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Abstract. Convex total variation (TV) regularization models have been widely used in remote
sensing image restoration problems; however, these models tend to produce staircase effects.
We consider a nonconvex second-order TV regularization model with linear constraints for
remote sensing image restoration. To solve the nonconvex second-order TV regularization
model, we propose an efficient alternating minimization algorithm based on generalized iterated
shrinkage algorithm and alternating direction method of multipliers. Experimental results
demonstrate the effectiveness of the proposed model, which can reduce staircase effects while
preserving edges. In terms of signal-to-noise ratio and structural similarity index measure, the
experimental results show that our proposed model and algorithm can give better performance
compared with some state-of-the-art methods. © 2019 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.13.022006]
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1 Introduction

Image restoration has been widely studied in remote sensing image processing in the last
decades.1–6 Image restoration problem refers to recovering an image from blurry and noisy
observation. For simplicity, we assume that the underlying images have square domains and
are grayscale. Let u ∈ RM×M be an original image, K ∈ RM×M represent a blurring or convo-
lution operator, n ∈ RM×M be an additive noise, and g ∈ RM×M be the degraded or contaminated
image. The image restoration model can be described as follows:

EQ-TARGET;temp:intralink-;e001;116;303g ¼ Kuþ n: (1)

It is well known that recovering u from g is a classical linear ill-posed inverse problem, and it
is hard to directly find the solution. Many scholars have done a lot of research on the ill-posed
problem and found that adding a regularization term to the restoration model can solve this
problem effectively. Consequently, the image restoration methods with regularization have
attracted wide attention.

A well-known regularized inverse problem is the Tikhonov regularization approach,7 which
can be formulated as a one-step filter via Fourier transform for image restoration. Therefore, it
produces a smoothing effect on the restored image, i.e., the Tikhonov-like regularization tends to
make images overly smooth and often fails to preserve image edges. In comparison, a successful
image restoration regularization model is the popular total variation (TV) restoration model,
which was first proposed by Rudin et al.8,9 for Gaussian noise removal and then extended
to image deconvolution. This regularization approach achieves an important advantage for
edge-preserving image restoration. It has been proved to be effective both experimentally
and theoretically. The model with TV regularization can be described as
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EQ-TARGET;temp:intralink-;e002;116;735min
u

k∇uk1 þ
μ

2
kKu − gk22: (2)

The first term describes the TV regularization, where ∇u denotes the gradient of u, and it is
defined as ∇u ¼ ð∇xu;∇yuÞT . The second term is the fidelity term, which measures the
difference between g and Ku. And μ > 0 is a regularized scale parameter tuning the weight
between these two terms. ∇x and ∇y are the two linear differential operators given as

EQ-TARGET;temp:intralink-;sec1;116;654ð∇xuÞi;j ¼
�
uiþ1;j − ui;j if i < M;
u1;j − uM;j if i ¼ M; ð∇yuÞi;j ¼

�
ui;jþ1 − ui;j if j < M;
ui;1 − ui;M if j ¼ M;

for i; j ¼ 1; : : : ;M. Here, ui;j refers to the ðjM þ iÞ’th entry of the vector u. It is the ði; jÞ’th
pixel location of the image, see Ref. 10.

The TV models have shown a remarkable advantage in preserving images’ sharp edges. In
the last decade, a number of methods have been proposed to solve the unconstrained model
[Eq. (2)], such as a fixed point iteration method, Newton’s method, Chambolle’s projection algo-
rithm, iterative shrinkage/thresholding algorithms, alternating direction minimization (ADM)
methods (see for instance Refs. 11–28 and references therein). However, TV-based method suf-
fers from the so-called staircasing phenomenon. Staircase solutions developed false edges that
do not exist in the true image. To alleviate this drawback, many improved variation models have
been proposed, such as high-order TV regularization methods29–31 and fractional order TV
model.32–35 Combining the first-order and second-order TV regularizations, Papafitsoros and
Schönlieb36 proposed a hybrid variational model. By balancing the first- and second-order
derivative regularizations, Bredies et al.37 proposed the total generalized variation (TGV)
model, which can eliminate the staircase artifacts. In this paper, we focus on the high-order
TV regularization. The majority of the high-order norms involve second-order differential oper-
ators because piecewise vanishing second-order derivatives lead to piecewise linear solutions
that better fit smooth regions (see Ref. 38 for more details).

