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Abstract. We present a hierarchical classification framework for automated detection and
mapping of spatial patterns of agricultural performance using satellite-based Earth observation
data exemplified for the Aral Sea Basin (ASB) in Central Asia. The core element of the frame-
work is the derivation of a composite agricultural performance index which is composed of
different subindicators taking into account cropping intensity, crop diversity, crop rotations, fal-
low land frequency, land utilization, water use efficiency, and water availability. We derive these
subindicators from net primary productivity and evapotranspiration data obtained from the
MODIS sensor on board the Terra satellite during the observation period from 2000 to 2016,
as well as from cropland maps created through multiannual classification of normalized differ-
ence vegetation index (NDVI). We classified pixel-based NDVI time series covering more than
8 × 106 ha of irrigated cropland based on a hierarchical approach concatenating unsupervised
and supervised classification techniques to automatically generate and refine training labels,
which are then used to train a decision fusion classifier, achieving an average overall accuracy
of 78%. The results give unprecedented insights into spatial patterns of agricultural performance
in the ASB. The proposed method is transferable and applicable for global-scale mapping, and
the results of this remote sensing-aided assessment can provide important information for
regional agricultural planning purposes. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.025501]
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1 Introduction

1.1 Background

Agricultural production worldwide needs to sustainably increase for sustaining global food secu-
rity for a growing human population and to stimulate economic development, especially in rural
areas.1 Although concerns of a global slowdown in growth rates of harvested yield are incon-
sistent with recent evidence of increased cropping intensity,2 in fact, some regions are affected by
a slowdown in agricultural growth and agricultural abandonment.3–5 Land and water resources,
especially in the drylands, are often sparse and exposed to various stress factors such as water
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scarcity, advancing land degradation, or negative effects on irrigation water availability by cli-
mate change or conflict,6 but also competitive water uses from other sectors. It is therefore
important to monitor and if necessary adjust agricultural performance. This requires a compre-
hensive understanding of the pattern of agricultural performance across both space and time, to
identify potentially vulnerable regions.

Measuring and quantifying agricultural performance is typically based on the relation of
outputs (e.g., crop yield) to inputs (e.g., fertilizer or irrigation water, but also labor). Another
measure for agricultural performance is the cropping intensity (the number of harvests per year).
Spatially and temporally comprehensive and robust information must be collected frequently to
trace back and better understand the determinants of the dynamics of agricultural performance,7

and to evaluate and possibly improve agricultural management. The challenge is retrieving
reliable and spatiotemporally consistent information. Agricultural statistics can be outdated,
of doubtful quality,8 or missing adequate sub-national historical inventory data.9 Doing in-situ
sampling can become prohibitively expensive when the areas to be monitored are huge or
inaccessible.

Satellite-based Earth observation (EO) is a well-known alternative for assessing large-scale
agricultural systems. EO has a great potential for supporting agricultural monitoring due to its
ability to provide consistent information across scales, from the level of single parcels to
regional-level coverage. Previous studies illustrated that EO-based monitoring can provide
detailed information on land use and productivity to support detecting critical zones that are
characterized by low agricultural productivity10 or areas vulnerable to agricultural drought.11

Such data provide valuable baseline information for decision makers to support implementing
countermeasures to the adverse effects of land degradation or drought. Inversely, the detection of
zones with a high agricultural productivity and high sustainability is useful to ensure their
persistence.12 The advantage of EO-based systems over conventional, terrestrial crop inventories
is the timeliness and regularity, which is crucial for an operational land use monitoring system of
a (near) real-time or retrospective concept.

Previous research has focused on land use monitoring and crop mapping using multitemporal
satellite EO data, such as that from the Moderate Resolution Imaging Spectroradiometer
(MODIS). Such studies present small-scale, regional13–16 or large-scale, global17–20 crop type
mapping, where the majority of works clearly emphasizes the use of time series of normalized
difference vegetation index (NDVI)4,21 or the enhanced vegetation index.22 Another important
agricultural application based on MODIS data is crop condition mapping addressing aspects of
vegetation dynamics.23 In the latter field, MODIS imagery is commonly employed for drought
forecast or early warning applications24,25 and it generally fulfills the requirements of agricultural
production monitoring, namely having a quasigapless, consistent archive of regular observations
with sufficiently high temporal resolution since the year 200026. Furthermore, the many con-
tributions on agricultural applications employing MODIS data indicate that the relatively
coarse spatial resolution provides an analytical scale of suitable spatial granularity for such
applications.

Based on such advancements, operational monitoring systems have been developed that
make use of meteorological data and remote sensing to support agricultural decision-making
and research.27 Examples are the Global Information and Early Warning System of the United
Nations (UN) Food and Agriculture Organization (FAO)28 or the Monitoring Agricultural
Resources Program of the European Commission.29 These monitoring systems focus on veg-
etation health, vegetation conditions, yield gap predictions, or assessments for drought risk esti-
mation. Others are based solely on land degradation analysis caused by land abandonment, soil
degradation, and desertification.30 Previously developed monitoring systems for Africa focus on
water productivity and take into account various sources of information, such as net primary
productivity (NPP) or evapotranspiration (ET), e.g., the FAO water productivity open-access
portal.31 Such monitoring systems usually provide long-term monitoring which not only enables
the understanding of spatiotemporal patterns and land use change, but also constitutes a solid
basis for predictive analysis.32 However, existing monitoring systems are mostly noncrop spe-
cific, hence, they do not inform about crop-specific land use intensity, or they are developed
region by region and missing a comprehensive set of indicators that characterize agricultural
performance.33 In addition, they fall short in providing information about crop area and crop
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production. Moreover, when different basic (global) products are compared, e.g., cropland
extent, crop types, or rainfall estimates, they often show large differences and show inaccuracies,
which can partly be explained by restrictions due to the lack of in-situ data for calibrating
crop growth models or crop classification, or barriers in operational adoption of EO-based
methodologies. Relying on a single indicator to understand agricultural performance is likely
insufficient to reveal a comprehensive understanding. For example, lower yields can be counter-
balanced by higher intensity. Thus, it is recommended to combine various complementary
indicators into an overall composite index of agricultural performance. Originally, the applica-
tion of composite indices can be found in many studies related to agricultural, environmental,
or socioeconomic vulnerability,34,35 but has not been incorporated explicitly into an EO-based
framework.

One region particularly affected by the adverse effects of an increasing food demand of a
growing population and increasing agricultural performance is the irrigated agricultural system
in the Aral Sea Basin (ASB) in Central Asia. It is one of the largest irrigated systems of the world,
but only poorly equipped in terms of comprehensive monitoring systems that allow mapping and
back tracing agricultural performance across the countries that belong to the ASB. Archive crop
type or performance maps of the whole ASB do not exist yet, and previous studies on this issue
were mostly developed region by region.

