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Abstract. The Earth’s surface changes continuously due to several natural and humanmade
factors. Efficient change detection (CD) is useful in monitoring and managing different situa-
tions. The recent rise in launched hyperspectral platforms provides a diversity of spectrum in
addition to the spatial resolution required to meet recent civil applications requirements.
Traditional multispectral CD algorithms hardly cope with the complex nature of hyperspectral
images and their high dimensionality. To overcome these limitations, a CD deep convolutional
neural network (CNN) semantic segmentation-based workflow was proposed. The proposed
workflow is composed of four main stages, namely preprocessing, training, testing, and evalu-
ation. Initially, preprocessing is performed to overcome hyperspectral image noise and the high
dimensionality problem. Random oversampling (ROS), deep learning, and bagging ensemble
were incorporated to handle imbalanced dataset. Also, we evaluated the generality and perfor-
mance of the original UNet model and four variants of UNet, namely residual UNet, residual
recurrent UNet, attention UNet, and attention residual recurrent UNet. Three hyperspectral CD
datasets were employed in performance assessment for binary and multiclass change cases; all
datasets suffer from class imbalance and small region of interest size. Recurrent residual UNet
presented the best performance in both accuracy and inference time. Overall, the obtained results
imply that deep CNN segmentation models can be utilized to implement efficient CD for hyper-
spectral imageries. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.15.028505]
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1 Introduction

Change detection (CD)1 is an active remote sensing (RS) topic that has been adopted to monitor
and understand the Earth’s surface and forest areas. Very high spatial resolution imagery has
been combined with modern machine learning approaches to improve the quality of CD maps.
Hyperspectral image2 contains hundreds of narrow bands that provide spectral and spatial infor-
mation. Recently, HSI had been extensively used in classification and object detection tasks.
Traditional CD methods such as linear transformations, classification, and abnormality analysis
were proposed originally for single or multispectral imageries. However, their performance is
limited when applied to HSIs due to their high dimensionality. Recently, several attempts had
been introduced; these include tensor factorization,3 orthogonal subspace mapping, multisource
target feature support,4 mixed pixel decomposition,5 and independent component analysis.6

In the literature,2,7,8 CD is a composite workflow that contains a series of comprehensive
processing steps: (1) problem understanding, (2) collection of appropriate data, (3) preprocess-
ing, (4) relevant features selection, (5) design and implementation of CD algorithm, and
(6) evaluation of CD performance. The quality of the obtained change map depends on five
main factors: (1) quality of CD algorithm, (2) spatial resolution, (3) temporal scale, (4) image
registration (preprocessing), and (5) spectral correction. CD methods can be classified according
to the number of change classes (binary, multiclass, and time series), CD algorithms (supervised,
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semisupervised, and unsupervised), and automation (manual, semiautomated, and fully
automated).

Typically, CD algorithms9 are classified into four categories: (1) image algebra, (2) classifi-
cation CD, (3) feature-based CD, and (4) machine learning-based CD. The algebra CD-based
methods, such as change vector analysis, employ image difference and ratio image rules to pro-
vide robust and efficient performance. In classification CD, each image is independently clas-
sified, and then the change map is identified. Numerous classification approaches have been
investigated to enhance CD accuracy. In feature learning and transformation, the learned features
and distance metric are employed to distinguish changes. The features could be physically mean-
ingful and engineered change features. Physically meaningful features are often elicited to define
modifications in ground-truth types. Examples include vegetation indices, forest canopy vari-
ables, and water indices. In engineered features, the features are projected mathematically
between different spaces to detect and highlight the change region. Examples include principal
component analysis,10 multivariate alteration detection,11 subspace learning, and sparse learning.
Finally, various supervised machine learning techniques had been adopted to identify land cover
changes.12 However, the limited availability of labeled datasets favors the utilization of unsu-
pervised learning methods such as fuzzy and C-means algorithms.13 In contrast, supervised
learning methods such as support vector machines inhibit a better performance as they associated
prior knowledge obtained from labeled datasets.14

Hyperspectral ad-hoc CD algorithms face different challenges: the availability of insufficient
ground truth, data redundancy, noise existence in mixed pixels, coarse spatial resolution, and
high dimensionality. In general, the limited performance of the traditional hyperspectral methods
can be summarized as follows: (1) the transformation of temporal, spatial, and spectral infor-
mation associated with satellite images by features engineering may cause a partial loss of data.
(2) The majority of recent CD approaches depend on shallow models that lack the potential to
generalize. (3) The availability of practical approaches in dimensionality reduction is limited.
(4) Obtaining adequate hyperspectral labeled samples is difficult.2

