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Abstract. In order to achieve high-precision three-dimensional (3-D) imaging with an airborne
downward-looking linear-array 3-D synthetic aperture radar (LA-3D-SAR), a uniform virtual
antenna array can be obtained by aperture synthesis of the cross-track sparse multiple-input-
multiple-output array. However, the actual 3-D imaging quality is unavoidably degraded by
array errors such as the multichannel amplitude-phase errors due to the nonideal antenna char-
acteristics, and the virtual element position errors due to vibrations and motion measurement
deviations. We investigate the effects of these errors on the forms and the degrees of image
quality degradation and consider the use of corresponding calibration methods to eliminate
the effects of errors. For the multichannel amplitude-phase errors, the target response is subject
to an integrated sidelobe level increase introduced by the phase error, which can be calibrated
based on external (parallel or point target) calibrators, as proposed in the paper. For the virtual
element position errors, they mainly the result of contrast degradation and noise in the image
along the cross-track direction and have little impact on the range and along-track directions. The
imaging performance is more sensitive to the error component in the height direction as com-
pared to other components, the precision requirement of which should be established as the
calibration reference. A calibration method based on time-divided active calibrators is proposed
to estimate and correct the virtual element position errors. Both numerical simulations and
real data experiments have shown the validity of the analyses as well as the effectiveness of
the proposed calibration methods. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.10.025010]

Keywords: array error calibration; three-dimensional imaging; downward-looking linear-array
synthetic aperture radar; synthetic aperture radar.

Paper 15827 received Nov. 25, 2015; accepted for publication Apr. 7, 2016; published online
May 2, 2016.

1 Introduction

In the last decade, an increased interest has been devoted to three-dimensional synthetic aperture
radar (3D-SAR),1 because of its capability to generate 3-D radar images by retrieving the
reflectivity and real 3-D localization information of the scattering objects. Among them, the
downward-looking linear array SAR (LA-3D-SAR)2 with a linear antenna array [e.g., a sparse
multiple-input-multiple-output (MIMO) array3–8 is usually adopted to reduce the complexity of
the linear array antenna, where multiple antennas are used for transmitting while others are for
receiving.] deployed under the wings of airplanes as the most feasible configuration for topo-
graphical survey application. With the rectilinear motion and the downward-looking working
mode, LA-3D-SAR synthesizes a 2-D plane array to achieve 3-D imaging of illuminated
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areas and overcomes the layover and shadowing problems existed in 2-D SAR. Until now, two
LA-3D-SAR systems have been developed,9,10 and some 3-D image formation algorithms have
been proposed.11–16

As a multichannel coherent system, LA-3D-SAR is particularly susceptible to channel incon-
sistency, which will cause geometric distortion, loss of resolution, decrease in image contrast,
spurious targets, and a reduction in signal-to-noise ratio (SNR).17 However, under realistic opera-
tional conditions, the antenna elements are subject to array errors such as multichannel ampli-
tude-phase errors and antenna position errors. These errors come from the nonideal antenna
characteristics, vibrations, and motion measurement errors, which may cause channel inconsis-
tency that is large enough to deteriorate the 3-D imaging quality, especially for the LA-3D-SAR
working in a high frequency band (e.g., X, Ka band). Thus, the study on the high-precision
amplitude-phase consistency of LA-3D-SAR is anticipated across all MIMO channels.

In Refs. 18 and 19, the error effects and calibration methods for channel inconsistency based
on the deterministic patterns of the wings’ oscillation and the flight attitude variations are inves-
tigated. In this paper, we focus on two other kinds of array errors: multichannel amplitude-phase
errors and random virtual element position errors, neither of which has received sufficient atten-
tion in the current research. According to their mechanisms, different error models are estab-
lished, and their effects on the LA-3D-SAR images are studied. A close examination of the
effects of the errors with regard to their characteristics, the levels of severity, and the relevant
calibration methods is presented to specify the tolerable levels, which is important for the system
design and optimization. Specific calibration methods are proposed to deal with the array errors,
which are verified by either the ground-based experiment data or some numerical simulations.

The remaining sections are organized as follows. The imaging principle of LA-3D-SAR is
first reviewed in Sec. 2, where the geometric and signal models are given. In Sec. 3, with differ-
ent error models, the error effects of the multichannel amplitude-phase errors and the virtual
element position errors are analyzed. In Sec. 4, different calibration methods based on external
calibrators are proposed to deal with the errors, respectively. The ground-based experiment and
numerical simulation verification are presented in Sec. 5. This paper is concluded in Sec. 6.

2 Imaging Principle of Downward-Looking LA-3D-SAR

As shown in Fig. 1, the radar is mounted on an airplane flying at altitude H with the velocity Va.
Let the X-, Y- and Z-axes denote the cross-track, along-track, and height directions, respectively.
In cross-track, a sparse MIMO array with MT transmitters and MR receivers is adopted to form

Fig. 1 Imaging geometry of downward-looking LA-3D-SAR.

Tan et al.: Array error calibration methods in downward-looking linear-array. . .