Against this background, we present a composite agricultural performance index (CAPI),
based on satellite EO for assessing and mapping agricultural performance in the ASB. This index
is based on a multitemporal sequence of maps that were derived from MODIS NDVI time series
data using supervised, machine-learning-based time series classification. Since labeled ground
truth data (i.e., crop type represented by a certain NDVI time series) for training and calibration
at sufficient quality, quantity, and spatial granularity is often not available at a regional scale, we
developed a framework that, first, generates and refines training data using a sequence of unsu-
pervised and supervised classifiers in a hierarchical manner, and second, inputs that training data
to a decision fusion classifier to estimate the underlying phenology of a given NDVI time series
which at the same time can be used as a proxy for specific crop types (e.g., summer crops are
depicted by the peak of season, i.e., maximum NDVI occurring during the summer season,
whereas 80% of the summer crops are composed of cotton fields) and other cropland types
(e.g., fallow and orchards). Herein, the specific technical goals are to

• develop and validate a method to map agricultural land use (i.e., phenological cropland
maps depicting the growing season as a proxy for actual crop types),

• to derive cropland-specific indicators through automated training data generation and
supervised classification of MODIS time series, and

• map and describe agricultural performance using the CAPI.

1.2 Definition of Agricultural Performance

In this paper, we define agricultural performance as a combined metric of sustainability, effi-
ciency, and productivity. This is an envisaged goal of the Central Asian countries to improve the
efficiency of the cropping systems (i.e., the ratio between output and effort) and to increase the
food production in order to ensure the food security for a growing population which is expected
to reach 80 × 106 by 2030.36 This aims at the UN Sustainable Development Goals to combat
hunger and desertification and simultaneously achieving sustainable agricultural practices.37

The combination of criteria such as sustainability, efficiency, and productivity into a composite
agricultural index helps to better understand the patterns of agricultural development as well to
identification of problematic (i.e., less sustainable, less efficient, and less productive) regions.
The criteria are as follows.

• Sustainable agriculture ensured through a high crop diversity and a frequent crop rotations.
• Efficient agriculture ensured through a positive water balance and high water use effi-

ciency, especially in irrigated agriculture.
• Productive agriculture ensured through a high cropping intensity and intensive use of the

land (i.e., less fallow land occurrence).
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High values of the proposed CAPI depict regions where all of the above criteria are met. Low
values stand for the exposure to agricultural threats, such as land degradation or water scarcity,
and the inversion of the CAPI can be used as a proxy to map agricultural vulnerability.

2 Study Area and Data

2.1 Aral Sea Basin

The ASB is a transboundary river basin composed of the six countries Kazakhstan, Kyrgyzstan,
Tajikistan, Turkmenistan, Uzbekistan, and part of Northern Afghanistan. The ASB is directly
supplied by the Amudarya and the Syrdarya Rivers. Irrigated cropland in the ASB accounts
for ∼8.5 Mha that stretches alongside these two major rivers.38 Under Soviet leadership, the
ASB experienced a pronounced increase of the irrigated cropland area from 5.4 Mha (1950s)
to around 8 Mha (1990s), mostly with the aim of increasing the production of cotton.39

However, the excessive withdrawal of freshwater and inefficient water use reduced the inflow
of the rivers. As a result, the Aral Sea dried out almost completely, and the irrigated cropland
became largely salinized40 and partly abandoned.41 After the collapse of the Soviet Union and
the following institutional and economic transformation, the agricultural production partly
decreased sharply in some regions of the ASB. The socioeconomic and agricultural setting
in each of these countries differs. Uzbekistan still has a state-regulated, planned economy, while
there is an already well-established market economy in Kazakhstan, where the relative contri-
bution of the agricultural sector to the gross national product has been decreasing since several
years in favor of the secondary and tertiary economic sectors.42 This is reflected by the different
water use policies and irrigation practices of the countries. Figure 1 shows the study area with the
different irrigation zones within the ASB.

The climate in the irrigated regions of the ASB is dry-arid continental with 100 to 250 mm of
annual precipitation mainly falling during the winter (December to February).43 Annual precipi-
tation in the mountains can exceed 1000 mm. Because of the aridity, agriculture in the study area
is fully dependent on a dense irrigation and drainage network, which was extensively developed
during the Soviet era. Tajikistan and Kyrgyzstan, both upstream countries, are rather water-rich,
whereas Uzbekistan and Turkmenistan experience more often water scarcity due to their depend-
ency on the water withdrawal from the main river systems. In the arid environment of the ASB,
precipitation contributes only very marginal to the overall water availability of the croplands

Fig. 1 The irrigation zones of the ASB. The red boxes depict the areas where in-situ validation
data are available. Basemap: ArcGIS Online.
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whereas irrigation is crucial for the agricultural productivity in the region.44 To maintain sus-
tainable water use management, it is important that the actual field ET is less than the potential
ET. The ASB is characterized by a high variance in climatic conditions ranging from the Kazakh
steppe, the irrigation zones in the periphery of the Pamir Mountains with higher irrigation
water availability, to the Karakum and Kyzylkum deserts in Turkmenistan and Uzbekistan,
respectively.

2.2 Data

2.2.1 MODIS surface reflectance data

For the creation of crop type maps, we used 8-day surface reflectance image composites with
∼230-m pixel size acquired from the Terra satellite (MOD09Q1, collection 006) for the period of
2000 to 2016. The annual observation period was limited to the main growing season between
March and October, resulting in 30 MOD09Q1 composites per year.

2.2.2 MODIS net primary productivity data

To assess land and water use productivity, we utilized the annual MODISMOD17A3H NPP with
500-m pixel size as a proxy for crop biomass. Previous studies showed the utility of MODIS
NPP for the assessment of agricultural production.45,46 Annual NPP is derived from 45 annual,
8-day gross primary productivity products (MOD17A2H) for a given year.47

2.2.3 MODIS evapotranspiration product

To maintain sustainable water use management, it is important that the actual field ET is less than
the potential ET. To assess this, we used the MODIS 8-day MOD16A2 collection 003 data with
500-m pixel size48 and extracted the actual (ETa) and potential (ETp) evapotranspiration data for
the observation period. The provided products are based on the Penman–Monteith model that
uses other supplementary data such as meteorological data, albedo, land cover, and vegetation
property dynamics.49 The data quality of the MODIS ET products has been validated and
regarded as sufficient in various studies.50,51

2.2.4 Cropland mask

We used an existing cropland mask with ∼230-m pixel size for the year 2015. It covers the whole
ASB to mask out nonagricultural land and areas which are not part of the irrigated cropland of the
ASB. The mask was derived in a previous study based on MODIS NDVI time series data5 and
contains both actively cultivated (i.e., sown and harvested) and abandoned cropland. The cropland
mask captures the maximum cropland extent, i.e., each pixel that has been identified as irrigated
cropland at least once during the observation period between 2000 and 2015. We spatially par-
titioned the ASB in eight different irrigation zones which we defined in accordance to their spatial
extent, irrigation system, and their administrative affiliation, i.e., province (see Fig. 1).

2.2.5 Landsat data

We used Landsat 8 data for a cross-comparison with the cropland classification results based on
MODIS data. Therefore, we randomly selected five Landsat 8 OLI scenes between the year 2013
and 2016 covering the study area. For each selected year, there were at least eight cloud-free
scenes for the observation period between March and October in order to be temporally con-
sistent with the MODIS data that were used in this study.

