slab with air holes. The region
shown was modeled to have left and right edges that are infinitely periodic. The number of vertical
periods (N) can be changed as shown. The incident light direction (k ) and polarization direction (E )
are labeled relative to the model. (b) Plot of reflection spectra for different values of N. The PBG is
seen with a central peak around 1255 nm. The inset plots the maximum reflection versus period.
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Figure 1(b) shows how the reflection spectrum changes as a function of the number of peri-
ods, N, in the unit cell. The results were calculated for air holes in GaAs with a constant period
(center-to-center distance) of P ¼ 200 nm. Incident light was polarized in the z-direction, which
is also known as the TM mode for PCs.46 As N was increased, the reflection peak was found to
increase for PBG wavelengths, as expected. The inset plots the maximum reflection at the PBG
as a function of N. At 1255 nm, the reflection magnitude for N ¼ 2 is 16.4%, and for N ¼ 15,
it reaches 99.9%. The reflectivity reaches a value >95% at N ¼ 10 and exceeds 99% when
N ¼ 13. The work by Abdulhalim47 demonstrates the same trend of increasing reflection for
an increasing number of periods for stacked anisotropic wave plate layers.

Figure 2 shows the polarization dependence of the PC reflection spectrum. The constant
parameters for this test were N ¼ 15 and P ¼ 200 nm with air holes in GaAs. Only the polari-
zation was changed, with the incident light being polarized in x (TE mode) and z (TM mode),
as shown in Figs. 2(a) and 2(b), respectively. The width of the PBG was found to be greater for
the TE mode compared to the TM mode. The PBG wavelength range was ∼500 nm for the TE
mode and 300 nm for the TM mode; for TE polarization, the reflectivity is near 100% across
the entire width of the PBG.

The effects of varying material properties on the PBG were also investigated, as seen in
Fig. 3. GaAs posts in air [Fig. 3(a)] exhibit a wider PBG than air holes in GaAs [Fig. 3(b)].
The width of the PBG wavelength range for GaAs posts was ∼500 nm, while for air holes,
it was ∼300 nm. Air holes in GaAs show higher reflectivity (Rmax ¼ 99.9%) than the peak
value for GaAs posts in air (Rmax ¼ 87.8%) when both unit cells contain N ¼ 15 periods.
For GaAs posts, the PBG has a center wavelength near 725 nm, and for air holes, the PBG
center wavelength was near 1255 nm.

This model was lastly used to plot the PBG peak shift as a function of the PC period. The
resulting reflection spectra are shown in Fig. 4 in a waterfall plot, where P varies from 200 to
300 nm. As P is increased, the PBG central wavelength is redshifted. This trend is plotted in the
inset of Fig. 4 for the wavelengths of peak reflection, λpeak; it shows that λpeak increases linearly
with P, where λpeak ¼ 5.96Pþ 81 nm.

A small PBG can be seen for P ¼ 250 to 300 nm. The gap shifts to lower wavelengths as a
function of P, similar to the behavior of the main higher-wavelength PBG region. Once it shifts
to wavelengths <875 nm, the reflectivity drops to zero because at this point, the photon energy
exceeds the bandgap of GaAs, permitting light to be absorbed into the GaAs. The presence of
this phenomenon helps to confirm the validity of the results. Using a material with a larger

Fig. 2 Effect of polarization on the PBG. Reflection spectrum for (a) TE mode and (b) TM mode
with N ¼ 15 and P ¼ 200 nm.
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bandgap can extend the PBG to lower wavelengths; however, the bandgap width is typically
inversely proportional to the refractive index of a given material.48 This reduces the reflectivity,
as R increases with ðnH∕nLÞ2N ; therefore, a larger period number, N, is required to maintain
sufficient reflectivity.45 Models such as the one described in this work may prove beneficial
for the determination of optimal parameters prior to fabrication or experimental characterization
of PC structures for optical applications.

3 Finite Difference Frequency Domain Model

Next, the FDFD method was used to get a complete plot of the photonic band structure for a 2-D
square lattice of dielectric cylinders in a matrix with a different dielectric constant and to com-
pare these results with the above model. As is often done for the TM mode in PC calculations,

Fig. 4 Reflection spectra for varying PC period widths (P). Constants here are N ¼ 15, TM polari-
zation, and air holes in a GaAs surrounding medium.

