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Abstract. A hyperspectral (HS) imager is more effective than a multispectral (MS) imager in
mineral discrimination, but spatial coverage of HS images is limited in comparison to that of MS
images. Thus Kruse and Perry have proposed a method that uses coincident HS imaging and MS
imaging data to extend mineral mapping to larger areas. We propose a method modified from the
Kruse and Perry’s (K&P) method. Though the K&P method derives the MS-based endmember
spectra by weighting the HS-based endmember spectra with the response functions of the MS
sensor bands, the proposed method obtains the MS-based endmember spectra from surface
reflectance spectra of the MS pixels at the same positions with the HS pixels selected as the
HS-based endmembers in the overlapping area. The validation study using airborne visible/infra-
red imaging spectrometer and advanced spaceborne thermal emission and reflection radiometer
images over Cuprite and Goldfield areas, Nevada, USA, demonstrates that the proposed method
is more robust against spectral inconsistency between the HS- and the MS-images caused by
calibration and/or atmospheric correction errors than the K&P method, though the proposed
method is more sensitive to co-registration errors between the HS- and the MS-images than
the K&P method. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.024517]
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1 Introduction

A multispectral (MS) imager like the advanced spaceborne thermal emission and reflection radi-
ometer (ASTER) onboard the Terra satellite is an effective tool for mineral mapping,1–5 but can
perform less well in discriminating some minerals due to various limitations particularly in the
number of spectral bands and bandwidth. For example, Rowan and Mars3 reported that calcite
and dolomite were not successfully discriminated in mineral mapping by orthogonal transfor-
mation and interband operation with ASTER data, and Tanaka et al.4 reported that kaolinite and
dickite were not successfully separated by spectral pattern analysis of ASTER data. A hyper-
spectral (HS) imager, however, allows us to discriminate minerals more effectively than an MS
imager due to advantages offered by the number and narrowness of spectral bands, though these
bands have considerable amounts of redundancy in general. For example, Kruse et al.6 demon-
strated that kaolinite and dickite were successfully discriminated using the airborne visible/infra-
red imaging spectrometer (AVIRIS). van der Meer et al. compared two methods of Wavelength
Mapper and QuanTools for deriving spectral features of minerals from HS images and showed
that the results by the two methods were comparable and reproducible.7 Kereszturi et al.8

detected lithologies and mineral alternations on the surface after the 2012 Te Maari eruptions
using airborne HS sensor and terrain models derived by light detection and ranging. Liu et al.9

detected muscovite, kaolinite, chlorite, epidote, calcite, and dolomite from Tiangong-1 hyper-
spectral imager (HIS) data acquired over their study area in China.

On the other hand, HS satellite imagers often sacrifice the spatial resolution and/or the swath
width of an acquired image for many spectral bands due to some limitations like satellite to
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ground communication bandwidth, e.g., the spatial resolution and the swath width of Hyperion
onboard the EO-1 satellite are 30 m and 7.6 km, respectively,10 those of the Environmental
Mapping and Analysis Program (EnMAP) are 30 m and 30 km, respectively,11 those of the
Precursore Iperspettrale della Missione Applicativa (PRISMA) mission are 30 m and 30 km,
respectively,12 and those of Hyperspectral Imager Suite (HISUI) on the International Space
Station (ISS) are 20 m (cross track) or 30 m (along track), and 20 km, respectively.13 Since
this limitation results in reducing the observation frequency, imaging coverage achieved through
a mission period is often much smaller in HS satellite sensor projects than in MS satellite sensor
projects, leaving gaps in data coverage. Particularly, HISUI onboard the ISS is predicted to leave
many gaps after the mission period of three years, because it has no pointing function and its
viewing direction is fixed to the nadir.

An effective approach to such a situation will be to compensate a gap of an HS image using
an MS image type that is widely available. Kruse and Perry14,15 have developed a method that
uses coincident HS imaging and MS imaging data to extend mineral mapping to larger areas.
This method can provide a reasonable result of mineral mapping by combining a complete MS
image and an incomplete HS image, but it is predicted that this method is sensitive to spectral
inconsistency between the HS- and the MS-images, caused by inaccuracies from radiometric
calibration and atmospheric correction. Thus in this study, we propose an alternative approach
with higher robustness to such spectral inconsistency, based on Kruse and Perry’s method
(referred to as the K&P method). First, the K&P method is reviewed in Sec. 2, and then
our method is proposed in Sec. 3. In the following sections, the two methods are evaluated
using AVIRIS and ASTER images around Cuprite and Goldfield, Nevada, USA.