Journal of Applied Remote Sensing 025010-2 Apr–Jun 2016 • Vol. 10(2)



a uniform virtual array, which hasM ¼ MTMR virtual elements and total length L ¼ ðM − 1Þd,
where d represents the element spacing. The position of the m’th virtual element is ðxm; yn; HÞ,
where yn represents the along-track spatial sample coordinate. The illuminated scenario is
located at the nadir area of the platform, and for a point target P with reflectivity σp located
at ðxp; yp; zpÞ in the 3-D target support band Ω, the instantaneous target-to-m’th virtual element
distance is

EQ-TARGET;temp:intralink-;e001;116;663R 0ðxm; yn;PÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm − xpÞ2 þ ðyn − ypÞ2 þ ðH − zpÞ2

q
: (1)

Assuming that orthogonal pulses with pulse length Tp, frequency bandwidth B, and carrier fre-
quency fc are transmitted, the echo signal data corresponding to each virtual element channel
will transform to the following form after carrier frequency down-conversion, orthogonal
demodulation,6 and range compression:

EQ-TARGET;temp:intralink-;e002;116;576srcðt; xm; ynÞ ¼
ZZZ

Ω
rect

�
xm
L

�
rect

�
yn − yp
Lsyn

�
σpe−j

4πfc
c R 0

sinc

�
B

�
t −

2R 0

c

��
dxpdypdzp; (2)

where t denotes the fast-time variable, Lsyn denotes the along-track synthetic aperture length, and
c is the speed of light. For notational simplicity, we use rectangular window to represent the
antenna patterns and signal weighing functions in Eq. (2). In some continuous wave radar,
the wavenumber domain form of the range compressed signal srcðt; xm; ynÞ is directly accessible,
which is

EQ-TARGET;temp:intralink-;e003;116;470Srcðk; xm; ynÞ ¼
ZZZ

Ω
rect

�
k − kc
B

�
rect

�
xm
L

�
rect

�
yn − yp
Lsyn

�
× σp expð−jk2R 0Þdxpdypdzp;

(3)

where k ∈ ½kmin; kmax� is the fast-time wavenumber variable, with kmin ¼ 2πðfc − B∕2Þ∕c,
kmax ¼ 2πðfc þ B∕2Þ∕c, and kc ¼ 2πfc∕c.

Usually, the process of imaging is to estimate the distribution of the target reflectivity σp from
the range compressed signal srcðt; xm; ynÞ or its wavenumber domain signal Srcðk; xm; ynÞ.
For example, in Ref. 9, after range compression, the compression in along-track is done
using the synthetic aperture principle and the compression in cross-track is done using a digital
beamforming. After that, true 3-D resolving ability is achieved so that the LA-3D-SAR can
overcome the layover and shadowing effects in the conventional 2-D SARs. However, this
is not the case when array errors, such as the multichannel amplitude-phase errors or virtual
element position errors are present, where the signal coherency in the LA-3D-SAR is deterio-
rated and the final image may degrade drastically. Thus, it is essential to carry on a detailed
investigation of the error effects and the related calibration methods.

3 Array Errors and the Effects on LA-3D-SAR Imaging

3.1 Multichannel Amplitude-Phase Errors

The multiple transmit and receive channels consist of active components (e.g., high frequency
power amplifiers, mixers, intermediate frequency amplifiers and so on), whose amplitude and
phase characteristics are slowly varying with the time. In addition, due to the nonideal electrical
characteristic of antennas in the array, each channel may have a random deviation in the gain (or
amplitude) and phase-shift from the ideal situation, which results in the multichannel amplitude-
phase errors. This type of error is independent of the along-track direction and mainly affects
the imaging along the array (i.e., the cross-track direction), so that it is appropriate to simplify
the analysis using only an equivalent 2-D geometric and signal model.

As shown in Fig. 2, X and Y 0 represent the cross-track and slant range directions,
respectively. Assume each virtual element’s position is ðxm; 0Þ, where m ¼ 0;1; 2: : :M − 1.

Using R 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2p þ ðxm − xpÞ2

q
to replace the instantaneous range in Eq. (1) and taking the
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multichannel amplitude-phase error into consideration, the signal corresponding to the m’th
channel can be expressed as

EQ-TARGET;temp:intralink-;e004;116;498

smðkÞ ¼ Am

Z
Ω
σP × expf−jk · 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2p þ ðxm − xpÞ2

q
þ jΔΦmgdΩ

¼ Am

Z
Ω
σP × expf−jk · 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2p þ ðxm − xpÞ2

q
þ jð−k · Δrm þ ϕm;cÞgdΩ; (4)

where Am denotes the gain variations due to the amplitude error and ΔΦm ¼ −k · Δrm þ ϕm;c

denotes the phase error, which can be divided into two parts: the first term −k · Δrm representing
the different time delay (or shift) components for each channel is referred to as range deviation
phase error, and the other part ϕm;c is referred to as residue phase error.

For almost all the imaging algorithms, the cross-track focusing is done by coherent accu-
mulation along the array direction, i.e.,

EQ-TARGET;temp:intralink-;e005;116;355s 0 ¼
XM−1

m¼0

AmejΦejΔΦm ¼ ejΦ
XM−1

m¼0

AmejΔΦm ; (5)

whereΦ is the coherent phase that the algorithm compensates to. From Eq. (5), it is apparent that
the target response does not achieve coherent accumulation because of the presence of multi-
channel amplitude-phase error Am and ΔΦm. According to the geometric and signal model, each
antenna element in the array almost illuminates the same target area, so that it is reasonable to
eliminate the target response deterioration introduced by the amplitude error Am by a simple
power normalization of the channel data.

Compared to the amplitude error, the target response is more sensitive to the phase error.
The range deviation phase error −k · Δrm affects the imaging in a similar way as the range
cell migration effects in conventional SAR imaging. We can use the integrated sidelobe
ratio (ISLR) along the array as the figure of merit to evaluate the severity of the degradation
induced by this error. Assume the channel number is M ¼ 101, center frequency fc ¼ 31

GHz, and the random range deviation corresponding to each channel conforms to the uniform
distribution, i.e., Δrm ∼ U½0; C�, m ¼ 0;1; 2: : :M − 1, where C is a constant. Figure 3(a) shows
the curve where the cross-track ISLR changes with parameter C. It is apparent that
ISLR ¼ −10.43 dB for the error-free case, which accords with the ideal SAR impulse response,
and the ISLR gets worse with the increase of range deviation error, e.g., when the deviation is
beyond 0.3 wavelength, the target energy has spread out across the array totally, so that the ISLR
measurement becomes meaningless.