The above regularization terms lead to a convex optimization. It is well known that the
convergence of the convex optimization problem is guaranteed. TV minimization, which is
the l1 norm of the gradient magnitude image (GMI), exploits the sparsity of GMI. However,
the l1 norm usually underestimates the nonzero values underlying the signal.39 Chen and
Selesnick40 indicated that nonconvex regularizer can exhibit sparser solution than l1 regularizer.
To improve the shortcoming, a number of nonconvex regularizers are introduced. Nikolova
et al.41 developed a nonsmooth nonconvex image restoration model to recover image with
neat edges. Based on wavelet tight frame and the TV, Lv et al.42 investigated a nonconvex hybrid
variational regularization for restoring the degraded images. Using nonconvex and nonsmooth
potential function, Zhang et al.43 proposed a nonconvex and nonsmooth TGV model. Recent
research reveals that for modeling the sparseness of image gradient, the lp-norm (k · kpp)
with 0 < p < 1 is more suitable than the l1-norm (k · k1) of TV regularizer.44 In the works of
Xu et al.,45 an efficient iterative half-thresholding algorithm to solve the l1

2
norm for noisy signal

recovery was proposed. In Ref. 46, Zuo et al. introduced a generalized iterated shrinkage
algorithm (GISA) by extending the popular soft-thresholding operator to solve the following
image deconvolution model with p-norm:

EQ-TARGET;temp:intralink-;e003;116;205min
u

μk∇ukpp þ 1

2
kKu − gk22: (3)

Recently, Afonso et al.47 proposed the following constrained TV regularized problem:

EQ-TARGET;temp:intralink-;e004;116;150min
u

ϕðuÞ s:t: kKu − gk ≤ δ; (4)

where the parameter δ > 0 is an estimate of the noise level in the data and ϕðuÞ is a regularization
function. In the case where ϕðuÞ ¼ kuk1, the above problem is usually known as basis pursuit
denoising (BPD).48 Meanwhile, the authors put forward a constrained split augmented
Lagrangian shrinkage algorithm (C-SALSA) to solve the constrained model [Eq. (4)]. The
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experimental results indicate that C-SALSA method is effective and promising. Constrained
problems are usually much more difficult to solve than unconstrained ones. Although, it has
the important advantage that choosing a reasonable parameter δ is easier than finding a suitable
regularization parameter μ.49

Inspired by the above-mentioned advantages of the nonconvex regularization and second-
order TV regularization, we propose the following nonconvex approximation model with
a linear constraint:

EQ-TARGET;temp:intralink-;e005;116;651min
u

k∇2ukpp s:t: kKu − gk2 ≤ δ; (5)

where ∇2u ¼
�∇xxu ∇xyu
∇yxu ∇yyu

�
denotes the second-order discrete gradient of u. For solving

the proposed nonconvex model [Eq. (5)], combining generalization of soft-thresholding algo-
rithm and alternating direction method, we develop an efficient alternating iterated algorithm.
The detailed solution process will be explained in Sec. 2. We report experimental results and
do some comparisons. The comparison results show that our method is efficient and performs
better than some state-of-the-art methods.

The paper is organized as follows: in Sec. 2, using the variable splitting technique, augmented
Lagrangian method of multipliers (ADMM), and generalized soft-thresholding algorithm,
an efficient alternating iterated algorithm is proposed to solve the proposed model [Eq. (5)].
In Sec. 3, we present numerical results and performance comparisons. Finally, Sec. 4 concludes
this paper.

2 Solving Constrained Nonconvex Second-Order Total Variation Image
Restoration Model

In this section, we propose an efficient method to solve the nonconvex constrained second-order
TV [Eq. (5)]. Based on variable splitting technology and generalized soft-thresholding function,
ADMM is used to solve the proposed nonconvex constrained second-order TV model [Eq. (5)].