2 Kruse and Perry’s Method

In the K&P method, spatially nested HS and MS observation images are first acquired, and then
converted to surface reflectance images by atmospheric correction. Next, HS-based endmembers
for minerals are determined from the HS image, and the spectra of them are weighted by the
response functions of the MS sensor bands. Thus the spectra of the MS-based endmembers are
obtained, and then used for MS-based mineral mapping with the MS image by the spectral angle
mapper (SAM)16 or other methods. MS-based mapping results can be compared with HS-based
mapping results in the overlapping area. Finally, the MS-based results are extended to the non-
overlapping area using these results.

Though this method derives the MS-based endmember spectra by weighting HS-based end-
member spectra with the response functions of the MS sensor bands, it is sensitive to spectral
inconsistency between the HS- and the MS images caused by inaccuracies from radiometric
calibration and atmospheric correction. For example, if surface reflectance spectra derived
from the HS image have spectral distortions causing misclassification of minerals, the MS-
based endmember spectra derived from them by weighting will also have such distortions,
and they will produce errors in mineral classification with the actual MS image. Even if the
HS surface reflectance spectra are accurate, minerals will be unsuccessfully classified if surface
reflectance spectra of the MS image have spectral distortions due to calibration and/or atmos-
pheric correction errors.

3 Proposed Method

3.1 Concept and Procedures

Since the K&P method is sensitive to inaccuracies from radiometric calibration and/or atmos-
pheric correction, we propose its modified version as described below.

First, the HS- and the MS-images in an overlapping area are accurately co-registered between
them and converted to surface reflectance images by atmospheric correction, respectively.
Mineral discrimination is then performed with the HS-image using a general procedure like
(1) data compression by the minimum noise fraction (MNF) conversion,17 (2) extraction of spec-
trally pure pixels by the pixel purity index (PPI) analysis,18 (3) extraction of endmember pixels
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by a n-dimensional scatter plotting,18 and (4) determination of minerals corresponding to each
endmember through a comparison between the endmember spectra and the library spectra. This
procedure links HS-based endmember spectra and mineral labels in the overlapping area. Next,
the MS-based endmember spectra are taken from surface reflectance spectra of the MS-pixels at
the same positions with the HS-pixels selected as the HS-based endmembers in the overlapping
area. This means that MS-based endmember spectra are linked to mineral labels via HS-based
endmember spectra in the overlapping area. Finally, mineral discrimination is performed for the
MS-image over the overlapping and the nonoverlapping areas using the MS-based endmember
spectra obtained above, assuming that the MS-based endmember spectra can be applied not only
to the overlapping area but also to the nonoverlapping area. Figure 1 shows the flowchart of the
proposed method.

Though the K&P method uses the extracted HS-based endmember spectra in calculating
the MS-based endmember spectra, the proposed method calculates the MS-based endmember
spectra from surface reflectance spectra of the MS-pixels at the same positions with the HS-
pixels selected as the HS-based endmembers in the overlapping area. Since the MS-based end-
member spectra are determined based on the MS-image itself, spectral inconsistency between
the HS- and the MS-surface reflectance images will not produce an error in mineral mapping by
the SAM method with the MS-image and the MS-based endmember spectra, unlike the K&P
method.

3.2 Necessity of Accurate Co-registration

In the proposed method, co-registration between the HS- and the MS-images should be accu-
rately performed, because the MS-based endmembers are derived from the MS-pixels corre-
sponding to the HS-pixels selected as the HS-based endmembers. If co-registration is
inaccurate, the proposed method will perform less well, as demonstrated in Sec. 5.4. Therefore,
accurate image-to-image matching between the HS- and the MS-images should be applied after
system geometric correction of each image. Though various matching methods are available,19

its simplest method is probably to match the positions of the two images visually by parallel
translation in integer pixels using an appropriate feature point, if geometric distortion is small in
each image after system geometric correction.

Fig. 1 Flowchart of the proposed method.
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If the whole of the overlapping area cannot be co-registered with enough accuracy by single
operation, co-registration can be performed for each subarea divided from the whole area.

3.3 Details of Mineral Mapping with MS-Based Endmember Spectra

Several methods are available for mineral mapping with the MS-based endmember spectra.
In the proposed method, we employed the SAM method for this purpose. The SAM method
determines the spectral similarity between two spectra by calculating the angle between the
two spectra, treating them as vectors in a space with dimensionality equal to the number of
bands,16 where the cosine similarity calculated from the angle is often used instead of the angle.
In the proposed method, each MS-pixel is assigned to the MS-based endmember that the cosine
similarity against that pixel is highest among all the MS-based endmembers and then classified
to the mineral corresponding to the assigned MS-based endmember.