The residue phase error ϕm;c in Eq. (4) manifests itself as a constant (within one channel)
phase error attached to each different array channel. Let us denote the signal along the array

Fig. 2 Equivalent 2-D imaging geometry.
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direction as sðxmÞ, and the ideal target response as psfxðxÞ, then according to the Fourier
transform equation,20 the practical signal sðxmÞ · expfjϕm;cg can be processed after coherent
accumulation, which yields

EQ-TARGET;temp:intralink-;e006;116;507s 0ðxÞ ¼ psfxðxÞ � IDFTfexpðjϕm;cÞg; (6)

where * denotes the discrete convolution. Equation (6) implies that the ideal target impulse
response spreads over the X axis because of the presence of IDFTfexpðjϕm;cÞg. Again,
using the ISLR evaluation methodology, except that the residue phase error ϕm;c is set to con-
form to a uniform distribution ϕm;c ∼ U½0; C 0 · π�, m ¼ 0;1; 2: : :M − 1. As shown in Fig. 3(b),
the target response is deteriorated with the increase of the residue phase error. For example, when
ϕm;c distributes randomly between 0 and π, the level of ISLR has been creeping up from −3 to
−2 dB, where correct imaging is impossible to achieve.

3.2 Virtual Element Position Errors

The virtual element position error is usually caused by wind deformation, gravity deformation,
platform vibration, installation or motion measurement errors when a conformally designed
antenna array is utilized in the airplane platform. It is usually expressed as the virtual element
position deviation ~δm ¼ Δxm · ~ix þ Δym · ~iy þ Δzm · ~iz from the ideal situation ðxm; yn; HÞ,
where ~ix, ~iy, and ~iz represent the unit vector in cross-track, along-track, and height direction,
respectively. An intuitive visualization of the virtual element position errors is provided in Fig. 4,
where the actual position of the m’th virtual element is represented as ðxm þ Δxm; yn þ
Δym;H þ ΔzmÞ, so the actual target-to-sensor distance is

EQ-TARGET;temp:intralink-;e007;116;259R 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm þ Δxm − xpÞ2 þ ðyn þ Δym − ypÞ2 þ ðH þ Δzm − zpÞ2

q
: (7)

From Eqs. (2) and (7), and using r ¼ ðc∕2Þt, we can write the range compressed impulse
response as

Fig. 4 Virtual element position errors.

Fig. 3 Variation of cross-track ISLR with (a) the range deviation error and (b) the residue phase
error.
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EQ-TARGET;temp:intralink-;e008;116;735srðr; xm; ynÞ ¼ e−jkc2R
0
psfrðr − R 0Þ: (8)

Taking the binomial expansion of Eq. (8), which yields
EQ-TARGET;temp:intralink-;e009;116;700

R 0 ≈ Rm0 þ
ðyn − ypÞ2

2Rm0

þ Δx2m þ Δy2m þ Δz2m
2Rm0

þ ðxm − xpÞΔxm
Rm0

þ ðyn − ypÞΔym
Rm0

þ ðH − zpÞΔzm
Rm0

; (9)

where Rm0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm − xpÞ2 þ ðH − zpÞ2

q
is the minimum range between the point target to the

m’th virtual element. The third term in Eq. (9) is so small that can be neglected, then inserting
the remaining terms into Eq. (8), and neglecting the range curvature migration term in psfrð·Þ,
results in

EQ-TARGET;temp:intralink-;e010;116;578srðr; xm; ynÞ ¼ e−jkc2Rm0e−jkc
ðyn−ypÞ2

Rm0 ejðΦxþΦyþΦzÞpsfrðr − Rm0Þ: (10)

The first exponential term in Eq. (10) contains information for cross-track beamforming, the
second exponential term is the modulation term for along-track compression, andΦx,Φy andΦz

represent phase error terms resulting from the virtual element position errors Δxm, Δym, and
Δzm, respectively, which are defined as

EQ-TARGET;temp:intralink-;e011;116;501

8<
:

Φx ¼ −2kcðxm − xpÞΔxm∕Rm0;
Φy ¼ −2kcðyn − ypÞΔym∕Rm0;
Φz ¼ −2kcðH − zpÞΔzm∕Rm0:

(11)

As detailed in Ref. 5, for the range compressed data, a 3-D SAR image can be obtained by
performing the along-track focusing and cross-track beamforming. However, the 3-D imaging
quality is practically degraded by the phase error termsΦx,Φy, andΦz presented in Eq. (10) with
high probability. In this paper, we relate the errors’ effects to the image degradation by deriving
appropriate statistical measures. We first model the virtual element position errors Δxm, Δym,
and Δzm as discrete, white, Gaussian stochastic process with zero-mean and variance of σ2x, σ2y,
and σ2z , respectively. Δxm, Δym, and Δzm are random variables over the cross-track virtual
element positions and slowly time-varying along the along-track direction. From Eq. (11),
we can see that Φy is a compound of linear phase error in the along-track direction and random
phase error in the cross-track direction, whereas Φx and Φz are both random phase errors in the
cross-track dimension.