By introducing two auxiliary variables ω and r, we can obtain the following equivalent
form of the model [Eq. (5)]:

EQ-TARGET;temp:intralink-;e006;116;354

min
u;ω

kωkpp s:t: ω ¼ ∇2u;

Ku − g ¼ rðkrk2 ≤ δÞ: (6)

To further translate the above-constrained problem into unconstrained ones, the augmented
Lagrangian function is introduced. The augmented Lagrangian function of Eq. (6) is defined as
follows:

EQ-TARGET;temp:intralink-;e007;116;263

LAðω; u; λ1; λ2Þ ¼ kωkpp − λT1 ðω − ∇2uÞ þ β1
2
kω − ∇2uk22

− λT2 ðKu − g − rÞ þ β2
2
kKu − g − rk22; (7)

where λ1 and λ2 are the Lagrange multipliers, β1 and β2 are the penalty parameters.
According to the idea of classical ADMM, the solution of the problem [Eq. (7)] is to find

a saddle point of LAðω; u; λ1; λ2Þ. This can be done by alternately minimizing the augmented
Lagrangian function LAð·Þ with the following form:

EQ-TARGET;temp:intralink-;sec2;116;148

8>>>><
>>>>:

ωkþ1 ¼ arg min
ω

LAðω; uk; λk1; λk2Þ;
ukþ1 ¼ arg min

u
LAðωkþ1; u; λk1; λ

k
2Þ;

rkþ1 ¼ arg min
r

− ðλk2ÞTðKu − g − rÞ þ β2
2
kKukþ1 − g − rk22;

s:t: krk2 ≤ δ;
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and the Lagrange multiplier parameters are updated as follows:

EQ-TARGET;temp:intralink-;sec2;116;723

�
λkþ1
1 ¼ λk1 − β1ξðωkþ1 − ∇2ukþ1Þ;
λkþ1
2 ¼ λk2 − β2ξðKukþ1 − g − rkþ1Þ;

where ξ is a relaxation parameter. Next, we investigate the subproblems one by one.

(1) The ω subproblem: The ω subproblem is a nonconvex minimization problem due to the
nonconvex lp norm regularizer. For fixed uk, λk1, and λ

k
2, the minimization of Eq. (7) with

respect to ω can be obtained as
EQ-TARGET;temp:intralink-;e008;116;630

ωkþ1 ¼ arg min
ω

LAðω; uk; λk1; λk2Þ

¼ arg min
ω

kωkpp − ðλk1ÞTðω − ∇2ukÞ þ β1
2
kω − ∇2ukk22

¼ arg min
ω

kωkpp þ β1
2

����ω −
�
∇2uk þ λk1

β1

�����
2

2

: (8)

There are a number of methods proposed to solve the above ω subproblem [Eq. (8)],
such as iteratively reweighted l1-minimization and iteratively reweighted least squares
method.50–53 However, these methods could not converge to the global optimal solution.
To guarantee the convergence of minimization of ω subproblem, Zuo et al.46 employed a
generalized soft thresholding algorithm (GST) to solve this problem. Then, the solutions
ωkþ1 are given as

EQ-TARGET;temp:intralink-;e009;116;468ωkþ1 ¼ TGST
p

�
∇2uk þ λk1

β1
;
1

β1

�
: (9)

The function TGST
p in Eq. (9) is defined as

EQ-TARGET;temp:intralink-;sec2;116;409TGST
p ðy; λÞ ¼

�
0; if jyj ≤ τGSTp ðλÞ;
sgnðyÞSjpðjyj; λÞ; if jyj > τGSTp ðλÞ;

where sgnð·Þ is the signum function, Sjþ1
p ðjyj; λÞ is iteratively computed by the following

equation:

EQ-TARGET;temp:intralink-;sec2;116;338Sjþ1
p ðjyj; λÞ ¼ jyj − λp½Sjpðjyj; λÞ�p−1; j ¼ 0;1; : : : ; J;

S0pðjyj; λÞ ¼ jyj, and the thresholding value τGSTp ðλÞ is defined as follows:

EQ-TARGET;temp:intralink-;sec2;116;291τGSTp ðλÞ ¼ ½2λð1 − pÞ� 1
2−p þ λp½2λð1 − pÞ�p−12−p:

(2) The u subproblem: The minimization of subproblem with u can be solved as
EQ-TARGET;temp:intralink-;e010;116;243

ukþ1 ¼ arg min
u

LAðωkþ1; u; λk1; λ
k
2Þ

¼ arg min
u

− ðλk1ÞTðωkþ1 − ∇2uÞ þ β1
2
kωkþ1 − ∇2uk22

− ðλk2ÞTðKu − g − rkÞ þ β2
2
kKu − g − rkk22

¼ arg min
u

β1
2

����ωkþ1 −
�
∇2uþ λk1

β1

�����
2

2

þ β2
2

����Ku −
�
gþ rk þ λk2

β2

�����
2

2

: (10)