In practice, the highest or near-highest cosine similarity can be often found in two or more
minerals. In addition, some minerals will often show a lower cosine similarity against a target
pixel than other minerals due to spectral distortion even if that mineral is present at that pixel
location. The proposed method, therefore, employs a thresholding approach for solving these
problems. In this approach, the threshold of the cosine similarity (Ck) is determined for each
mineral k in the overlapping area as follows:

(1) If a certain value of Ck is given for mineral k, the MS-based map of k is obtained by
thresholding with that value of Ck, and its producer’s accuracy can be calculated from the
obtained MS-based map and the HS-based map of k. In addition, the producer’s accuracy
will increase with decreasing Ck, because more MS-pixels will be selected for mineral k.
Thus the maximum value of Ck can be searched under the condition that the producer’s
accuracy exceeds a predefined threshold P0 (e.g., 0.9).

(2) For mineral k, thresholding with the maximum value of Ck obtained above is applied,
and the user’s accuracy is calculated. If the user’s accuracy exceeds a predefined thresh-
old U0 (e.g., 0.3), this value of Ck is used as the threshold for k. If not so, the following
procedure is performed.

a) The maximum producer’s accuracy for k (Pmax) is searched by changing Ck under the
condition that the user’s accuracy for k exceeds a predefined thresholdU1 (e.g., 0.15).

b) The producer’s accuracy P1 giving the maximum user’s accuracy is searched by
changing Ck under the condition of P1 > Pmax − ΔP (e.g., ΔP ¼ 0.1). The maxi-
mum value ofCk is searched under the condition that the producer’s accuracy exceeds
P1 and used as the threshold for k.

The basic concept of this procedure is to findCk giving an acceptable producer’s accuracy for
mineral k and to recalculate Ck by relaxing the condition of the producer’s accuracy if its user’s
accuracy is not acceptable. Thus the threshold of the cosine similarity is determined for each
mineral in the overlapping area, and all minerals that exceed each threshold are selected as can-
didate minerals for each pixel in the overlapping area.

If two or more minerals remain as candidates for an MS-pixel, the mineral with the highest
cosine similarity is basically assigned to that pixel. However, sometimes this mineral is not dom-
inant in that pixel. If such case is observed through comparison between the HS- and the MS-
mineral maps, the second or subsequent highest mineral in the cosine similarity can be selected
instead of the highest mineral for getting higher consistency between the HS- and the MS-
mineral maps. As a result, the MS-based mineral map obtained will become more consistent
with the HS-based mineral map.

4 Validation Study Using AVIRIS and ASTER Images

4.1 Study Areas

In this paper, AVIRIS and ASTER images acquired around Cuprite and Goldfield, Nevada, USA,
were used for validation of the proposed method. Figure 2 shows the locations of these study
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areas. These areas are covered by various minerals including silicate minerals such as kaolinite
and muscovite, sulfate minerals such as alunite, and carbonate minerals such as calcite.20–23

Small amounts of buddingtonite are also seen in the east side of Highway 95 (shown by
“A” in Fig. 3) in the Cuprite study area (referred to as the eastern part of Cuprite).

4.2 Mineral Mapping Using the AVIRIS Image

The AVIRIS image used was acquired over the study areas on September 20, 2006, with a
ground resolution of 15.7 m (flight name: f060920t01p00r05). The wavelength region used
is from 1967 to 2496 nm, because this spectral region allows identification of some important

Fig. 2 Locations of the Cuprite and the Goldfield study areas, Nevada, USA. The photos were
taken by the authors.

Fig. 3 Mineral maps derived (a) from the AVIRIS image by the traditional way, and from the
AST_07XT image (b) by the K&P method and (c) by the proposed method (blue, kaolinite;
red, alunite; pink, muscovite; green, calcite; and yellow, buddingtonite).
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minerals,15 and also because we compare the results with the published papers on the K&P
method.14,15 First, the image was atmospherically corrected by the FLAASH module on the
ENVI software,24 and then converted to the surface reflectance image. Then mineral mapping
was performed with this image by the MNF conversion, the PPI analysis, the endmember extrac-
tion, and the SAM method implemented in the ENVI software. This processing is referred to as
the traditional way from now on.