2.2.6 Ancillary data

We used the first level (country level) of the open Database of Global Administrative Areas
(GADM)52 for spatial aggregation and cartographic purposes.
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2.2.7 In-situ validation data

Moreover, we used in-situ validation data from two different field campaigns conducted by the
International Center for Agricultural Research in the Dry Areas in 2008 in Karakalpakstan,
Uzbekistan, and 2014 in the Fergana Valley, Uzbekistan. The data consist of 516 surveyed
fields in Karakalpakstan and 196 surveyed fields in the Fergana Valley based on GPS point
measurements and include the respective crop types identified in the field at each location.
The in-situ data extend approximately across 4% of the overall study area in the ASB (i.e.,
350 ha) (Fig. 2).

3 Method

The proposed framework demonstrates the ability for automated cropland classification without
prior in-situ data from field campaigns or other ground-based sources. The cropland classes are
linked to the phenology and growing seasons, thus, making an identification through vegetation
index time series possible. The transferability to other years and regions requires the calibration
of a stable and consistent classification model based on supervised classification trained with
automatically obtained samples from data clustering and manual assignation of the target classes
to the derived clusters. On the other hand, in-situ data are used for verification and validation
purposes only. In a second step, cropland and water use indicators are calculated based on the
created cropland maps and primary net productivity data and ET data based on MODIS data
products. The final step is the calculation of a composite index (CAPI) based on all derived data
products and weighted through a principal component analysis (PCA). In short, the framework
consists hereby of several steps as shown in Fig. 3:

• creation of cropland maps from MODIS NDVI time series,
• derivation of cropland and water use subindicators, and
• calculation of a composite index (CAPI).

The subindicators can be roughly divided into two groups: (i) cropland-related indicators and
(ii) water use-related indicators. For creating the first group of maps, i.e., cropland-related indica-
tors, we developed a new set of cropland maps for the ASB, based on an approach that is
described in the following.

Fig. 2 GPS-based in-situ validation data from two field campaigns: (a) Karakalpakstan, 2008 and
(b) Fergana Valley, 2014. See Fig. 1 for the locations of these regions within the study area.
Basemap: ArcGIS Online.
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3.1 Satellite Data Preprocessing

We calculated the NDVI from the red and near-infrared bands contained in the MOD09Q1 prod-
ucts. We excluded pixels flagged as no data and excluded snow/ice or clouds in the MOD09Q1
pixel reliability layer prior to filtering based on MODIS quality assurance information. Only
pixels labeled “good data” or “marginal data”were retained. Then, the annual NDVI data vectors
were smoothened through a Savitzky–Golay filter53 to reduce data contamination by clouds,
cloud shadows, climatic effects, and atmospheric noise. Several tests examined and determined
the optimum size of the filter window to 5 and the degree of the polynomial to 4, resulting in a
good fit of the original NDVI signal and retaining important peaks of the time series. All raster
datasets (i.e., the cropland mask, NDVI, NPP, and ETa and ETp) were resampled to the same
spatial resolution as the cropland mask using nearest-neighbor interpolation. To keep the original
values encoded in the MODIS grids, we kept the sinusoidal projection for the analysis. Based on
the cropland mask (see Sec. 2.2.4), all nonagricultural pixels were masked out and not analyzed
further.

3.2 Multiannual Cropland Classification

Creating a set of multiannual cropland maps for a larger region, such as the ASB, requires the
calibration of a consistent classifier algorithm that can be applied to data of different years and
regions to ensure transferability and persistence. Due to the lack of a suitable set of in-situ train-
ing data, we employed a hierarchical approach employing unsupervised and supervised classi-
fiers in a sequential manner to create labeled training datasets for the target cropland classes that
describe the crop phenology. The assignation (labeling) to the target classes was done by man-
ually selecting suitable clusters by visual interpretation of the respective NDVI time series
response pattern, using the year 2016 as a baseline for all other years. Only clusters with explicit
correspondence with the target class were considered and fed to a supervised classification algo-
rithm. All other clusters were neglected. The classification algorithm classified the multiannual
MODIS NDVI time series for all observation years for all the ASB in the defined cropland
classes. The workflow is shown in Fig. 4 and described in the following.

3.2.1 Training data generation

Based on the multitemporal MODIS data in 2016 consisting of 30 individual scenes, we
extracted pixel-wise NDVI time series, each represented as a data point in a 30-dimensional
feature space defined by the NDVI values from each point in time. We used k-means clustering,

Fig. 3 The overall framework used in this study, based on cropland maps, NPP and ET data.
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which is commonly applied to remote sensing time series data,54 in order to detect clusters of
pixels characterized by similar temporal signatures. To determine an optimum number of clus-
ters, we performed k-means for a systematically varying number of clusters k, and we used
silhouette analysis55 to evaluate the quality of the assigned clusters for each k by measuring
the quality of the assigned clusters based on distances to the cluster centroid and to the nearest
cluster for each data point. This yields an individual measure (i.e., silhouette score) for each data
point, which is typically averaged over all data points to obtain a global separability measure. We
visualized the clustering results by mapping a random subset of pixels (i.e., N ¼ 5000) from the
30-dimensional feature space into a two-dimensional (2-D) space using t-distributed stochastic
neighbor embedding (t-SNE).56 This allowed for visual inspection of the clustering results, as
shown for a subset of the study area (i.e., Fergana Valley, Uzbekistan) in Fig. 5.

To account for cropland variability across the different irrigation zones in the study area, we
run separate k-means clustering for each irrigation zone, allowing for a different optimum num-
ber of clusters in each region. The resulting clusters were then assigned to seven target classes

Fig. 5 T-SNE mapping of a random subset (N ¼ 5000) of the pixel-wise NDVI time series in
Fergana Valley from the 30-dimensional feature space into a 2-D space: (a) color-coded by the
assigned clusters from k -means using k ¼ 14 and (b) by corresponding silhouette scores.

Fig. 4 Cropland classification workflow.
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(see Table 1) by visually inspecting and interpreting the annual NDVI time series signature of
each cluster and referring to literature research about major crop types in the ASB. The target
classes are cropland classes based on phenology and growing season. They depict the major crop
types by characteristic phenological signatures captured by the NDVI time series. Clusters that
did not unambiguously represent one of these target classes were neglected. Fallow lands rep-
resents regions that are temporarily (or permanently) taken out of the production cycle, be it due
to water shortage, farmer’s decision, land degradation, or land abandonment. On the latter, pri-
mary vegetation succession can be found. Due to this, fallow land encompasses several land
cover types and has a temporal and spectral similarity with bare soil, shrubland, trees, or pastures
and natural grassland. Figure 6 shows the NDVI signatures of the derived target classes.

3.2.2 Supervised classification

After labeling the selected clusters, we randomly extracted training data (i.e., MODIS pixels)
from each cluster for calibrating a classifier algorithm. The supervised classification was con-
ducted by a decision fusion approach via a soft voting classifier based on random forest (RF)57

and gradient boosting trees (GBT).58 Both classification algorithms are ensemble methods, but
handle the variance and bias of the input dataset differently. RF builds parallel decision trees with
high variance and low bias, whereas GBT generates sequential low variance and high bias deci-
sion trees with an ensemble of weak learners. Hyperparameter settings of both algorithms were
set to 300 estimators (trees). The learning rate of the GBT algorithm was set to 0.01. To avoid
overfitting, the maximum depth of the trees for both algorithms was set to 10. The voting clas-
sifier finally merges the decision functions of both classifiers through soft voting as follows:

EQ-TARGET;temp:intralink-;e001;116;108y ¼ arg max
i

Xm

j¼1

wjpij; (1)

Table 1 Target classes assigned to the clusters from unsupervised k -means clustering, and the
number of selected training pixels in the ASB is given.