Then, we can obtain the first-order necessary optimality conditions of Eq. (10) as
follows:

EQ-TARGET;temp:intralink-;e011;116;100ðβ1∇2T∇2 þ β2KTKÞu ¼ β1∇2Tωkþ1 − ∇2Tλk1 þ β2KT

�
gþ rk þ λk2

β2

�
: (11)
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Under the periodic boundary condition for u, ∇2T∇2 and KTK are all block circulant
matrices, more details see Ref. 54, and the matrices can be diagonalized by the
two-dimensional (2-D) fast discrete Fourier transforms.55 So, the solution of Eq. (11)
can be obtained by two fast discrete Fourier transforms and the solution has the following
closed form:

EQ-TARGET;temp:intralink-;e012;116;675ukþ1 ¼ F−1
�
F ðβ1∇2Tωkþ1 − ∇2Tλk1 þ β2KTðgþ rkÞ þ KTλk2Þ

F ðβ1∇2T∇2 þ β2KTKÞ
	
: (12)

(3) The r subproblem: The r subproblem is equivalently transformed to the following form:

EQ-TARGET;temp:intralink-;sec2;116;617rkþ1 ¼ arg min
r∈Ω

β2
2

����Kukþ1 − g − r −
λk2
β2

����
2

2

;

whereΩ ¼ fr ∈ RMjkrk2 ≤ δg. The above minimization can be directly obtained by the
following projection:

EQ-TARGET;temp:intralink-;e013;116;547rkþ1 ¼ PΩ

�
Kukþ1 − g − r −

λk2
β2

	
; (13)

where PΩ denotes the projection operator.
Finally, we update the Lagrange multipliers λ1 and λ2 as

EQ-TARGET;temp:intralink-;e014;116;478λkþ1
1 ¼ λk1 − β1ξðωkþ1 − ∇2ukþ1Þ; (14)

EQ-TARGET;temp:intralink-;e015;116;445λkþ1
2 ¼ λk2 − β2ξðKukþ1 − g − rkþ1Þ: (15)

The parameter ξ in Eqs. (14) and (15) is a relaxation parameter. It is well known
that when ξ ∈ ½0; ð ffiffiffi

5
p þ 1Þ∕2�, the algorithm has the best convergence. In this paper,

we select ξ ¼ 0.55.

We name the proposed algorithm as the nonconvex constrained high-order TV with alter-
nating direction method of multipliers (abbreviated as NCHTV-ADMM), which is presented in
Algorithm 1.

3 Numerical Experiments

In this section, we present some numerical examples of image restoration to illustrate the effec-
tiveness of our proposed NCHTVmodel. We test several remote sensing images including Aerial
(1) (256 × 256), chemical plant (256 × 256), and Aerial(2) (512 × 512). The three different
types of images are shown in Fig. 1. The experiments are performed under Windows 10 with
MATLAB version 2012a running on a PC with an Intel Core i5Duo Central processing unit at
2.50 GHz and 4 GB of memory.

The signal-to-noise ratio (SNR), structural similarity index measure (SSIM), and relative
error (Rerr)

56 are used to compare the quality of the restoration results. They are defined as
follows:

EQ-TARGET;temp:intralink-;sec3;116;186SNR ¼ 20 log10
ku0 − uk2
ku0 − uk2

;

EQ-TARGET;temp:intralink-;sec3;116;139SSIM ¼ ð2μu0μu þ c1Þð2σu0u þ c2Þ
ðμ2u0 þ μ2u þ c1Þðσ2u0 þ σ2u þ c2Þ

;

EQ-TARGET;temp:intralink-;sec3;116;95Rerr ¼
ku − u0k2
ku0k2

;
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where u0, u are the original image and the restored image, respectively, u is the mean intensity
value of u0. μu0 and μu are the mean values of the u0 and u, respectively, σ2u0 and σ

2
u represent the

variance of the u0 and u, respectively, and σu0u is the covariance of the u
0 and u, c1 and c2 are the

positive constants that can be seen as stabilizing constants for near-zero denominator values.
Generally, the larger SNR values show that the restored images are better. The SSIM is an
index that is used to measure the similarity between the restored image and the ideal image.
The closer the values of SSIM are to 1, the closer the restored image is to the original ones.