The result of mineral mapping is displayed by Fig. 3(a), where kaolinite, alunite, muscovite,
calcite, and buddingtonite are shown in blue, red, pink, green, and yellow, respectively. This
color assignment is used for the following figures in this paper. Unclassified pixels are displayed
by the grayscale image of AVIRIS band 171 (1976 nm), and this way is also applied to (a) in
Figs. 4–6. Figure 3 shows that the eastern part of Cuprite has annularly distributed alunite with
surrounding kaolinite, and small amounts of buddingtonite, and the western part of Cuprite
(shown by “B” in Fig. 3) has alunite surrounded by kaolinite, muscovite, and calcite. The
Goldfield area located in the north of Cuprite is shown to be dominated by muscovite with
surrounding kaolinite and alunite. These classification results are visually consistent with pre-
viously published studies.22,23

4.3 Mineral Mapping Using the ASTER Image

The ASTER image used is the shortwave infrared (SWIR) image provided as the ASTER
Surface Reflectance VNIR and Crosstalk Corrected SWIR (AST_07XT) product, acquired
with a ground resolution of 30 m over the both study areas on August 15, 2006 (local granule
ID: AST_07XT_00308152006183834_20180112005948_22159). Using this ASTER image
and the previous AVIRIS image, mineral mapping was performed using the following
procedures.

First, the AVIRIS image (15.7-m resolution) and the ASTER image (30-m resolution) were
co-registered with resampling to ASTER’s pixel resolution (30 m). In this processing, both

Fig. 4 Mineral maps derived (a) from the AVIRIS image by the traditional way, and from the
ASTER simulation image (b) by the K&P method and (c) by the proposed method (blue, kaolinite;
red, alunite; pink, muscovite; green, calcite; and yellow, buddingtonite).
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Fig. 6 Mineral maps derived (a) from the AVIRIS image by the traditional way, and from the shifted
ASTER simulation image (b) by the K&P method and (c) by the proposed method (blue, kaolinite;
red, alunite; pink, muscovite; green, calcite; and yellow, buddingtonite).

Fig. 5 Mineral maps derived (a) from the AVIRIS image by the traditional way, and from the spec-
trally modified ASTER simulation image (b) by the K&P method and (c) by the proposed method
(blue, kaolinite; red, alunite; pink, muscovite; green, calcite; and yellow, buddingtonite).
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images were co-registered based on geolocation information attached to each image, and then
visually adjusted by parallel translation in integer pixels using a feature point near the center line
of the AVIRIS image around the Cuprite study area.

Next, the K&P and the proposed methods were applied to the pair of the AVIRIS and the
ASTER images. In these methods, the Cuprite area was defined as the overlapping area of the
HS- and the MS-images, and the Goldfield area was defined as the nonoverlapping area covered
by only the MS-image. These definitions are used also in the following sections. The HS-image
acquired over the Goldfield study area is used only for evaluating the results of the K&P and the
proposed methods. In the proposed method, MS-based endmember pixels were selected from
each subarea divided based on distributions of the HS-based endmembers, where subareas with
a co-registration error of one or more pixels were additionally co-registered by parallel trans-
lation in integer pixels using a feature point in each subarea. The thresholding method mentioned
in Sec. 3.3 was applied not only to the proposed method but also to the K&P method. In the two
methods, alunite was exceptionally assigned to all pixels that alunite remained as one of can-
didates, resulting in higher consistency with the HS-based mineral map.

Figures 3(b) and 3(c) show the mineral maps obtained by the K&P and the proposed meth-
ods, respectively. Unclassified pixels are displayed by the grayscale image of ASTER/SWIR
band 5, and this way is also applied to (b) and (c) in Figures 4 to 6. In Figs. 3(b) and 3(c),
kaolinite, muscovite, and calcite have many spike-like noises caused by noises on the ASTER
image. The K&P method misclassified some muscovite as kaolinite and could not detect bud-
dingtonite, probably because of spectral inconsistency between the AVIRIS and the ASTER
images, as discussed in Sec. 5.3. On the other hand, the proposed method demonstrates better
agreement with the AVIRIS-based map than the K&P method. For example, the distributions of
alunite and kaolinite in the eastern part of Cuprite (shown by “A” in Fig. 3) show similar patterns
with the AVIRIS-based map, and buddingtonite exists in only the eastern part of Cuprite, not in
the western part of Cuprite (shown by “B” in Fig. 3) and the Goldfield area. In the western part of
Cuprite, alunite is surrounded by kaolinite, muscovite, and calcite, as shown in the AVIRIS-
based map. In the Goldfield area, muscovite and kaolinite are correctly separated, though
calcite was partly misclassified. As for a part of the western part of Cuprite, it is known
that kaolinite and muscovite occur as mixtures and cannot be easily discriminated even using
the AVIRIS image.20,21