Class
ID

Class
name Description

Major crops and vegetation
types

No. of selected
training pixels

1 Summer
crops

Summer crops growing having the
maximum NDVI values between
June and September.

Cotton, summer maize,
vegetables, and cucurbits

9642

2 Spring
crops

Spring crops growing having the
maximum NDVI values between
March and June.

Winter wheat, winter barley,
and oat

3505

3 Rice Single season rice having the
maximum NDVI values between
June and October.

Rice 1972

4 Fallow Fallow, not cultivated, but
potentially arable land. Very often
covered by herbaceous vegetation
or shrubland.

Shrubland, grassland, steppe,
scrubland, and weeds

9925

5 Double
crops

Spring crops followed by summer
crops, describing cropping
intensity.

Spring crops followed by
fodder maize, rice, sorghum,
vegetables, or cucurbits

5670

6 Alfalfa Characteristic “triple” or even
more NDVI peaks.

Alfalfa, very seldom a
combination of winter wheat,
alfalfa, and vegetables

1103

7 Perennial
crops

Perennial crops with a characteristic
high NDVI peak throughout most
of the season.

Mostly orchards, such as
apple, apricot, peach, or
vineyards.

4096
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where wj is the weight that is assigned to the j’th classifier, i is the class labels, and p is the
predicted class probabilities.59

As shown in Table 1, the initial training data generated by k-means clustering were utterly
imbalanced and did not have a sufficiently even spatial distribution. To further balance the num-
ber of training data, we generated additional samples through a preclassification step. We first
applied the precalibrated classifier models to classify each of the eight irrigation zones in 2016.
The ensemble classifier created two types of outputs: (i) the class labels and (ii) a a-posteriori
estimation of the classification probability for each pixel representing a confidence score of the
class assignment.

We then selected “pure” pixels with an estimated posterior probability of more than 99.5%
and added these to the initial training dataset (Table 1). This high level of confidence was
selected based on previous research in this region,60 where high probabilities were associated
with pixels that were characterized by homogeneous land use/land cover.

Based on the training NDVI time series underlying the grid cells from the two-stage selection
process, we calibrated the final classifier model in 2016 that was then applied to create the annual
cropland maps for the years 2000 to 2015. The year 2016 was chosen for calibration due to the
high consistency and availability of high-resolution satellite imagery in Google Earth for the
whole ASB where we inspected the selected training data visually. Because of the agroecological
gradients and the variety of management practices in the ASB, spectral signatures varied spa-
tially and could lower the recognition ability by a single global classifier. The study area,

Fig. 6 Multitemporal NDVI signatures of the major cropland classes from the selected clusters,
depicting typical phenological signatures, drawn from the Fergana Valley region: mean (μ) and
standard deviation (σ) values are visualized.
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therefore, was stratified according to eight irrigation zones (see Fig. 1). Hence, for each cropland
class, 1000 training pixels were randomly selected in each of the eight irrigation zones and then
split into a 60%/40% partition for training and testing, respectively, and forwarded to the above
described decision fusion approach. Finally, we applied the trained classification models to each
of the 17 annual NDVI time series to create one cropland map per year. This multitemporal
cropland information was the basis for the subsequent derivation of several indices describing
agricultural performance (Table 2), as presented in Sec. 3.3.1.

3.2.3 Cropland classification validation

We validated the created cropland maps in a three-stage validation procedure:

• Landsat cross-comparison: Cross-comparison of the MODIS-based cropland maps to a
cropland classification created by the same classifier and same training labels, however,
trained on Landsat 8 OLI NDVI time series of higher spatial resolution (i.e., 30 m).

• Visual verification: Visual inspection and interpretation of the temporal signatures of the
NDVI time series and Google Earth historic imagery based on a stratified random sampling
scheme. We visually associated the selected samples with the defined classes and verified
in available Google Earth imagery, whether the MODIS pixel is located within cropland or
whether the land has been cultivated for this observation time.

• External crop type validation: Accuracy assessment through GPS-based in-situ data asso-
ciated with the target classes used herein.

Landsat cross-comparison: To assess effects of the relatively coarse spatial resolution of
MODIS data (i.e., ∼230 m) over time, we cross-compared them to high-resolution Landsat 8
data.71–73 We randomly selected six Landsat 8 OLI scenes within the ASB (Fig. 7) from different
years between 2013 and 2016 and applied the same proposed classification approach with the
same target classes for each Landsat scene. A direct comparison between both datasets is difficult
due to the large spatial resolution differences. The Landsat classification maps were aggregated
and reprojected to MODIS spatial resolution and sinusoidal projection. We reassigned the major-
ity class of the Landsat pixels located within a MODIS pixel by zonal statistics through an area
majority rule. Based on these pairs of cropland classifications, we performed pixel-wise map
comparison to derive agreement measures.

Visual croptype verification: To assess spatial variations of accuracy across the study area,
we estimated accuracy in the different subregions using a stratified random sampling approach74

by visually inspecting the NDVI time series signatures of the samples and the corresponding
classes. For each class, 250 samples were generated over the whole ASB for randomly selected

Table 2 Overview and summary of the cropland-related indicators.

Name Description
Examples and
references

ACI How often has the land been cultivated (actively been under
crops) within the observation period?

Refs. 61 and 62

CII How many harvests per growing season have occurred on
average?

Refs. 63–65

Land use
diversity index

How many different crop types have been cultivated per
aggregation unit?

Ref. 66

TCDI How many crop rotations of different crops have occurred
on average?

Refs. 67 and 68

CLUI How long has been the duration of the growing seasons? Refs. 68 and 69

LCI How much land has been converted (reclaimed) from
inactive (fallow or) to active (cultivated) land?

Ref. 70, this study
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years and assigned to the respective target class if the NDVI time series curves could be inter-
preted unambiguously. Such an approach can be also found in other related studies.5,75,76

External croptype validation:We used GPS-based crop type in-situ data from two different
field campaigns. To associate these discrete measurements with underlying agricultural parcels,
we manually digitized the respective using Google Earth imagery. We then reclassified the in-
situ labels to the phenologic classes used herein and discarded parcels that covered <50% of the
overlapping MODIS cells. This procedure affected ∼5% of the overall in-situ data.

3.3 Agricultural Performance Indicator Derivation

Based on the multitemporal cropland information, several indices were calculated, each of them
describing agricultural performance (Table 2).