Fig. 1 Test images used for the experiments: (a) Aerial(1), (b) chemical plant, and (c) Aerial(2).

Algorithm 1 NCHTV with ADMM.

1. Input: g, K , β1 > 0, β2 > 0, p, J

2. Initialization: u0 ¼ g, ω0 ¼ ∇2u0, ξ ¼ 0.55, λi ¼ 0 for i ¼ 1;2.

3. While “not converged,” Do

4. Compute ωkþ1

EQ-TARGET;temp:intralink-;t001;116;643ωkþ1 ¼ TGST
p

�
∇2uk þ λk1

β1
;
1
β1

�

5. Compute ukþ1 via

EQ-TARGET;temp:intralink-;t001;116;585ukþ1 ¼ F−1
�
F ðβ1∇2Tωkþ1 − ∇2T λk1 þ β2KT ðg þ r k Þ þ KT λk2Þ

Fðβ1∇2T∇2 þ β2KTK Þ
	

6. Compute r k by

EQ-TARGET;temp:intralink-;t001;116;527r kþ1 ¼ PΩ

�
Kukþ1 − g − r −

λk2
β2

	

7. Update λkþ1
1

EQ-TARGET;temp:intralink-;t001;116;469λkþ1
1 ¼ λk1 − β1ξðωkþ1 − ∇2ukþ1Þ

8. Update λkþ1
2

EQ-TARGET;temp:intralink-;t001;116;424λkþ1
2 ¼ λk2 − β2ξðKukþ1 − g − r kþ1Þ

9. End Do

10. Output ukþ1
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And, the smaller the Rerr values are, then the better the performance is. The stopping criterion of
the testing algorithms in all the experiments is set as follows:

EQ-TARGET;temp:intralink-;sec3;116;144

kukþ1 − ukk2
kukk2

≤ 10−4:

We compare the proposed method with two related methods: one is the GISA, which was
proposed by Zuo et al.46 to solve the nonconvex lp regularization image restoration; the other is
a fast TV regularization based method with alternating direction method of multipliers (FTVd).28

Fig. 2 Rerr values versus iteration with different p. (a) and (b) Corrupted by Gaussian blur. (c) and
(d) Corrupted by average blur. (e) and (f) Corrupted by motion blur.
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3.1 Experiment 1

In this experiment, we show the effect of parameter p to the recovery performance. We test the
proposed NCHTV-ADMM for restoring the image “chemical plant” with different values
of p under different blurring kernels and different noise levels. In Fig. 2, we plot the Rerr

behaviors along with associated iteration numbers under different values of p. It can be observed
from Fig. 2 that the proposed NCHTV-ADMM generates decreasing sequences when
p ¼ 1; 0.9; 0.6; 0.7; 0.8. From this experiment, it is clear that NCHTV-ADMM performs better
when p ¼ 0.8, and we set p ¼ 0.8 in the following experiments.

3.2 Experiment 2

In this subsection, we perform some experiments to illustrate the performance of the proposed
NCHTV-ADMM algorithm. To show the performance of the proposed NCHTV-ADMM, we
compared it with two state-of-the-art methods, FTVd28 and GISA.46

First, the “Aerial(1)” images are degraded by Gaussian blurring operator. For an experiment
with noise levels δ ¼ 0.02; 0.1 and Gaussian blur with Gaussian [Eq. (5)] kernels of size 11,
Fig. 3 shows the restored results with FTVd,28 GISA,46 and the proposed NCHTV-ADMM.
The zoomed parts of the restored images are shown in Fig. 4. For a more complete explanation,
we also perform the experiments for the three tested images under different Gaussian blurring
kernels. The corresponding detailed results of SNR and SSIM values are shown in Table 1.
In Fig. 3, Fig. 4, and Table 1, the proposed algorithm demonstrates improvement in the restored
images using our algorithm. Meanwhile, one can see that the proposed method can obtain better
restoration results with higher SNRs and SSIMs.

Next, the average blur is considered. For an experiment with noise levels δ ¼ 0.02; 0.1 and
average blur kernel of size 15 × 15, Fig. 5 shows the results obtained by FTVd,28 GISA,46 and the
proposed NCHTV-ADMM algorithm. The zoomed parts of the restored images are shown in
Fig. 6. We can easily see the proposed algorithm yields better results in image restoration as it
avoids the staircase effect while preserving edges well. Table 2 shows the results of SNR and
SSIM values under different average blurring kernels.