Table 1 provides the producer’s accuracy and the user’s accuracy for the K&P and the pro-
posed methods in the Cuprite and Goldfield areas, assuming that the AVIRIS-based map rep-
resents the true distribution of minerals on the ground. In this table, a hyphen for the producer’s
accuracy means that no pixel was classified as that mineral in the AVIRIS-based map, and
a hyphen for the user’s accuracy means that no pixel was classified as that mineral by the
K&P or the proposed methods.

Table 1 The producer’s and the user’s accuracies of the K&P and the proposed methods with the
AST_07XT image in the Cuprite and the Goldfield areas for each mineral. Each value in bold face
is more than 5% better than the other.

Cuprite area Goldfield area

Producer’s
accuracy (%)

User’s accuracy
(%)

Producer’s
accuracy (%)

User’s accuracy
(%)

K&P Proposed K&P Proposed K&P Proposed K&P Proposed

Kaolinite 58.6 34.9 19.4 39.1 63.9 60.2 25.4 42.7

Alunite 65.0 80.0 51.0 47.0 59.4 57.9 39.9 48.4

Muscovite 35.0 79.7 67.7 42.9 11.8 48.9 71.8 50.5

Calcite 38.0 55.1 77.3 75.6 — — 0.0 0.0

Buddingtonite 0.0 36.1 — 22.4 — — — —
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As for muscovite, the producer’s accuracy is better in the proposed method, and the user’s
accuracy is better in the K&P method. As for calcite, the producer’s accuracy is much better in
the proposed method, whereas the user’s accuracy is a little better in the K&P method.
Buddingtonite in the Cuprite area was detected by the proposed method partly, but not by
the K&P method. The producer’s accuracy and the user’s accuracy for alunite are almost same
between the two methods. As for kaolinite, the producer’s accuracy is better in the K&P method,
and the user’s accuracy is better in the proposed method.

5 Performance Analysis Using the ASTER Simulation Image

5.1 Overview

It is expected that the proposed method is less sensitive to inaccuracies from radiometric cal-
ibration and atmospheric correction than the K&P method. In order to confirm this, we evaluated
the two methods using an ASTER simulation image. This image was generated by weighting the
AVIRIS surface reflectance image with the response functions of ASTER’s SWIR bands (bands
4 to 9). Using the ASTER simulation image, the two methods can be evaluated without geo-
metric or radiometric errors.

5.2 Mineral Mapping Using the ASTER Simulation Image

The K&P and the proposed methods were applied to the AVIRIS image and the ASTER sim-
ulation image. The definitions of the overlapping and the nonoverlapping areas were same with
Sec. 4.3. The thresholding of the cosine similarity with the exceptional assignment of alunite was
applied to the two methods in the same way as Sec. 4.3.

Figure 4 displays the mineral maps obtained from the AVIRIS image and from the ASTER
simulation image by each method, showing similar distributions of minerals between the two
methods. Table 2 provides the producer’s accuracy and the user’s accuracy for each method for
the Cuprite and the Goldfield areas, assuming that the AVIRIS-based map represents the true
distribution of minerals on the ground. In the Cuprite area, the K&P and the proposed methods
show the producer’s accuracy of about 90% for alunite and muscovite, though showing the
user’s accuracy of about 50% for muscovite. As for kaolinite, the producer’s accuracy and
the user’s accuracy decreased to 50% or 60% in the two methods, mainly because some of kao-
linite in the western part of Cuprite (shown by “C” in Fig. 4) were misclassified as muscovite.
Since kaolinite and muscovite occur as mixtures around the area “C,”20,21 it is not easy to dis-
criminate these minerals even by AVIRIS-based mineral mapping, so that the producer’s accu-
racy decreased by a small difference in the cosine similarity between kaolinite and muscovite,

Table 2 The producer’s and the user’s accuracies of the K&P and the proposed methods with the
ASTER simulation image in the Cuprite and the Goldfield areas for each mineral. Each value in
bold face is more than 5% better than the other.