The proliferation of sophisticated deep learning (DL) has evolved in the digital era. The
availability of satellite instruments, the enormous amount of data acquired, and the availability
of computational power has enabled a deeper neural network to introduce a new challenges in the
earth science domain.15,16 Recent advances in DL have demonstrated state-of-the-art results in
pattern recognition tasks, mainly in image processing and speech recognition.17,18 Modern con-
volutional neural network (CNN) architectures19–21 tend to contain enormous hidden layers and
millions of neurons, allowing them to concurrently learn hierarchical features for a broad class of
patterns from data and achievewell-tailored models for the targeted application.22 Recently, there
has been a rapid turnover of DL frameworks to highlight land cover changes. Patch-based algo-
rithms train temporal image patches to determine if the focal pixel is changed or not. In contrast,
image-based algorithms have been utilized for training image pairs to generate a segmented
change.23 In Ref. 24, a recurrent neural network was adopted to produce the change map.
The model network was fed a flattened and concatenated vector. Also, Siamese CNNs were
adopted to obtain a discriminative feature map for each image. Then, the Euclidean distance
metric was employed in determining the change map. These networks require a high degree
of computational complexity. CD methods based on encoder–decoder segmentation tech-
niques25–27 were used to highlight the temporal changes in land cover. In recent years, different
semantic segmentation was introduced based on CNN architectures. In modern CNN segmen-
tation architectures, feature extraction is performed using downsampling. Deconvolutional
upsampling layers were utilized to reconstruct per-pixel classification labels. A deconvolution
operation is the transpose of a convolution operation and works by exchanging the forward and
backward convolutional passes.28

Class imbalance,29,30 which is widely observed in satellite images, hardens the identification
of the minority class as the skewed distribution introduces a bias in favor of the majority class.
The approaches handling class imbalance are categorized into data level and algorithm level.29

Data level methods include data sampling [random oversampling (ROS) and random under-
sampling] and feature selection approaches. On the other hand, algorithm level methods include
cost-sensitive and hybrid/ensemble approaches.30 The ROS approach yields better classification
performance compared with other data level approaches.
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In general, the demand for a cost-effective and reliable hyperspectral CD (HSICD) approach
is still a major open question. The complexity of hyperspectral imageries as well as the imbal-
anced class problem are considered the main factors of degraded performance. Therefore, we
present an efficient workflow for HSICD (HSICD_workflow) to tackle binary and multi-HSICD
problems. The proposed workflow comprises four main processing phases, namely preprocess-
ing, training, testing, and evaluation. Also, we investigate the generality and performance of the
original UNet model and its four variations: residual UNet (R-UNet), residual recurrent UNet
(R2-UNet), attention UNet (Att-UNet), and attention residual recurrent UNet (Att-R2-UNet) to
improve the HSICD performance. The major contributions are outlined in three steps:

• We formulate the class imbalance HSICD problem to incorporate ROS in preprocessing,
DL, and bagging ensemble to handle the imbalanced dataset.

• We investigate three UNet loss functions to highlight the most robust loss function for the
imbalanced dataset problem.

• We conduct extensive experiments to determine the performance of the proposed work-
flow. The proposed workflow significantly excels and contributes to future research
regarding HSI change identification.

The remainder of this paper is organized as follows: Section 2 introduces the benchmark
datasets and describes the proposed HSICD workflow in depth. In Sec. 3, the performance
of each architecture is presented, compared, and discussed. Finally, Sec. 4 concludes the paper.

2 Materials and Methods

2.1 Hyperspectral Dataset

The limited availability of benchmarks datasets for the HSICD task is considered a major limi-
tation to the RS community. In this work, we consider three binary HSICD datasets, namely the
Bay Area, Santa Barbara,31 and multiclass Hermiston datasets,26 as shown in Table 1. The avail-
ability of pixel-based annotated masks for each dataset enables analytical evaluation for their
experimental results.

2.1.1 Bay Area dataset

This dataset consists of two coregistered hyperspectral images over the city of Patterson,
California, of a section with (600 × 500) pixels captured by the AVIRIS sensor. Each image
contains 224 spectral bands with a spatial resolution of about 30 m per pixel. The images were
acquired in 2007 and 2015, respectively. The bitemporal images, as well as the ground truth, are
shown in Fig. 1(a).