In our previous research,21 we decompose the phase errors into different components and
discuss their respective effects on imaging. Usually, a constant phase error component will
have little effect on imaging, a linear phase error component will cause target displacement,
a second-order component representing quadratic phase error will cause mainlobe broadening
and sidelobe increase, and higher-order components manifesting as oscillation functions will
cause paired echoes, which increase the integrated sidelobe level. We propose to use the discrete
Legendre orthogonal transform22 to guarantee the mutual orthogonality of the expansion terms,
and then appropriate statistical measures relating the effects of random phase errors to the deg-
radation of the final image can be derived. From the analyses, it can be concluded that the virtual
element position errors will contribute to a high cross-track integrated sidelobe level, which
results in noise and contrast degradation in the image, and has little impact along the range
and along-track directions.

Figure 5 shows the relationship between the error effects and the orthogonal expansion coef-
ficients as well as the virtual element position error statistics for a typical Ka-band LA-3D-SAR
parameters set. Let ak denote the k’th order orthogonal expansion term coefficient ofΦx, and σ2ak
as its variance. Figure 5(d) implies that to meet a typical −17 dB ISLR demand for SAR im-
aging,23 σ2ak has to be kept below 10−4. Otherwise, the resultant image will suffer from intolerable
noise and contrast degradation in the image. Figure 5(e) shows the curves of the coefficient
variance varying with σx, which are evaluated with four different point targets. For targets
far away from the array, the coefficient variance is large and a 10−4 coefficient variance cor-
responds to σx with the value of 0.5 mm, which is taken as the calibration precision requirement

Tan et al.: Array error calibration methods in downward-looking linear-array. . .

Journal of Applied Remote Sensing 025010-6 Apr–Jun 2016 • Vol. 10(2)



of virtual element position error Δxm. We can also derive from Figs. 5(a)–5(e) that, for virtual
element position errors with millimeter-scale levels, the sidelobe increase due to paired echoes
dominates the error effects, while the mainlobe is almost intact due to small low-order phase
error components. Figure 5(f) gives the curves of the coefficient variance σ2bk of Φz changing
with the standard deviation σz of the virtual element position error component Δzm, again evalu-
ated with four point targets located at different positions. It is apparent that the four curves almost
overlapped, and a 10−4 coefficient variance corresponds to σz value of approximately 0.075 mm.
Some calibration or compensation procedures would be necessary if Δzm exceeds this limit.

Compared withΔym, the beamforming performance along the cross-track is more sensitive to
Δzm, which is illustrated in Fig. 6 with a Ka-band point analysis example. In Fig. 6(a), though the
mainlobe of the cross-track impulse response is intact as the error-free case, the impulse response
is corrupted by high sidelobes (an ISLR above 0 dB) resulting from virtual element position
errors when σx ¼ 5 mm. When σx is reduced to 0.5 mm, as shown in Fig. 6(b), the ISLR is
reduced to an acceptable level of −17 dB correspondingly, which satisfies the imaging require-
ment. However, as shown in Fig. 6(c), the same 0.5 mm level of errors as applied in the Z
direction will still spread out energy across the impulse response and give rise to an ISLR
of −1.5 dB. In Fig. 6(d), when the σz is set to 0.075 mm, a favorable cross-track impulse
response with ISLR of −17 dB is obtained. Thus, in order to mitigate the impact of the rising
sidelobes, calibration measures should be taken to keep the error below a tolerable level, and the
precision requirement of Δzm should be taken as a reference for calibrating the virtual element
position errors.

4 Calibration of the Array Errors

4.1 Calibration of the Multichannel Amplitude-Phase Errors

4.1.1 Amplitude error calibration using power normalization

For LA-3D-SAR imaging, each antenna element in the array almost illuminates the same target
area, which implies that the amplitude variations among different channel data are caused by the
random amplitude error Am, thus can be compensated by a simple power (sum of the magnitude

Fig. 5 Curves showing: (a) the cross-track displacement as a function of the first-order coefficient
variance; (b) and (c) cross-track mainlobe broadening and ISLR as functions of the second-order
coefficient variance; (d) cross-track ISLR as a function of the high-order coefficient variance;
(e) and (f) the dependence of coefficient variance on the virtual element position errors. Ka-band
is assumed where the parameters are the same as those given in Table 1 in Ref. 13.
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squared) normalization of the channel data, i.e., assuming the signal corresponding to the m’th
channel is smðnÞ, with the power value of Em and fast-time samples number N, then power
normalization can be done through

EQ-TARGET;temp:intralink-;e012;116;369s̃mðnÞ ¼
smðnÞffiffiffiffiffiffi
Em

p ; m ¼ 0;1; · · · ;M − 1; n ¼ 1;2; · · · ; N; (12)

where ~smðnÞ is the m’th channel data after amplitude error calibration.

4.1.2 Phase error calibration using external calibrators

The multichannel phase errors can be calibrated on a static platform indoors before the array is
applied on the airplane platform. Due to the slowly-varying characteristic of the phase errors, the
calibration parameters can be stored onboard for the SAR processor to look up and compensate
within a certain period of time.

Figure 7 shows the calibration geometries using two different external calibrators. Figure 7(a)
uses an external calibrator, which is placed in parallel to the array direction, such that the distance
(range) histories and phase histories are expected to be the same for all channel data. Figure 7(b)
uses a point target (e.g., a corner reflector) with strong reflectivity as the external calibrator,
whereby the phase error calibration parameters can be estimated by virtue of the triangular geom-
etry relationship of the array and the point target calibrator.