Cuprite area Goldfield area

Producer’s
accuracy (%)

User’s accuracy
(%)

Producer’s
accuracy (%)

User’s accuracy
(%)

K&P Proposed K&P Proposed K&P Proposed K&P Proposed

Kaolinite 63.8 47.9 44.4 49.6 93.3 87.9 52.9 62.2

Alunite 92.0 92.0 79.2 79.2 61.0 61.0 94.5 94.5

Muscovite 87.1 90.5 53.9 48.4 56.9 71.5 90.5 86.5

Calcite 71.7 68.9 82.4 81.8 — — 0.0 0.0

Buddingtonite 80.6 80.6 90.6 90.6 — — — —
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particularly in the proposed method. On the other hand, the both methods performed well for
buddingtonite and calcite—particularly buddingtonite seen in only the eastern part of Cuprite
shows the producer’s accuracy of about 80% and the user’s accuracy of about 90%. In the
Goldfield area, the producer’s accuracy for calcite and buddingtonite was not calculated because
they were not detected in AVIRIS-based mineral mapping, though calcite was incorrectly
detected and the user’s accuracy for it is 0.0% in the two methods. Muscovite, alunite, and
kaolinite were successfully discriminated by each method.

5.3 Mineral Mapping Using the Spectrally Modified ASTER Simulation Image

For investigation of sensitivity of each method to spectral distortion in the MS image, the spec-
trally modified ASTER simulation image which was spectrally consistent with the AST_07XT
image used in Sec. 4.3 for each mineral and was consistent with the AVIRIS image except for
spectral bands and spectral distortion was generated as follows. First, the surface reflectance ratio
of the AST_07XT-based endmember (Sec. 4.3) to the ASTER simulation-based endmember
(Sec. 5.2) was calculated at each band for each mineral. Then the ratio of each band was averaged
over all minerals and then multiplied to the surface reflectance of the ASTER simulation image
for each band. Applying the K&P and the proposed methods to this spectrally modified ASTER
simulation image, we can evaluate the influence of spectral distortion for each method.

Figure 5 shows the mineral maps obtained from the AVIRIS image and the spectrally modi-
fied ASTER simulation image by each method, and Table 3 gives the producer’s accuracy and
the user’s accuracy for each case, assuming that the AVIRIS-based map represents the true dis-
tribution of minerals on the ground. The thresholding of the cosine similarity with the excep-
tional assignment of alunite was applied to the two methods in the same way as Sec. 4.3. As
shown, the K&P method failed to classify muscovite and kaolinite correctly, as described by
Kruse et al.6 Particularly, the producer’s accuracy for muscovite is much lower in the K&P
method than in the proposed method, because muscovite and kaolinite had similar spectra
due to spectral distortion and the K&P method is sensitive to such error factor. The reason
why the K&P method gives higher producer’s accuracy for kaolinite than the proposed method
is because the proposed method classified kaolinite as muscovite in the mixed area of them (C in
Fig. 4)—actually, the user’s accuracy for kaolinite is lower in the K&P method than in the pro-
posed method. The K&Pmethod failed to detect buddingtonite, because the threshold used in the
SAM method could not be determined for buddingtonite. Calcite and alunite show similar per-
formance in the two methods, because the spectra of these minerals were not strongly affected by
spectral distortion due to their unique shapes. As a whole, the proposed method shows more
consistent results with the AVIRIS image, which indicates that the proposed method is more
robust against spectral distortion than the K&P method.

Table 3 The producer’s and the user’s accuracies of the K&P and the proposed methods with
the spectrally modified ASTER simulation image in the Cuprite and the Goldfield areas for each
mineral. Each value in bold face is more than 5% better than the other.

Cuprite area Goldfield area

Producer’s
accuracy (%)

User’s accuracy
(%)

Producer’s
accuracy (%)

User’s accuracy
(%)

K&P Proposed K&P Proposed K&P Proposed K&P Proposed

Kaolinite 68.4 47.3 38.1 56.5 71.2 86.4 46.3 65.5

Alunite 92.0 92.0 63.2 78.2 97.0 63.5 73.6 94.1

Muscovite 10.9 90.4 49.1 49.3 11.8 72.6 82.9 86.0

Calcite 73.7 71.3 91.0 80.8 — — 0.0 0.0

Buddingtonite 0.0 80.6 — 90.6 — — — —
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5.4 Mineral Mapping Using the Shifted ASTER Simulation Image

For investigation of sensitivity of each method to co-registration errors between the HS- and the
MS-images, the ASTER simulation image was shifted by þ2 pixels toward the right and
þ2 pixels toward the upper. This shifted ASTER simulation image is consistent with the
AVIRIS image except for spectral bands and pixel positions. In calculation of the producer’s
accuracy and the user’s accuracy, the shifted ASTER simulation image was shifted back to
the original position of the AVIRIS image.