3.3.1 Cropland subindicators

Active cropland index. Active cropland is defined as agricultural land sown and harvested
in a given growing season. The active cropland index (ACI) summarizes the number of years
within the observation period (2000 to 2016) in which land was classified as active cropland, i.e.,
all pixels excluding those classified as “fallow” in the cropland maps (see Sec. 4). This indicator
supports detecting spatial patterns of land abandonment5 and tracing the effects of periods of
water scarcity or drought. The ACI is calculated as

EQ-TARGET;temp:intralink-;e002;116;105ACI ¼ 1 −
Xn

i¼2000

fi
i
; (2)

Fig. 7 MODIS and Landsat 8 tiles overlapping the ASB with the corresponding cropland mask
(green) and the country and province boundaries.
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where fn is the number of pixels which were classified as fallow land during the observation
period and i is the total number of years. Values close to 1 indicate a very high agricultural
activity, whereas values close to 0 reveal zones with a high fallow land frequency.

Cropping intensity index. Cropping intensity index (CII) is an indicator for the quanti-
fication of agricultural intensification over time. It supports the identification of single or double
cropping systems, i.e., irrigated agricultural land with more than one harvest per growing season
or the area cropped more than once per year. In the case of agriculture in the ASB, most of the
double cropping systems are supposed to include a temporal sequence or winter wheat followed
by rice, maize, sunflower, vegetables (mostly potatoes and mung bean), cucurbits (mostly mel-
ons), or sorghum. The CII is calculated as

EQ-TARGET;temp:intralink-;e003;116;592CII ¼ GIA

NIA
; (3)

where NIA is the average net irrigated area for all years, defined as the sum of all area under
crops, and GIA is the average gross irrigated area for all years, defined as the sum of all area
under crops, whereby the area under double cropping is counted twice. Values closer to 1 indi-
cate a gapless multiannual double cropping intensity with at least two harvests per growing
season, which can be interpreted as high agricultural performance.

Spatial crop diversity index. Crop diversification is a necessary technique to reduce the
potential risk of specific replant disease as is often found in monocropping cultivation.77 This
indicator is measured by the Simpson index of diversity78 and is formulated in the following
equation with values close to 1 indicating high crop diversity in the spatial domain, i.e., within
the hexagonal aggregation units:

EQ-TARGET;temp:intralink-;e004;116;406SCDI ¼ 1 −
Xn

i¼1

c2i ; (4)

where c is the relative share of the respective cropland class i associated with specific crops
based on the growing season and phenology.

Temporal crop diversity index. Similar to the spatial crop diversity index (SCDI), the
temporal crop diversity index (TCDI) reveals the diversity of crop types and whether monocrop-
ping or multicropping is present, but in the temporal domain. The TCDI contains information of
crop rotation patterns and the frequency of the pattern change. Additionally, we introduced a
measure of crop variety to emphasize not only the frequency of crop rotations but also the occur-
rence of different crop types. A certain land parcel can include many crop rotations within a
certain time period with not many different crop types, e.g., a typical example within the
ASB would be a regular cotton–wheat rotation for many years indicating more frequent change,
but with only two different crops. On the other hand, a pixel can indicate a lesser amount of crop
rotations, but for many different crop types, e.g., wheat–wheat–wheat–cotton–rice.42 Thus, we
propose the TCDI as a fused measure of two temporal diversity measures:

• The frequency of crop rotations within the observation period, which indicates how often
the cropland (i.e., the phenological type) has changed within a pixel.

• The average number of different crop types within the observation period, which indicates
how many different crop types have been cultivated within a pixel.

Both measures are highly correlated, thus we propose an aggregated index of their product
as follows:
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EQ-TARGET;temp:intralink-;e005;116;735TCDI ¼
Xn

i¼1

xi
y
� μc; (5)

where xn is the crop rotation events, y is the number of observation years, and μc is the average
number of different crop types per pixel.

Cultivated land utilization index. The cultivated land utilization index (CLUI) is an indi-
cator of land utilization efficiency and indicates where and how the land was utilized.79 It con-
siders the total area under crops in relation to the average duration of the growing season per
pixel. A longer duration suggests higher irrigation water availability. The CLUI can also support
the interpretation of socioeconomic factors, e.g., a longer duration leads to a higher employment
rate in the agricultural sector. The duration of the season is derived by the occurrence of bands in
the time series whose NDVI value is >0.4, where experiments have shown that this threshold
value is very suitable for the distinction of active cropland and nonagricultural vegetation.

EQ-TARGET;temp:intralink-;e006;116;552CLUI ¼
P

n
i¼1 ci � di
30 � NIA ; (6)

where ci is the acreage of the respective crop type and d is the duration of the growing season
measured in time steps of 8 days. The duration of the annual growing season is 30 time steps of
8 days.

Land conversion index. The land conversion index (LCI) is a metric for the conversion of
fallow land to active cropland per reference unit (25 km2 hexagons). It is the total area under
crops which has been either reclaimed or converted from previously agriculturally inactive land
and averaged over all observation years. The calculation is based on consecutively checking
whether an active cropland pixel has been classified as fallow land in more than one consecutive
previous years and summing up the acreage of the land conversion.

EQ-TARGET;temp:intralink-;e007;116;378LCI ¼
Xn

i¼2001

li; (7)

where li is the relative share of the average land conversion for each year (with 2001 as the
starting year).

3.3.2 Water use subindicators

In addition to the cropland-related indicators, water use indicators are very useful to measure the
water footprint and the water use efficiency of the produced crops. For each of the water use
subindicators (Table 3), the cropland classification is essential and serves as input for the
computation.

Table 3 Overview and summary of the water use-related indicators.

Name Description
Examples and
references

WUEI Ratio of NPP weighted with world market prices for commodities
(agricultural benefit) and actual ET (water use from irrigation).

Refs. 80–82

WAI How much water is actually available to meet the crop water demands? Refs. 83 and 84
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Water use efficiency index. The measure of the “drop-per-crop” aspect is an important
indicator for the analysis of water footprints in semiarid irrigation agriculture. Water use effi-
ciency index (WUEI) has been defined in different ways according to respective project needs.
The most common definition of WUEI is given by the ratio of the crop yield or biomass and the
actual ET.81 In our case, the calculation of WUEI is focused on the ratio of the ETa and the NPP
per hectare, scaled by the respective crop share and by a weighting factor for each crop as shown
in Table 4. The weighting factor is the transformed crop importance. This is given by the world
market prices for commodities85 which are associated with the respective cropland class, aver-
aged for all possible crop types that can occur within a cropland class. We obtained world market
prices in $ per kg for commodities for the period 2000 and 2016. We used the world market
prices as factors to weight the importance of the respective cropland class in relation to the water
use efficiency.

EQ-TARGET;temp:intralink-;e008;116;397WUEI ¼
Xn

i¼0

ci � NPP � p
ETa

(8)

where NPP is the net primary product for each cropland class ci with the associated world market
price p and ETa is the average actual evapotranspiration.

Water availability index. Water availability index (WAI) is expressed by ratio of actual and
potential ET. If ETa is less than ETp, then the water supply is sufficient, indicated by values close
to 1, whereas lower values indicate water stress, drought risk, or drought vulnerability.86 We
adapted this measure to introduce a factor of water stress and inserted the crop coefficients from
the FAO-24 report as shown in Table 5.87 Crop coefficients are crop-specific factors for the

Table 4 World market prices for commodities associated with the cropland classes.