More specifically, take the calibration procedure in Fig. 7(a) as an example. First, the range
compressed data (in 2-D time or spatial domain) are upsampled along the fast-time direction,
then the distance histories R̂m of the calibrator in all channels are estimated by cross-correlating
the data with the range point spread function psfrðtÞ:

EQ-TARGET;temp:intralink-;e013;116;112

8<
:

μmðτÞ ¼
R∞
−∞ smðtÞpsfrðt − τÞdt

τ̂m ¼ argmax
τ

μmðτÞ
R̂m ¼ c

2
× τ̂m:

(13)

Fig. 6 The cross-track impulse response when the virtual element position errors Δyn or Δzn

exists.
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Then the difference of R̂m and the ideal distance value R0, i.e., Δr̂m ¼ R̂m − R0, is taken as the
estimated value of the range deviation error corresponding to the m’th channel:

EQ-TARGET;temp:intralink-;e014;116;524S 0
mðkÞ ¼ SmðkÞ × expfj2kΔr̂mg: (14)

After correcting the range deviations, the energy trajectory of the calibrator locates at the range
gate of R0 and manifests as a parallel line with respect to the array. Then the phase values ϕ̂m;c,
m ¼ 0;1; : : : ;M − 1 on the calibrator response peak can be extracted as the estimated residue
phase errors, and thus can be corrected through

EQ-TARGET;temp:intralink-;e015;116;445S 0 0
m ðkÞ ¼ S 0

mðkÞ × expf−jϕ̂mcg: (15)

The calibration method in Fig. 7(b) is similar, except that the ideal energy trajectory exhibits
the form of a hyperbolic curve rather than a straight line, and the range deviation phase error
values are estimated by virtue of the triangular geometry, whereas the residue phase error values
are extracted along the curved energy trajectory. Ground-based experiment examples given in
the latter part of the paper have confirmed the feasibility of the calibration method.

4.2 Calibration of the Virtual Element Position Errors Using Time-Divided Active
Calibrators

For the virtual element position errors, one way of calibration is to utilize distributed motion
measurement units to retrieve the exact position of each antenna and then correct the error effects
by postprocessing.24 However, considering the big amount of elements and the limited precision
of the state-of-the-art measurement device, this approach will be too complicated and expensive.

Another feasible approach is to use the array calibration methods in array signal processing
theory.25–27 In the downward-looking LA-3D-SAR imaging model, Δxm, Δym, and Δzm are
random variables over the cross-track virtual element positions and slowly time-varying over
the along-track integration time, which means that for a set of adjacent along-track spatial
samples yn, the position errors are deterministic and constant. For a certain yn, the cross-track
beamforming is analogous to the direction of arrival (DOA) estimation problem28 in array signal
processing theory.

In a typical DOA radar, the array calibration methods usually use active calibrators (or
signal sources) that have a priori position and angle (DOA) information relative to the
array. By reversely deriving the DOA estimation algorithm (e.g., the MUSIC algorithm29),
the actual antenna phase centers of the array elements can be retrieved. For a fixed array,
the steering vector is determined by the element positions and the calibrator’s DOA, so
that the element position errors are also involved in the steering vector, which can be retrieved
by some optimization methods. The virtual element position errors in LA-3D-SAR can be
calibrated in a similar manner, except that the data channels are composed of virtual elements
formed by aperture synthesis of a sparse MIMO array, rather than of real receiving elements.

Fig. 7 Calibration geometry: (a) with a parallel external calibrator and (b) with a point target
calibrator.
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A practical solution is to use active calibrators that have relay functions, such as active
transponders.30 Such a device is analogous to a corner reflector, in which the calibrator’s
receiving antenna receives the SAR signal and then feeds it back to the radar sensor after
gain amplification. The transponders adopt transparent relay technology such that the signal
phase is preserved and the signal characteristics are not deteriorated. The calibrators can be
arranged in the illuminated scene, where the angle information (DOA) with respect to the array
in the airborne platform can be accurately measured by ground and airborne position meas-
urement devices. Using this information, the virtual element position errors can be calibrated
by estimating the steering vectors of the array.

The following is a detailed description of our proposed calibration method, which is based on
time-divided active calibrators. Here, “time-divided”means that the active calibrators are activated
time-dividedly one after another, at different along-track times during the calibration process. As
shown in Fig. 8, set the central virtual element of the cross-track array as the reference and assum-
ing the along-track time η ¼ 0, so that the reference element is located at the coordinate origin (0,
0, 0) and is assumed to be error-free. Assume a calibrator (transponder) Pi is located at ðxi; yi; ziÞ
in Fig. 8, where αi and βi represent the along-track and cross-track looking angle with respect to
the cross-track array. At time η, let yn denote the along-track position of the LA-3D-SAR, theMT

transmitting antennas emit orthogonal waveforms p0ðtÞ; p1ðtÞ; : : : ; pMT−1ðtÞ, the calibrator Pi

relays the signals and later, the signals are received by all MR receiving antennas simultaneously.
By aperture synthesis, a total number of M virtual elements are formed and the channel data cor-
responding to the m’th virtual element are

EQ-TARGET;temp:intralink-;e016;116;484smðrÞ ¼ e−jkc2R
0
psfrðr − R 0Þ þ NmðrÞ; (16)

where r is the fast-time range variable, kc is the center wave number, NmðrÞ represents additive
channel noise which is a Gaussian, white stochastic process and independent of the signal com-
ponents, R 0 is the instantaneous range from the m’th virtual element to the calibrator, with the
expression:

EQ-TARGET;temp:intralink-;e017;116;403R 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm þ Δxm − xiÞ2 þ ðyn þ Δym − yiÞ2 þ ðH þ Δzm − ziÞ2

q
: (17)