Fig. 3 Effects of material properties on PBG. Reflection spectrum for a PC with (a) GaAs posts in
air and (b) air holes in GaAs. Constant parameters are TM polarization, N ¼ 15 and P ¼ 200 nm.
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we begin with Eq. (1) (directly derived from Maxwell’s equations), as it is dependent only on
the electric field.32,46,49 The solutions of this eigenvalue equation provide the photonic band
structures for the desired crystal and light parameters:

EQ-TARGET;temp:intralink-;e001;116;491∇ × ∇ × EðrÞ ¼
�
ω

c

�
2

εrðrÞEðrÞ: (1)

Equation (1) is an eigenvalue problem that was solved using the FDFD method.49 This was
accomplished by first setting up a mesh along the desired geometry and calculating the relevant
k-vectors along the geometry’s irreducible Brillouin zone.

To begin, Eq. (1) is simplified using the curl of curl identity:

EQ-TARGET;temp:intralink-;e002;116;398∇½∇ · EðrÞ� − ∇2EðrÞ ¼
�
ω

c

�
2

εrðrÞEðrÞ: (2)

We assume that there are no free charges, which demands that

EQ-TARGET;temp:intralink-;sec3;116;341∇ · EðrÞ ¼ 0.

Equation (2) now simplifies to

EQ-TARGET;temp:intralink-;e003;116;303−∇2EðrÞ ¼
�
ω

c

�
2

εrðrÞEðrÞ: (3)

Expressing Eq. (3) in terms of second order central finite differences gives the following:

EQ-TARGET;temp:intralink-;e004;116;246 −
�
Ex
iþ1;j − 2Ex

i;j þ Ex
i−1;j

h2x
þ Ey

i;jþ1 − 2Ey
i;j þ Ex

i;j−1

h2y
; 0

�
¼

�
ω

c

�
2

εri;jEi;jðEx
i;j; E

y
i;j; 0Þ; (4)

where Ex and Ey are the electric field vectors along x and y, and hx and hy are the physical
distances between the mesh elements along the x and y axis, respectively. Equation (4) is
fully decoupled; that is, changes in Ex happen only along i (x-axis), and changes in Ey happen
only along j (y-axis). This allows it to be rewritten as

EQ-TARGET;temp:intralink-;e005;116;151−
�
Eiþ1;j − 2Ei;j þ Ei−1;j

h2x
þ Ei;jþ1 − 2Ei;j þ Ei;j−1

h2y

�
¼

�
ω

c

�
2

εri;jEi;j: (5)

To solve this eigenvalue problem, a mesh is generated along a unit cell of the PC, with i; j values
corresponding to mesh elements. Figure 5 shows an example of the n × n mesh in which the
electric field at each position is labeled En. In the finite differences equation, the field at a given

Fig. 5 The square lattice shown for a 3 × 3 periodic mesh with the electric field at each position
labeled En.
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position, Ei;j, corresponds to one position, En. The Ei�1 and Ej�1 terms correspond to adjacent
mesh cells in the lattice. Elements within the unit cell are shown as bounded by solid lines and
those within adjacent cells are represented by dashed lines. The Appendix further discusses the
mesh elements of the unit cell, as well as the required mesh size at which calculated bands
converge to a common value.

The matrix multiplying the electric field eigenvector on the left side of Eq. (5) takes into
account the connections between each mesh element and its neighboring elements. Thus, in
Fig. 5, E1 connects to E2 and E4 within the same unit cell and connects to E3 and E7 in adjacent
unit cells. Periodic boundary conditions are therefore applied to the resulting matrix in the appro-
priate positions to account for these intercell connections between the edge mesh elements. This
requires the use of imaginary exponential terms, e�ik·a1 , for periodic Bloch waves in a periodic
crystal. Bloch’s theorem maintains that all of the waves capable of propagating within the crystal
will do so periodically such that they will exist for k-values within the first Brillouin zone of the
reciprocal lattice. Appending this exponential to the necessary terms conforms to this formu-
lation and is necessary since only one unit cell is contained in the model geometry. The k · a term
within the exponential refers to the component of the wave vector (k) along the direction of
the basis vector (a) corresponding to the direction of the connection between mesh points.
In the square case, a1 is along the i direction and a2 is along the j direction. These correspond
to x- and y-directions, respectively.

Once the eigenvalues are calculated, they are multiplied by c2 and square-rooted to isolate the
eigenmodes, ω, which are then normalized. The 2-D photonic band structure was calculated
for the TM mode of the square lattice GaAs model and is plotted in Figs. 6(a) and 6(b)
next to the reflection spectra solution [Fig. 6(c)]. In both the FDFD and reflection models in
Fig. 6, the dielectric constant was set to one for air and 11.8 for GaAs. Figure 6(a) also
shows the real and reciprocal space lattices used in the model. The photonic band structure result
was found to closely match the reflection spectrum as well as agreeing with existing results.46