Crop type
Average world market prices in $/kg

for the period of 2000 to 2016

Summer crops 1.70

Spring crops 0.35

Rice 0.45

Double crops 0.80

Alfalfa 0.15

Orchards 1.50

Table 5 Crop coefficients, associated with the target cropland classes.

Cropland class Average crop coefficient kc

Summer crops 0.73

Spring crops 0.61

Rice 1.05

Double crops 1.32

Alfalfa 0.75

Orchards 0.89
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calculation of ET. Higher values indicate less crop water losses, thus higher water availability is
present for potentially increasing agricultural performance.

EQ-TARGET;temp:intralink-;e009;116;711WAI ¼ ETa

ETp � kc
(9)

where kc is the respective crop coefficient.

3.3.3 Composite agricultural performance index

Each of the calculated subindicators described in Secs. 3.3.1 and 3.3.2 was rescaled to a [0–1]
range through a min–max normalization and to ensure indicator comparability within the same
data variance. For all indicators, a lower numeric value indicates zones of lower productivity or
efficiency. We have chosen a weighted aggregation technique88 for the construction of the CAPI,
which considers the summation of all subindicators with the respective importance to the overall
CAPI. We calculated the principal components of all indicators to derive the factor loadings for
each component89 and used them for the construction of weights for the additive aggregation
model as follows:

EQ-TARGET;temp:intralink-;e010;116;522CAPI ¼
Xn

j¼1

jn � ω; (10)

where j is the respective subindicator and ω is the weight for each subindicator.
At the point of this study, a questionnaire of local agronomists and experts who would define

the weights of each indicator could not be conducted and information about a knowledge-based
use of indicator weights is not present. Thus, the fusion of all subindicators into an aggregated
composite index has been done through a weighted additive model, where the weights were
retrieved through a PCA.90 In our case, the averaged factor loadings of the PCA are used to
construct the weights for the additive model, where the first three components described about
90% of the overall variance as shown in Table 6.

4 Results

4.1 Training Data Generation

Figure 8 shows the distribution of the initial clusters that were associated with the respective
cropland class. As the clusters are spatially not well distributed, additional training data were

Table 6 The loadings of the first three principal components and the calculated weights ω.

Indicator PC1 PC2 PC3 ω

ACI 0.48 0.43 0.35 0.46

CII 0.06 0.04 0.09 0.06

Spatial crop diversity index 0.36 0.03 0.63 0.33

TCDI 0.29 0.19 0.59 0.31

CLUI 0.34 0.52 0.26 0.37

LCI 0.62 0.70 0.23 0.59

WUEI 0.18 0.14 0.02 0.15

WAI 0.14 0.04 0.10 0.12

Explained variance (cumulative) ∼60% ∼79% ∼90% —
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generated by training the voting classifier ensemble with the initial labeled clusters. The resulting
classified pixels with more than 99.5% classification probability were added to the labeled
training dataset to improve the spatial distribution of the training data and to account for spatial
variability. The NDVI signatures of the newly selected training pixels were again visually
inspected and used in the consequent cropland classification.

4.2 Accuracy of the Cropland Maps

4.2.1 Map comparison, MODIS versus Landsat

The accuracy assessment (Sec. 3.2.3) revealed a high overall agreement between the MODIS-
based cropland maps from 2016 and the corresponding Landsat based maps (Table 7). Clearly,
the distinction of summer crops and rice was sufficiently accurate. Lower precision and recall
scores were achieved for the spring crops class that was confused with the double-crops class as
both classes include winter wheat and other cereals of the same phenologic characteristics.
Moreover, the pattern of the double crops (two maxima in the NDVI time series) is sometimes
confused with the spring crops class when the lower second peak of the double-crops time series
is similar to the lower second peak of the spring crops, which is often residual vegetation after the
harvest. The lowest accuracy scores were achieved for the Landsat scene 158034 located in
Turkmenistan due to the lower parcel sizes and a higher within-field heterogeneity. Soil salinity
and natural vegetation mixed with agricultural land cause a more mixed NDVI response in the
MODIS time series.91 The highest accuracy scores were achieved for the Landsat scene 157029
located in the Lower Syrdarya irrigation zone (Kazakhstan), where only 3 cropland classes were
present (rice, alfalfa, and fallow). Overall, the classifications have a higher precision and a lower
recall which means that the classifier identified most pixels semantically, but also missed a lot of
actual true positives, resulting in more false negatives. An overall agreement of 74% between the
Landsat and MODIS classification datasets can be regarded as sufficient. Figure 9 shows the
classification examples and the agreement between both datasets cartographically.

A direct comparison is sometimes aggravated due to the different dimensionality of the
temporal features of the Landsat dataset. For each year, much fewer Landsat observations
(on average 11 observations within a growing season) were available due to cloud cover over
the areas of interest. This reduced dimensionality (compared to the 30 available MODIS
composite scenes per year) also may lead to a worse distinction of certain crop classes which
require a higher data dimensionality for a better class separation, such as orchards and alfalfa.

Fig. 8 Class labels resulting from the selected clusters associated with the target classes (a) and a
preclassification step where pixels with a probability higher than 99.5% are added to the training
dataset (b) to increase the sampling distribution. (Source: ArcGIS Online).
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Fig. 9 Land use maps for the year 2016, Khorezm region (above) and 2016, Surxondarya region
(below), respectively, derived from (a) Landsat and (b) MODIS.

Table 7 Overall and per-class agreement estimates obtained through cross-comparison to
high-resolution cropland maps from Landsat 8 OLI where P ¼ precision and R ¼ recall.

Landsat
tile Year

Overall
accuracy

Average
F -score

Pavg P1 P2 P3 P4 P5 P6 P7

Ravg R1 R2 R3 R4 R5 R6 R7

153032 2013 0.78 0.71 0.71 0.85 0.47 0.89 0.52 0.72 — 0.81

0.73 0.68 0.61 0.94 0.53 0.66 0.94

160031 2014 0.72 0.61 0.62 0.88 0.32 0.85 0.56 0.48 0.51 0.73

0.70 0.72 0.58 0.62 0.87 0.89 0.92 0.32

155032 2014 0.71 0.67 0.73 0.43 0.64 0.91 0.91 0.51 0.82 0.91

0.73 0.92 0.93 0.93 0.34 0.66 0.98 0.35

158034 2015 0.58 0.52 0.59 0.55 0.81 — 0.82 0.45 — 0.34

0.53 0.83 0.53 0.14 0.27 0.87

157029 2015 0.87 0.76 0.81 — — 0.94 0.92 — 0.58 —

0.79 0.98 0.46 0.94

154034 2016 0.74 0.71 0.73 0.82 0.69 0.75 0.98 0.82 0.41 0.65

0.77 0.82 0.77 0.91 0.37 0.62 0.97 0.96
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4.2.2 Visual verification

The multitemporal NDVI signatures for each sample were manually inspected and compared
with the respective MODIS classification results. This approach has an average overall classi-
fication accuracy of 84% because we draw samples from the same data distribution. If we sum-
marize both validation approaches, we yield an average overall classification accuracy of about
78% for the given target classes and the long-term monitoring. Due to the temporal acquisition
regularity, the same data dimensionality is ensured and thus, model transferability across differ-
ent years, capturing the respective phenological patterns is possible, e.g., through transfer learn-
ing, inferred on unseen data from other distributions (years) and still from the same domain.92

This likely caused the relatively high classification accuracies. In terms of the classification
accuracy, the results were very accurate (Table 8). The proposed method achieved 84% overall
classification accuracy.