Let Ri0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyn − yiÞ2 þ x2i þ ðH − ziÞ2

p
denote the range from the calibrator to the refer-

ence element, then taking the Taylor series expansion of R 0,31 and neglecting the small quadratic
and higher-order terms, yields

Fig. 8 Calibration of virtual element position error using time-divided active calibrators.
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EQ-TARGET;temp:intralink-;e018;116;735

R 0 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
i0 − 2ðyn − yiÞΔym − 2ðxm þ ΔxmÞxi þ 2ðH − ziÞΔzm

q

≈ Ri0 −
ðyn − yiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyn − yiÞ2 þ x2i
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyn − yiÞ2 þ x2i

p
Ri0

Δym

−
xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyn − yiÞ2 þ x2i
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyn − yiÞ2 þ x2i

p
Ri0

ðxm þ ΔxmÞ þ
ðH − ziÞ

Ri0
Δzm

¼ Ri0 − Δym sinðαiÞ sinðβiÞ − ðxm þ ΔxmÞ cosðαiÞ sinðβiÞ þ Δzm cosðβiÞ: (18)

Inserting Eq. (18) into Eq. (16), and transforming the result into vector-matrix form, which
yields

EQ-TARGET;temp:intralink-;e019;116;598r ¼ ãðα; βÞsðtÞ þ N; (19)

where

EQ-TARGET;temp:intralink-;e020;116;560r ¼ ½ s0ðrÞ s1ðrÞ · · · sM−1ðrÞ �T; (20)

EQ-TARGET;temp:intralink-;e021;116;533aðαi; βiÞ ¼ ½expfj2kcx0 cosðαiÞ sinðβiÞg; : : : ; expfj2kcxM−1 cosðαiÞ sinðβiÞg�T; (21)

EQ-TARGET;temp:intralink-;e022;116;507ãðαi; βiÞ ¼ Δiaðαi; βiÞ; (22)

EQ-TARGET;temp:intralink-;e023;116;479Δi ¼ diagf½ expfjφ0ðαi; βiÞg · · · expfjφM−1ðαi; βiÞg �Tg; (23)

EQ-TARGET;temp:intralink-;e024;116;452φmðαi; βiÞ ¼ 2kc½Δym sinðαiÞ sinðβiÞ þ Δxm cosðαiÞ sinðβiÞ − Δzm cosðβiÞ�; (24)

EQ-TARGET;temp:intralink-;e025;116;424sðrÞ ¼ e−jkc2R0ipsfrðr − R 0Þ; (25)

EQ-TARGET;temp:intralink-;e026;116;396N ¼ ½N0ðtÞ N1ðtÞ · · · NM−1ðtÞ �T; (26)

where ½·�T represents vector transpose, diagfvg represents a diagonal matrix whose diagonal is
vector v, Eq. (21) is the error-free steering vector of the array, whereas Eq. (22) is the steering
vector when virtual element position errors exist.

The covariance matrix of the array signal r is

EQ-TARGET;temp:intralink-;e027;116;321Rrr ¼ E½rrH� ¼ ãE½SSH�ãH þ σ2I ¼ ãRSãH þ σ2I; (27)

where ½·�H represents Hermitian transpose. Because the signal and noise are independent, the
covariance matrix can be decomposed into two uncorrelated parts corresponding to the signal
and noise. Let us take the eigenvalue decomposition of matrix Rrr:

EQ-TARGET;temp:intralink-;e028;116;253Rrr ¼ US

X
S

UH
S þ UN

X
N

UH
N : (28)

In Eq. (28), US represents the signal subspace spanned by the eigenvectors corresponding to
big eigenvalues, whereas UN represents the noise subspace spanned by the eigenvectors corre-
sponding to small eigenvalues. Assuming that there is only one active calibrator in the scene,
according to the MUSIC algorithm, the eigenvector of the covariance matrix of the array output
corresponding to the largest eigenvalue is proportional to the steering vector. Let q denote this
eigenvector, then

EQ-TARGET;temp:intralink-;e029;116;138

^̃aðαi; βiÞ ¼ c0q; (29)

where c0 is a real constant. ^̃aðαi; βiÞ is the estimated steering vector that contains virtual element
position errors. From Eq. (22)–(24), we can estimate the diagonal matrix Δi by solving the
following optimization problem:
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EQ-TARGET;temp:intralink-;e030;116;735

Δ̂i ¼ argmin
Δi

½ ^̃aðαi; βiÞ − Δiaðαi; βiÞ�H½ ^̃aðαi; βiÞ − Δiaðαi; βiÞ�

s:t:the matrixΔi withM rows andMcolumns is diagonal: (30)

Let bm and am denote the m’th elements of vectors ^̃aðαi; βiÞ and aðαi; βiÞ, respectively, i.e.,
^̃aðαi; βiÞ ¼ ½b1; · · · bm; · · · bM�T and aðαi; βiÞ ¼ ½a1; · · · am; · · · aM�T , and considering thatΔi

is a diagonal square matrix, i.e., Δi ¼ diagðx1; · · · xm; · · · xMÞ, then it is easy to get

EQ-TARGET;temp:intralink-;e031;116;651

½ ^̃aðαi; βiÞ − Δiaðαi; βiÞ�H½ ^̃aðαi; βiÞ − Δiaðαi; βiÞ�
¼ jb1 − x1a1j2 þ : : : þ jbm − xmamj2 þ : : : þ jbM − xMaMj2 ≥ 0: (31)

Because the above expression is non-negative, the minimization is achieved when each addi-
tional term of jbm − xmamj2 in Eq. (31) becomes 0, which means that the estimated value of xm is
bm∕am, so that

EQ-TARGET;temp:intralink-;e032;116;563Δ̂i ¼ diag

�
b1
a1

; · · · ;
bm
am

; · · · ;
bM
aM

�
(32)

for which am, m ¼ 1;2; : : :M all have nonzero values according to the definition of aðαi; βiÞ
in Eq. (21).