Figure 6 shows the mineral maps obtained from the AVIRIS image and the shifted ASTER
simulation image by each method, and Table 4 gives the producer’s accuracy and the user’s
accuracy for each case, assuming that the AVIRIS-based map represents the true distribution
of minerals on the ground. The thresholding of the cosine similarity with the exceptional assign-
ment of alunite was applied to the two methods in the sameway as Sec. 4.3. As shown, the results
by the K&P method are almost same with those for the ASTER simulation image (Sec. 5.2),
supporting our prediction that the K&P method should be robust against co-registration errors in

Table 4 The producer’s and the user’s accuracies of the K&P and the proposed methods with
the shifted ASTER simulation image in the Cuprite and the Goldfield areas for each mineral.
Each value in bold face is more than 5% better than the other.

Cuprite area Goldfield area

Producer’s
accuracy (%)

User’s accuracy
(%)

Producer’s
accuracy (%)

User’s accuracy
(%)

K&P Proposed K&P Proposed K&P Proposed K&P Proposed

Kaolinite 58.8 25.6 43.9 33.3 91.5 21.3 55.0 25.9

Alunite 98.1 61.6 64.4 11.3 80.5 87.2 87.8 15.4

Muscovite 87.6 86.2 52.4 49.9 58.5 55.5 89.0 70.2

Calcite 72.8 77.1 77.2 73.3 — — 0.0 0.0

Buddingtonite 88.9 44.4 69.6 0.5 — — — —

Fig. 7 Comparison of the endmember spectra obtained from the ASTER simulation image (no
shifted) and the shifted one by the proposed method, and from the shifted one by the K&P method,
for each mineral.

Hirai and Tonooka: Mineral discrimination by combination of multispectral image. . .

Journal of Applied Remote Sensing 024517-11 Apr–Jun 2019 • Vol. 13(2)



principle, though these results are dependent on homogeneity of the study areas to some extent.
On the other hand, the proposed method performed well for muscovite and calcite, but less well
for buddingtonite, alunite, and kaolinite in the two areas. For example, most of areas classified as
kaolinite in the ASTER simulation image (Sec. 5.2) are misclassified as alunite. Also a part of
areas classified as alunite and kaolinite in the Cuprite area are misclassified as buddingtonite.
Thus the producer’s accuracies for buddingtonite and kaolinite reduced almost by half, and the
user’s accuracy for buddingtonite is just 0.5%. The accuracies for alunite also decreased, though
only the producer’s accuracy in the Goldfield area increased.

The reason why the proposed method performed well in muscovite and calcite but less well in
buddingtonite, alunite, and kaolinite is because the endmember spectra of the latter minerals are
not consistent between the ASTER simulation image and the shifted one due to spatial distri-
butions that involve widely separated exposures of small areal extent, unlike the former minerals,
as shown by Fig. 7. It must, therefore, be recognized that the proposed method is sensitive to co-
registration errors for minerals with such spatial distributions. In the case of the K&P method,
the ASTER simulation image and the shifted one provided almost same spectra for all minerals.
The spectra obtained from the shifted one by the K&P method are displayed in Fig. 7 for
comparison to the spectra of the proposed method.

6 Discussion

Figure 8 summarizes the producer’s accuracy and the user’s accuracy of each mineral in the four
cases shown by Tables 1 to 4: AST_07XT, the ASTER simulation image (AST_sim), the spec-
trally modified ASTER simulation image (AST_sim+sp), and the shifted ASTER simulation
image (AST_sim+shift). In this figure, zero is assigned to the user’s accuracy of the K&Pmethod
for Buddingtonite in AST_07XT and AST_sim+sp, because the K&P method could not select
any pixels for that mineral from these images. This figure indicates the following.

• As a whole, the producer’s accuracy is somewhat higher than the user’s accuracy, because
the producer’s accuracy was prioritized in thresholding of the cosine similarity.

• The producer’s accuracy for AST_07XT is higher in the proposed method than in the K&P
method as a whole. In addition, the producer’s accuracy for AST_sim is higher than that for
AST_07XT in the two methods, particularly in the K&P method. These indicate that
AST_07XT is somewhat spectrally inconsistent with the AVIRIS image, and it decreased
the producer’s accuracy for AST_07XT in the K&P method, while it gave almost no
impact to the proposed method. The fact that the K&P method is sensitive to spectral
inconsistency between HS- and MS-images is demonstrated also by the results of
AST_sim+sp.