4.2.3 External verification

We have deployed in-situ GPS data from different field campaigns in Karakalpakstan and the
Fergana Valley, both located within the Republic of Uzbekistan. Due to the coarse resolution of
the MODIS sensor and the mixed pixel effects caused by the MODIS pixel size of 5.3 ha
(230 m2), we achieved a maximum overall accuracy of 75% in the Lower Amudarya, whereas
the classification in the Fergana Valley achieves a score of 72% as shown in Table 9.

As can be seen from Table 9, the in-situ data were collected in a systematic manner and
some of the target classes could not be captured. Moreover, during the conduction of the field
campaigns, certain crop types were not grown in the sampled areas.

Table 8 Classification accuracy estimates through visual crop type verification, where P ¼
precision and R ¼ recall.

Region
Overall
accuracy

Average
F -score

P1 P2 P3 P4 P5 P6 P7

R1 R2 R3 R4 R5 R6 R7

Lower Syrdarya 0.97 0.97 — — 0.94 1.0 0.96 — —

0.96 1.0 0.94

Central Amudarya 0.95 0.91 0.95 1.0 0.89 0.95 0.96 0.75 0.89

0.95 0.94 0.88 1.0 0.98 0.67 0.92

Lower Amudarya 0.81 0.82 0.80 1.0 1.0 0.91 0.68 0.77 1.0

0.80 0.91 1.0 0.76 0.76 0.56 0.64

Pandj-Surxondarya-Vakhsh 0.85 0.83 0.75 0.94 0.86 1.0 0.80 0.96 0.62

0.72 0.91 0.76 0.84 0.96 0.76 0.91

Turkestan-Syrdarya 0.74 0.76 0.90 0.70 0.82 0.78 0.92 0.68 0.47

0.73 0.71 0.82 1.0 0.92 0.63 0.66

Fergana Valley 0.87 0.86 0.91 1.0 0.80 1.0 0.78 0.57 1.0

0.77 0.75 1.0 0.83 0.88 1.0 0.92

Jizzakh-Tashkent-Syrdarya 0.81 0.73 0.95 0.85 0.79 0.72 0.79 0.49 0.65

0.84 0.93 0.85 0.75 0.86 0.98 0.22

Mary-Tejen-Karakum 0.71 0.69 0.93 0.91 0.84 0.73 0.59 0.65 0.42

0.57 0.91 0.42 0.69 1.0 0.67 0.81
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4.3 Classification Results

The output of the cropland classification is 17 cropland maps with 8 thematic classes for all years
between 2000 and 2016. The classifications were used as input for the calculation of cropland
and water use subindicators as already presented in Secs. 3.3.1 and 3.3.2. The results of the
cropland classification were spatially aggregated to the first level of the GADM layer which
is the country level (Fig. 10). The visual inspection of the multiannual crop share per country
shows the water scarcity years 2001, 2008, and 2014. The crop share results for Northern
Afghanistan, Tajikistan, and Uzbekistan show a significant increasing trend for double cropping

Fig. 10 Spatially aggregated cropland results for the entire observation period and for each
country of the ASB. The cultivated land is shown as 100%. Values above 100% depict the gross
irrigated area containing double cropping systems.

Table 9 Classification accuracy estimates based on in-situ data, where P ¼ precision and
R ¼ recall.

Region
Overall
accuracy

Average
F -score

P1 P2 P3 P4 P5 P6 P7

R1 R2 R3 R4 R5 R6 R7

Lower Amudarya (2008) 0.75 0.61 0.69 0.52 — 0.97 — — 0.12

0.88 0.91 0.68 0.55

Fergana Valley (2014) 0.72 0.65 0.77 0.71 0.70 0.55 — −0.52 0.61

0.75 0.64 0.61 0.41 0.91 0.88
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systems. This suggests that land intensification has been targeted in order to increase food
production which is driven by a growing population and at the same time decreasing cropland
availability. The acreage of orchards and alfalfa show a positive trend in all countries for the
observation period. It is clear that cropland dedicated for cotton growing has been reduced in
favor of crop diversification as well as the focus on other crops with a more sustainable water
footprint and a more efficient water use. This can be seen by the negative trend of the summer
crops, of which cotton is the major crop. More precisely, the aggregated statistics corresponds to
the agropolitical developments of Uzbekistan and Turkmenistan since 2011 to reduce cotton
production in favor of cereals and orchards. Moreover, the occurrence of water-rich years has
increased for the time period since 2008.

From the results for the Surxondarya and Vakhsh irrigation systems in Eastern Uzbekistan,
Northern Afghanistan, and Tajikistan (Fig. 11), agricultural intensification and a decrease of
unused fallow land have occurred during the observation period.

4.4 Spatial Patterns of Cropland and Water Use Subindicators

The calculation of the subindicators yielded eight different maps as shown in Fig. 12 with each of
them representing agricultural performance in a different manner. The ACI map reveals areas
with a higher cropland frequency (or reversely, lower fallow land frequency) that are closer to the
main irrigation systems of the Amudarya and Syrdarya rivers. The Fergana Valley mostly
includes areas with a high ACI whereas this indicator draws a clear boundary between the prov-
inces of Khorezm (UZB), Karakalpakstan (UZB), and Tashauz (TKM), showing high ACI scores
in Khorezm only, whereas the areas peripheral to the deserts are affected with a higher fallow
land frequency due to land abandonment, desertification, or soil salinization. The CII maps show
a similar pattern of agricultural performance except the irrigation areas of the Lower Syrdarya,
where no cropping intensity has been identified. High spatial crop diversity was found in similar
areas, whereby cropping diversity in the Fergana Valley had less importance than in the prov-
inces Tashkent, Jizzakh, or Samarkand. Usually, areas with high spatial crop diversity also
achieve high temporal crop diversity scores, expressed by the TCDI as areas with a frequent
and regular crop rotation and a higher crop variation over time. CLUI scores were high in
most irrigation zones except in Turkmenistan, which can be explained through the relatively
short duration of the growing season. The LCI shows hotspots of land reclamation in
Karakalpakstan, Turkmenistan and other peripheral and arid regions prone to desertification and
land abandonment.

5 Discussion

5.1 Correlation Analysis of the Subindicators

A correlation analysis between all subindicators (Fig. 13) shows the highest Pearson correlation
coefficient scores between the CLUI and ACI indicators. The lowest scores were achieved
between the CII and WAI indicators. In this sense, cropping intensity is independent from the
actual and potential ET. Surprisingly, both water use indicators, WAI and WUEI, are not corre-
lated. This can be explained with the relative high discrepancies between the actual and potential
ET values of the WUEI indicator. Moreover, we generated scatterplots between each pair of
subindicators and plotted them in combination with the cross-correlation matrix (Fig. 13), giving
additional insights in the relationships between the subindicators.