Last, due to the complexity of the FDFD model, constant material properties were imple-
mented. Thus, the dielectric function of the materials in the model was constant instead of being
wavelength dependent. As shown in Fig. 6, the FDFD band gap results match very well with the
reflection spectrum from the other model in which constant material properties were also used.
In physical reality, instead of being constant, the dielectric function depends on the wavelength

Fig. 6 (a) The photonic band structure calculated through the FDFD model, as well as the simu-
lated unit cell in real space and the corresponding Brillouin zone and irreducible Brillouin zone in
reciprocal space, is shown. Band structure is for square lattice with air holes in GaAs and with TM
polarization. The dielectric constant here equals 11.8. The (b) band structure and (c) reflection
spectrum corresponding to normal incident light parallel to the square lattice are plotted as a
function of wavelength for the parameters shown: air holes in GaAs, TM polarization, P ¼ 275 nm.
The spectral overlap of the bandgaps in (b) and the reflection peaks in (c) is highlighted.
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of the incident light. For this reason, reflection spectra were calculated for a dielectric constant,
ε ¼ 11.8, and for a dielectric as a function of wavelength, εðλÞ.44 The resulting spectra are
shown in Fig. 7(a) for the wavelength range plotted in previous figures with the constant
permittivity shown in blue and variable dielectric function in red. The values of the real (ε 0)
and imaginary (ε 0 0) parts of the dielectric function were plotted versus wavelength as well,
as shown in Figs. 7(b) and 7(c), respectively. For a wavelength-dependent dielectric function,
ε 0 continues to vary, albeit close to the constant value of 11.8, as demonstrated in Fig. 7(b).
The imaginary part is zero for a constant permittivity and quickly approaches zero for εðλÞ.
The larger discrepancy between the reflection spectra for wavelengths from 800 to 1000 nm,
as compared to the 1000 to 2000 nm range, is due to the difference between values of ε 0 0 for
εðλÞ and ε ¼ 11.8. See the Appendix for results calculated for air holes in Si and SiO2

surrounding media.

4 Conclusion and Discussion

A compact model was designed to evaluate the reflection of a 2-D square lattice PC with a finite
number of periods, N, under different conditions. The results showed precisely how the reflec-
tivity changes with N. With the reflection model, the effects of using both a constant and variable
permittivity were studied. Results reveal the potential errors resulting from using a constant
dielectric function in pursuit of the most accurate calculations of photonic band structures.
A FDFD model was used to calculate the full TM mode photonic band structure for comparison
with the reflection model. The FDFD calculated photonic bandgaps align well with the reflection
bands determined through the reflection model. Variations of the model introduced here can also
be used to simulate a hexagonal lattice, calculate transmission spectra, and investigate various
incident angles. Utilizing this type of model will help facilitate advances in the development of
PC technologies.

Fig. 7 (a) Plot of reflection spectra for a model with dielectric function (ε) as a function of wave-
length (red) and with a constant dielectric value (blue). P ¼ 275 nm. The (b) real and (c) imaginary
parts of the dielectric function for the variable (red) and constant (blue) cases.
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Appendix
Additional materials, Si and SiO2, were studied with the reflection model as well. Here, models
were established to calculate the reflection spectra for air holes in surrounding media of each
material for the TM mode with N ¼ 15, and wavelength-dependent dielectric functions were
implemented.50,51 Figures 8(a) and 8(b) show the results of varying P for each material.
As was the case for air holes in GaAs, λpeak, the wavelength of the reflection peak is redshifted
for increasing P. A comparison between the peak shifts for each material is shown in Fig. 8(c).
The plot shows the values for λpeak versus P for each material. Comparing the peak widths in
Figs. 8(a) and 8(b), the SiO2 peaks are clearly narrower than those calculated for Si.

In order to illustrate the convergence of the FDFD model for a sufficient number of mesh
elements in the unit cell, the plot shown in Fig. 9 was created. The plot was created by taking the
wavelength values of the first and second bands at the Y point in reciprocal space as a function of
mesh elements in one row of the unit cell. This was done for P ¼ 275 nm with GaAs (ε ¼ 11.8).
The plot demonstrates convergence for a unit row containing 25 or more mesh elements.

Fig. 8 Reflection spectra for N ¼ 15 varying PC period widths (P), TM polarization, and air holes
in (a) SiO2 and (b) Si surrounding media. (c) Plot of the wavelength at which each reflection peak
occurs, λpeak, for each material.

Fig. 9 Convergence test results for the first and second bands showing their wavelength values at
the Y point in reciprocal space for different numbers of mesh elements along one direction in the
unit cell.
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Thus, in the interest of accuracy, a unit cell of 30 × 30 mesh elements was utilized for the FDFD
calculations performed to create Figs. 6(a) and 6(b).
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