Fig. 3 Results of noisy images restored with different methods under 11 � 11 Gaussian blur, with
noise level (a–d) δ ¼ 0.02 and (e–h) δ ¼ 0.1. Columns from the left to the right in each row are
the blurred noisy image, the restored image by FTVd, the restored image by GISA, the restored
image by NCHTV-ADMM, respectively.
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Fig. 4 Zoomed partial regions in Fig. 3.

Table 1 The restored results by FTVd, GISA, and NCHTV-ADMM for different images under
Gaussian blur.

Blurring kernel Image

δ ¼ 0.02 δ ¼ 0.1

FTVd GISA Our method FTVd GISA Our method

Gaussian(9*9) Aerial(1) SNR 29.46 30.43 31.14 24.23 25.54 26.36

SSIM 0.9539 0.9608 0.9767 0.8762 0.8938 0.9186

Chemical plant SNR 27.68 28.44 29.42 21.93 22.57 23.96

SSIM 0.9214 0.9310 0.9440 0.7729 0.8309 0.8676

Aerial(2) SNR 33.23 34.50 36.09 27.11 28.83 29.75

SSIM 0.9347 0.9400 0.9549 0.7624 0.8299 0.8744

Gaussian(11*11) Aerial(1) SNR 27.61 28.62 29.40 23.11 24.34 25.10

SSIM 0.9313 0.9426 0.9530 0.8492 0.8792 0.8959

Chemical plant SNR 25.95 26.77 27.79 20.83 22.48 23.71

SSIM 0.8830 0.8998 0.9200 0.7287 0.7902 0.8281

Aerial(2) SNR 31.76 32.96 4.41 26.01 27.83 29.08

SSIM 0.9120 0.9210 0.9403 0.7426 0.8083 0.8532

Gaussian(15*15) Aerial(1) SNR 25.33 26.42 27.23 21.70 22.86 23.35

SSIM 0.8936 0.9129 0.9300 0.8103 0.8307 0.8542

Chemical plant SNR 24.22 25.07 26.13 19.72 21.46 22.49

SSIM 0.8353 0.8590 0.8891 0.6844 0.7514 0.7868

Aerial(2) SNR 28.74 30.11 31.34 24.44 25.10 26.23

SSIM 0.8529 0.8718 0.9001 0.6838 0.7461 0.7910
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Then, the ideal image “Aerial(2)” is degraded by a linear motion blur. For the experiment
with noise levels δ ¼ 0.02; 0.1 and the motion kernels of length 55, Fig. 7 shows the results
obtained by the above-mentioned three algorithms. For a better visualization, some small partial
regions of the restored results of Fig. 7 are zoomed in Fig. 8. The results of SNR and SSIM
values for tested images under different motion blurring kernels are shown in Table 3. Clearly,
the visual quality of the restored image by the proposed NCHTV-ADMM algorithm is
competitive with the other two algorithms. Moreover, one can observe that the SNRs and
the SSIMs of the restored images by the proposed algorithm are better than those by the other
two mentioned algorithms.

Fig. 5 Results of noisy images restored by different methods under 15 � 15 average blur, with
noise level (a–d) δ ¼ 0.02 and (e–h) δ ¼ 0.1. Columns from the left to the right in each row
are the blurred noisy image, the restored image by FTVd, the restored image by GISA, and
the restored image by NCHTV-ADMM, respectively.

Fig. 6 Zoomed partial regions in Fig. 5. For a better visualization, some small partial regions of
the restored results in Fig. 5 are zoomed.
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Fig. 7 Results of noisy images restored by different methods under 55 � 135 motion blur, with
noise level (a–d) δ ¼ 0.02 and (e–h) δ ¼ 0.1. Columns from the left to the right in each row
are the blurred noisy image, the restored image by FTVd, the restored image by GISA, the restored
image by NCHTV-ADMM, respectively.

Table 2 The restored results by FTVd, GISA, and NCHTV-ADMM for different images under
average blur.