Fig. 8 Comparisons of (a) the producer’s accuracy and (b) the user’s accuracy derived by the K&P
method (black circle) and the proposed method (red diamond) in the Cuprite study area (solid line)
and the Goldfield study area (dashed line) for the AST_07XT image, the ASTER simulation image
(AST_sim), the spectrally modified ASTER simulation image (AST_sim+sp), and the shifted
ASTER simulation image (AST_sim+shift).
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• The proposed method shows similar performance for AST_07XT, AST_sim, and
AST_sim+sp, though the user’s accuracy for AST_07XT is somewhat low. This indicates
that the proposed method is robust against spectral inconsistency between HS- and MS-
images. On the other hand, the results of AST_sim+shift show that the proposed method is
sensitive to co-registration errors. Also the reason why the proposed method performed
less well in AST_07XT than in AST_sim even though the method is robust against spectral
inconsistency will be partly because AST_07XT contains a co-registration error. However,
the impact of co-registration errors in the proposed method is not significant if a mineral
distributes homogeneously in a wide area, as supported by the fact that the proposed
method showed similar performance between AST_sim and AST_sim+shift for muscovite
and calcite.

According to the above, it can be concluded as follows.
If HS-MS image matching can be performed accurately enough, or if an applied area is

highly homogeneous in mineral distributions, the proposed method has an advantage in robust-
ness. The result of AST_sim+shift indicates that the proposed method was degraded even by
co-registration errors of two pixels. Thus the following preprocessing should be required for the
proposed method: first, system geometric correction is applied to each of HS and MS images,
and then image-to-image matching with an accuracy of one pixel or less is applied to these
images. Accurate image matching methods like the phase-only correlation method25 are avail-
able for this purpose.

On the other hand, if HS-MS image matching cannot be performed with enough accuracy
like for airborne images, or if an applied area contains minerals with spatial distributions that
involve widely separated exposures of small areal extent, the K&P method has an advantage.
In applying the K&P method, HS- and MS-images should be radiometrically corrected by accu-
rate radiometric calibration and atmospheric correction, and also accurate matching of spectral
reflectance between those images is desirable. It may be required that long-term and short-term
changes in radiometric calibration coefficients are considered for accurate radiometric calibra-
tion, and accurate atmospheric parameters such as aerosol density/visibility/type and water
content are obtained for accurate atmospheric correction.

In both methods, a possible common issue is on representativeness of HS-based endmembers
obtained from an overlapping area. Since these methods assume that these endmembers can be
applied to a nonoverlapping area without deficiency, a lack of HS-based endmembers will cause
misdiscrimination of minerals. Thus care must be taken in this regard when applying either the
K&P method or the proposed method in the mapping of endmembers.

7 Summary and Conclusions

HS imagers are more effective than MS imagers in mineral mapping, but spatial coverage of HS
images is limited in comparison to that of MS images. Thus Kruse and Perry have proposed a
method that uses coincident HS imaging and MS imaging data to extend mineral mapping to
larger areas.14,15 In this paper, we proposed a method modified from the K&P method. Though
the K&P method uses the extracted HS-based endmember spectra in calculating the MS-based
endmember spectra, the proposed method calculates the MS-based endmember spectra from
surface reflectance spectra of the MS pixels at the same positions with the HS pixels selected
as the HS-based endmembers. The validation study using AVIRIS and ASTER images over
Cuprite and Goldfield areas, Nevada, USA, demonstrated that the proposed method was
more robust against spectral inconsistency between the HS- and the MS-images caused by cal-
ibration and/or atmospheric correction errors than the K&P method, though the proposed method
was more sensitive to co-registration errors between the HS- and the MS-images for minerals
with spatial distributions that involve widely separated exposures of small areal extent (budding-
tonite, alunite, and kaolinite in the validation study) than the K&P method. The proposed method
will, therefore, give more reasonable results if HS-MS image matching can be performed accu-
rately enough, or if an applied area is highly homogeneous in mineral distributions.

The HISUI developed by the Japanese Government will be delivered to the ISS in the near
future.13 Since HISUI has a narrow swath width of 30 km and no pointing function, its coverage
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is predicted to be patchy. The proposed method is, therefore, expected to be used for compensat-
ing HISUI’s observation gaps by combining images of MS sensors such as ASTER.
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