Suppose there are a total number of K time-divided active calibrators in the scene. For each
calibrator, we can obtain an estimated diagonal matrix Δ̂i, let gi denote the vector formed by the
diagonal elements of matrix Δ̂i, then the virtual antenna element position errors can be estimated
by solving the matrix equation:

EQ-TARGET;temp:intralink-;e033;116;446g ¼ Tδ; (33)

where

EQ-TARGET;temp:intralink-;e034;116;403g ¼ ½Argfg1g Argfg2g · · · ArgfgKg �TK×M; (34)

EQ-TARGET;temp:intralink-;e035;116;376δ ¼
2
4 Δx0 Δx1 · · · ΔxM−1
Δy0 Δy1 · · · ΔyM−1
Δz0 Δz1 · · · ΔzM−1

3
5
3×M

; (35)

EQ-TARGET;temp:intralink-;e036;116;325T ¼ 2kc

2
6664

sinðα1Þ sinðβ1Þ cosðα1Þ sinðβ1Þ − cosðβ1Þ
sinðα2Þ sinðβ2Þ cosðα2Þ sinðβ2Þ − cosðβ2Þ

..

. ..
. ..

.

sinðαKÞ sinðβKÞ cosðαKÞ sinðβKÞ − cosðβKÞ

3
7775
K×3

; (36)

where Argf·g is the operator for obtaining the angle of a complex quantity. Because δ contains
3ðM − 1Þ unknown variables and each calibrator can provide (M − 1) equations to the linear
system, then there should exist at least three calibrators to solve the matrix equation. If
K ¼ 3, the unknown variables can be determined uniquely by multiplying the inverse of a non-
singular matrix:

EQ-TARGET;temp:intralink-;e037;116;195δ¼ T−1g: (37)

In such a case, the DOA angular interval among the calibrators should not be too close in
order to avoid the matrix singularity. If more than three calibrators are provided, i.e., K > 3, we
say the linear system is overdetermined and thus can be solved by the least square method.32

However, if K < 3, then the linear system is underdetermined, which means the unknowns can-
not be determined uniquely. So, to complete the calibration mission in practice, more than three
calibrators with a dispersed distribution in the scene are preferable.
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5 Experimental Verification Results

5.1 Indoor Experiments of the Multichannel Amplitude-Phase Error Calibration

5.1.1 Two-dimensional imaging experiment

To verify the multichannel amplitude-phase error calibration methods, we utilize a Ka-band horn
antenna array horizontally placed on a static indoor platform, which is shown in Fig. 9. An
Agilent E8363C vector network analyzer (VNA) is used as the signal transceiver.33 With the
help of a microwave multiplexer to switch the transmit and receive channel from one antenna
to another on a pulse to pulse basis, a linear array with 60 virtual elements and an 8-mm inner-
element spacing is synthesized. The test target scenario is composed of three metallic spheres,
and before acquiring the backscattered data from them, a metal sheet functioning as a calibrator
is placed parallel to the array. The experiment parameters are listed in Table 1.

The calibration procedure is implemented following Eqs. (12)–(15), then the calibration
parameters are applied, and the results are shown in Fig. 10. Figure 10(b) shows the degraded
imaging result without the multichannel amplitude-phase error correction. It is apparent that the
image is defocused with blurred and ghost targets, which are caused by channel inconsistency.
After the calibration parameters are applied, a clear focused image shown in Fig. 10(c) was
obtained, within which the geometric locations of all three target spheres accord with those
of the true scenario, as shown in the photo of Fig. 10(a).

5.1.2 Three-dimensional imaging experiment

A 3-D imaging experiment with the same Ka-band array as in Fig. 9 is also conducted to verify
the calibration method. As seen in Fig. 11, the array is vertically fixed on a horizontal rail of a
ground-based platform.34 When the VNA is programmed to transmit and receive signal pulses, a
synthetic aperture is realized by scanning the array along the horizontal rail and a virtual array
aperture is realized by aperture synthesis of the antennas. The geometry assembles a downward-
looking LA-3D-SAR in that it is simply a rotation version of the coordinates introduced in Fig. 1.
In the current experiment, the array antennas synthesize a linear array with 65 virtual elements

Fig. 9 2-D imaging experiment setup for calibrating the multichannel amplitude-phase errors.

Table 1 2-D imaging experiment parameters.

Parameters Value

Center frequency 31 GHz

Frequency bandwidth 6 GHz

Frequency points 1601

Array aperture length 0.472 m

Inner-element spacing 8 mm

Virtual element number 60
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and an 8-mm inner-element spacing. The target scenario comprises five metallic spheres in front
of the array and the experiment parameters are listed in Table 2.

The phase error is calibrated by setting one point scatterer (the central metallic sphere in
this experiment) as the reference target and calculating the difference between the ideal phase
history along the antenna array and the real phase extracted from the 2-D compressed image

Fig. 10 2-D imaging experiment: (a) target scene with three metallic spheres; (b) 2-D imaging
result without any calibration; and (c) 2-D imaging result after calibration.

Fig. 11 3-D imaging experiment setup for calibrating the multichannel amplitude-phase errors.

Table 2 3-D imaging experiment parameters.