5.2 Composite Agricultural Performance Index

The resulting map in Fig. 14 shows high CAPI values in proximity to the mountain areas in the
Eastern ASB as well as in close proximity to the main irrigation channels. Avery high correlation
between both maps, especially in zones with a higher agricultural performance, is evident. In
general, the usage of the additional MODIS products for NPP and ET for the calculation of the
CAPI through all subindicators seems to suggest higher agricultural performance, even if crop
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diversity, cropping intensity, and crop rotations are relatively low, and fallow land occurrence
relatively high. The computation of the CAPI solely through the cropland subindicators is more
precise for the depiction of low agricultural productivity areas. A drawback of the CAPI is the
high abstraction and generalization level. Areas that perform better within a specific subindicator
might still be interpreted as vulnerable or less productive, e.g., areas with a high ACI (i.e., low
fallow land occurrence or frequency) might still have low cropping intensity, low spatiotemporal

Fig. 11 Cropland maps for the year (a) 2000 and (b) 2016 for the transboundary irrigation systems
of Uzbekistan, Afghanistan, and Tajikistan. This example reveals the extensification and the
intensification of agriculture in Central Asia. Fallow lands have decreased massively in the past
few years.
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crop diversity, low land utilization, or a low net irrigated area share. This could be monocropping
areas without crop rotation, such as continuous summer cropland (in most cases cotton). The
inverse CAPI can be also interpreted as an agricultural vulnerability index depicting critical areas
with the following categorization:

• general low performance areas, e.g., high fallow land occurrence,

Fig. 12 Subindicators results for the entire ASB, spatially aggregated on 25 km2 hexagons:
(a) ACI, (b) CII, (c) spatial crop diversity index, (d) TCDI, (e) CLUI, (f) LCI, (g) WUEI, and
(h) WAI.
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• areas with a less-sustainable land use management, e.g., monocropping, and
• areas with a less-sustainable water use management, e.g., a low WUEI.

However, the CAPI does not provide information on the causality of the vulnerability or
the drivers which have led to such circumstances. They can be numerous and often linked

Fig. 14 Mapping of CAPI, grouped in five qualitative categories (very low to very high).
Cartographic color-coding reveals zones of high agricultural performance in green.

Fig. 13 Cross-correlation matrix of the eight agricultural performance subindicators combined
with pairwise scatterplots color-coded by the CAPI.
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to socioeconomical factors. The benefit of a CAPI over single indicators is the capability to
summarize and to reduce the dimensionality of the observed variables. Especially in the con-
stantly increasing domain of EO data, generalization is essential to build robust and descriptive
global or regional models. Moreover, land use is a very dynamic, spatially and temporally vary-
ing issue where a single indicator is not sufficiently descriptive enough. Composite indicators
had their origin in socioeconomic sciences where a variety of indicators is merged into a more
meaningful and comprehensive information. The CAPI can be further used by agrobusiness or
agroinsurance companies to enhance the information on the performance, efficiency, vulnerabil-
ity, and sustainability of the used cropland. As accurate crop yield predictions are still very
difficult to obtain, the CAPI can be also used as a proxy indicator for crop performance, iden-
tifying hotspots of potentially higher or lower crop yields. If applied in a real-time or near-
real-time manner, the CAPI could also be used as an early warning system for impending land
degradation.

6 Conclusion

We presented a framework for the mapping agricultural performance by fusing various EO-based
indicators about agricultural intensity and productivity in the ASB. We created new cropland
maps for a 17-year period. Our approach is transferable and applicable on regional or global
scales, given the target crop types for classification. It is suitable for monitoring, assessing, and
analyzing of agricultural land in any agroecosystem. We can conclude that MODIS data are
suitable for land use and cropland mapping and the derivation of cropland and water use indica-
tors for large-scale applications, such as our study area which covers 9 × 106 ha. The temporal
regularity of the data acquisition makes MODIS data a favorable instrument for the identifica-
tion of phenological patterns for crop type classification and mapping of inactive or abandoned
agricultural land. On the other hand, there is a spatial uncertainty and mixed spectral signatures
from ambiguous land use, and cropland types per pixel decrease the analysis accuracy. For
instance, the derivation of cropping intensity can be inaccurate, when two or more adjacent
fields have a mixed constellation of single spring crops (e.g. winter wheat) and single summer
crops (e.g. cotton), respectively. The NDVI signature for this pixel would also produce a bi-
modal distribution and mimic double cropping systems. In our study, double cropping systems
were classified with a low omission error. In some cases, signal confusion happened when the
variance and bias of the data were not captured sufficiently by the automatically derived train-
ing data.

A shortcoming of the proposed method is the dependency on a high-quality cropland mask
which needs to be created or obtained a priori.

We demonstrated how the generation of training data through clustering and the generation
of additional training samples by extracting the pixels can help to create reliable cropland
maps with a very high classification accuracy. To create a more stable classification model,
we deployed a decision fusion algorithm with soft voting based on GBT and RF. The derived
cropland classification maps have a sufficient classification accuracy with an average of 73%
derived from independent Landsat thematic maps and 84% derived from random stratified
sampling data.

The calculation of the CAPI revealed high agricultural performance in regions with a dense
population and a more developed infrastructure, such as the Fergana Valley and the Jizzakh-
Tashkent-Syrdarya irrigation area. The CAPI mapping results in provinces Karakalpakstan in
Uzbekistan, Kazalinsk in Kazakhstan, and Tashauz in Turkmenistan on the contrary suggest
a low agricultural performance with longer cycles of fallow land and less spatiotemporal crop
diversity. Clearly, the Fergana Valley is a region with a high agricultural performance,93 but other
indicators should be taken into account as well. We suggest the further fusion of our proposed
indicators with other hydrological (e.g., average ground water table), pedological (e.g., degree of
soil salinization or average soil quality), demographic (e.g., population density, birth rate, or the
population share below 30), environmental (e.g., air and water pollution indices), or socioeco-
nomic indicators (e.g., average unemployment rate or people employed within the agricultural
sector). Such data were not available during the course of this study and it generally is very
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difficult to obtain, but would improve the calculation of an overall aggregated index. However,
the spatial resolution of such indicators is very coarse and they often exist only on an admin-
istrative level and do not provide continuous spatial data.

Additional research needs to be done in the exact extraction of pure MODIS training pixels
though a subpixel or cover fraction analysis from high-resolution data, such as Landsat 8 or
Sentinel-2. Our workflow was based on k-means clustering for the extraction of homogenous
pixel groups as training data, yet there exist other clustering techniques, such as DBSCAN
or agglomerative clustering, which could be explored for the same purpose in future research.
The semantic definition of the target classes can be further partitioned in a more precise way,
resulting in more target classes which explain the feature space of the data.

The increasing amount of cloud-free data from the Sentinel-1, Sentinel-2, and new Landsat
constellations will provide a sufficient baseline for high-resolution land use and cropland indi-
cator mapping, e.g., using the Google Earth Engine platform or spatiotemporal data fusion
methods.

To increase the meaningfulness of the composite indicator, more subindicators could be inte-
grated. On the one hand, remote sensing based indicators, such as the vegetation condition index,
derived from long-term NDVI observations, could insert more valuable information about
drought events and desertification processes, which would be an important aspect for measuring
agricultural vulnerability.
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