Blurring kernel Image

δ ¼ 0.02 δ ¼ 0.1

FTVd GISA Our method FTVd GISA Our method

Average(9) Aerial(1) SNR 30.14 31.10 31.91 24.73 25.94 26.87

SSIM 0.9595 0.9659 0.9713 0.8854 0.9107 0.9256

Chemical plant SNR 28.29 29.04 30.08 22.27 23.86 25.29

SSIM 0.9300 0.9371 0.9512 0.7826 0.8377 0.8763

Aerial(2) SNR 33.81 35.07 36.67 27.42 29.16 30.66

SSIM 0.9383 0.9432 0.9566 0.7695 0.8338 0.8775

Average(11) Aerial(1) SNR 28.36 29.48 30.36 23.47 24.78 25.53

SSIM 0.9409 0.9518 0.9615 0.8572 0.8885 0.9036

Chemical plant SNR 26.54 27.30 28.61 21.19 22.87 24.14

SSIM 0.8965 0.9097 0.9333 0.7647 0.8058 0.8433

Aerial(2) SNR 32.37 33.52 35.06 26.30 28.10 29.47

SSIM 0.9203 0.9260 0.9450 0.7426 0.8100 0.8579

Average(15) Aerial(1) SNR 25.25 26.32 27.08 22.00 22.86 23.25

SSIM 0.8918 0.9119 0.9265 0.8153 0.8367 0.8496

Chemical plant SNR 24.32 25.07 26.08 20.63 21.46 22.49

SSIM 0.8379 0.8586 0.8876 0.7214 0.7504 0.7878

Aerial(2) SNR 29.43 30.86 32.27 24.74 26.47 27.35

SSIM 0.8666 0.8842 0.9145 0.6921 0.7352 0.7831
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3.3 Experiment 3

In this subsection, we also perform some experiments to further demonstrate the superiority of
our proposed method over FTVd and GISA. We plot three sets of figures to illustrate the con-
vergence performance of the relative errors versus iteration number and SNR versus iteration

Fig. 8 Zoomed partial regions in Fig. 7. For a better visualization, some small partial regions of
the restored results in Fig. 7 are zoomed.

Table 3 The restored results by FTVd, GISA, and NCHTV-ADMM for different images under
motion blur.

Blurring kernel Image

δ ¼ 0.02 δ ¼ 0.1

FTVd GISA Our method FTVd GISA Our method

Motion(55,135) Aerial(1) SNR 31.90 33.43 34.57 26.03 26.54 27.36

SSIM 0.9699 0.9778 0.9827 0.8902 0.9118 0.9326

Chemical plant SNR 29.48 30.84 32.09 23.53 24.17 25.06

SSIM 0.9334 0.9470 0.9610 0.8114 0.8309 0.8656

Aerial(2) SNR 36.38 37.96 39.49 28.11 29.53 31.01

SSIM 0.9337 0.9430 0.9639 0.7754 0.8240 0.8644

Motion(25,35) Aerial(1) SNR 34.54 35.84 37.18 28.59 28.90 29.45

SSIM 0.9839 0.9872 0.9896 0.9407 0.9502 0.9561

Chemical plant SNR 33.02 33.77 34.99 25.83 26.90 27.27

SSIM 0.9715 0.9746 0.9799 0.8738 0.8992 0.9125

Aerial(2) SNR 40.36 41.52 42.47 31.39 32.83 33.93

SSIM 0.9722 0.9754 0.9786 0.8507 0.8861 0.9075
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number, and the results are shown in Figs. 9–11. As is clearly shown, FTVd, GISA, and our
proposed NCHTV-ADMM generate increasing sequences in terms of the iteration number over
the SNR, and generate decreasing sequences in terms of the iteration number over the relative
errors. Moreover, we find that our proposed method outperforms FTVd and GISA, in terms of
highest SNR and lower Rerr in fewer iterations. These facts also indicate that the proposed
method performs better than FTVd and GISA.

Fig. 9 SNR and Rerr versus iteration number for three different methods with the noise level
δ ¼ 0.02 under 11 � 11 Gaussian blur.

Fig. 10 SNR and Rerr versus iteration number for three different methods with the noise level
δ ¼ 0.02 under 15 � 15 average blur.
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4 Conclusion

In this paper, we proposed a constrained second-order nonconvex TV regularization image resto-
ration model. A new alternating minimization algorithm that combines generalization of soft-
thresholding algorithm and alternating direction method is proposed to solve the proposed
model. Numerical results show that the new proposed model can preserve the edge information
while avoiding the staircase effect. By comparison with FTVd and GISA, our proposed method
can obtain better performance.
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