Parameters Value

Center frequency 35 GHz

Frequency bandwidth 4 GHz

Frequency points 801

Inner-element spacing 8 mm

Virtual element number 65

Movement interval on rail 8 mm

Samples number on rail 101
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corresponding to each channel. The ideal phase is obtained with the help of the relative geo-
metric relationship between the array and the reference target and the extraction of the real phase
can be performed on the peak location in the 2-D image. Then the phase error can be compen-
sated and hence, an exact 3-D image could be expected.

In Fig. 12, we show the reconstructed 3-D images of the measurement data with and without
the calibration steps, thus the importance of amplitude-phase error compensation is demon-
strated. In Fig. 12(b), a 2-D image corresponding to the 40th data channel was displayed
with which we can clearly see focused five spheres. The 2-D images of the other channels
are similar. Figure 12(c) shows the defocused 3-D image obtained without any error compen-
sation, whereas Fig. 12(d) gives the 3-D result after calibration. In comparison with Fig. 12(c),
the five targets in Fig. 12(d) are focused in all three dimensions with higher precision. And the
locations of the focused targets are in exact accordance with the target scene setup in Fig. 12(a).
However, a slight defocusing still exists and this may result from the slight vibration of the array
during scanning along the horizontal rail.

5.2 Numerical Simulations of the Virtual Element Position Error Calibration

We test the calibration method with a simulated 3-D distributed target scene with the typical Ka-
band LA-3D-SAR parameters listed in Table 3. The target scene comprises scatterers, whose
locations and reflectivities come from a 2-D CSAR image and its digital elevation model
(DEM) data,35 as shown in Fig. 13. The virtual element position errors are artificially added
to the SAR raw data, where σx, σy, and σz are both set to 1 mm. Three time-divided active
calibrators are used and the SNR is set to be 20 dB.

Fig. 12 3-D imaging experiment: (a) target scene set up with five metallic spheres; (b) 2-D imaging
result corresponding to the 40th data channel; (c) 3D imaging result without any calibration; and
(d) 3-D imaging result after calibration.
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Figure 14 shows the reconstructed 3-D image of the simulated target scene. The image with
virtual element position errors is filled with strips of energy, which represent the cross-track
degradation due to a high integrated sidelobe level, making the targets in the distributed scenario
indiscernible. If we apply the proposed calibration method based on time-divided active cali-
brators, the position errors can be calibrated within a very high accuracy of 0.02 mm, which is
shown in Fig. 15, so that the reconstructed 3-D image with calibration exhibits a good perfor-
mance in the same manner as the error-free case.

Subsequently, Monte Carlo simulations with 200 iterations are conducted to demonstrate the
root mean square error (RMSE) of the estimator versus the SNR, as well as the number of cal-
ibrators. The results are given in Fig. 16. In Fig. 16(a), it can be seen that the estimator’s accuracy
improves with the increase of SNR, and the SNR with a value of 20 dB can keep the RMSE well
below 0.02 mm, satisfying the calibration requirement of the virtual element position error (with

Fig. 13 3-D distributed target scene simulation input: DEM data and the corresponding 2-D reflec-
tivity image.

Table 3 Typical Ka-band parameters for simulation use.a

Parameters Value Parameters Value

Airplane height H 1500 m Center frequency f c 36.5 GHz

Array length L 4 m Element number N 268

Δxn , Δyn , and Δzn 1 mm standard deviation

aThe parameters are the same as those given in Table 1 in Ref. 13.

Fig. 14 Reconstructed 3-D images of the simulated target scene (displayed at the isosurface
value of 9 dB).
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a standard deviation of 0.075 mm). In Fig. 16(b), the RMSE values corresponding to different
numbers of randomly distributed calibrators under a 20-dB SNR level are given. Though the
trend of RMSE improvement with the increase of the calibrator’s number is obvious, we
can clearly see that using only three calibrators is quite enough for keeping the accuracy
below the calibration requirement mentioned before. Consequently, using three calibrators is
the cost-effective solution for the time being.

Fig. 15 The estimated values of the virtual element position errors in (a) cross-track direction,
(b) along-track direction, and (c) height direction as compared to their respective true values.

Fig. 16 RMSE versus (a) SNR and (b) number of calibrators (SNR ¼ 20 dB).
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6 Conclusions

The LA-3D-SAR is a coherent system and is particularly susceptible to array errors, such as the
multichannel amplitude-phase errors and virtual element position errors. These errors are trace-
able to the nonideal electrical characteristics of antennas, vibration due to flight disturbance, and
motion measurement errors. In this paper, the impact of the multichannel amplitude-phase errors
and virtual element position errors on 3-D imaging quality with regard to their characteristics and
level of severity is investigated and it has been shown that a small amount of error may cause
massive degradations within the final 3-D SAR image. For the multichannel amplitude-phase
errors, which increase the integrated sidelobe level in the array direction, the target response is
more sensitive to the phase error than to the amplitude error. The amplitude error can be cor-
rected by a simple power normalization while the phase error can be calibrated using external
(parallel or point target) calibrators, as proposed and experimentally verified in the paper. For the
virtual element position errors, it has been shown that a high integrated sidelobe level, which
generates contrast degradation and noise can be caused in the cross-track direction, but with little
impact on the range and along-track directions. By contrast, the cross-track beamforming per-
formance is more sensitive to the error component in the height direction, and for typical Ka-
band LA-3D-SAR parameters, the tolerable level of the error standard deviation is found to be
below the submillimeter level. To mitigate the error effects, calibration and compensation mea-
sures based on time-divided active calibrators are proposed and simulated in the paper. It is worth
noting that in designing an LA-3D-SAR system, as well as in processing the LA-3D-SAR data,
the analyses and investigations in this paper will provide a useful reference to specify the system
performance, calibration requirements, and how to eliminate the error effects and optimize the
imaging result.
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