2.1.2 Santa Barbara dataset

This dataset consists of two coregistered hyperspectral images over the Santa Barbara region,
California, of a section with (984 × 740) pixels collected by the AVIRIS sensor. Each image

Table 1 Specification and data distribution of HSICD benchmarks.

Dataset #Bands Bad bands Rows Columns Class distribution (%)
Spatial

resolution (m)

Bay Area 224 [98:107], [113 :128],
[148: 154], [167 :170]

600 500 C1:12.81; C2: 11.40 30

Santa Barbara 224 984 740 C1: 7.16; C2: 12.81

Hermiston 242 [1:7], [58:76], [120:132],
[165:182], [221:224]

390 200 C1:55.66; C2:13.33;
C3:0.79; C4:15.59;
C5:14.63

30
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contains 224 spectral bands with a spatial resolution of about 30 m per pixel. The images were
acquired in 2013 and 2014, respectively. The bitemporal images, as well as the ground truth, are
shown in Fig. 1(b).

2.1.3 Hermiston dataset

This dataset consists of two coregistered hyperspectral images over the city of Hermiston,
Oregon, of a section with (390 × 200) pixels acquired by the Hyperion sensor. Each image con-
tains 242 spectral bands with a spatial resolution of about 30 m per pixel. The images were
acquired in 2004 and 2007, respectively. The ground truth image contains five classes. The
bitemporal images, as well as the ground truth, are shown in Fig. 1(c).

2.2 Proposed Workflow

In this paper, we present an efficient workflow for HSICD, as shown in Fig. 2, which is com-
posed of four main phases: preprocessing, training, testing, and evaluation. The proposed work-
flow was inspired by semantic segmentation due to their booming performance in several
applications, such as scene comprehension,32 processing satellite images,15,33 and object detec-
tion in satellite images.34 UNet model,35 which is considered a famous and effective semantic
segmentation architecture, is used in the training phase to identify the change regions. In general,
UNet employs the traditional encoder–decoder scheme. The input image is compressed into a
dense feature vector by the encoder block. The spatial dimension of the feature vector is gradu-
ally reduced to obtain intense high discriminative representation. On the other hand, the feature
vector has to spatially expand progressively to produce a segmented image. Several approaches
such as bilinear interpolation and transposed convolution have been employed in the decoder
block to match the original image dimensions.

The proposed workflow aims to simulate real-life scenarios in which the imbalanced class
problem is a major challenge, especially in satellite imageries. Finally, the performance of the
proposed workflow was measured in terms of precision, recall, F-measure, Kappa-coefficient,
and overall accuracy (OA). The proposed workflow includes the following four primary phases:

Fig. 1 Benchmark datasets: (a) Bay Area dataset, (b) Santa Barbara dataset, and (c) Hermiston
dataset.
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1. Preprocessing: The bitemporal hyperspectral images were atmospherically corrected,
and the bad and noisy bands were removed. The resulting images were scaled between
[−1; 1]. The classes’ distribution was computed to identify the majority and minority
classes based on a threshold (>1000). We utilized ROS to handle the imbalanced class
problem.

2. Training: To handle the class imbalance problem, we favor the algorithm level solution.
We trained two semantic segmentation model with the same architecture, the first one
using 60% of the majority class and the other one trained by 60% of the minority class.
We adopted bagging ensemble to aggregate both models to generate the change map.

3. Testing: We iteratively carryied out 10-fold cross validation to obtain the best model
weights and fine-tuned parameters for majority and minority classes. Both models were
tested with 20% of the majority and minority classes to compute the model change iden-
tification performance.

4. Evaluation: The learned weights in the previous phase were employed to produce change
patches for the bitemporal input image. First, for the remaining new samples 20% of
bitemporal HIS were scaled to the [−1; 1] range using the same procedure as in the train-
ing phase. Then, each input patch was fed to the learned model to obtain change patches
by bagging the results to be merged. The final change map was produced, and for the
overlapped regions between the adjacent patches, averaging was used to obtain the final
pixel value.

In this work, we employed UNet model and four of its variants in the proposed workflow of
HSICD, namely traditional UNet,35 residual UNet (R UNet), attention UNet (Att- UNet), recur-
rent residual UNet (R2 UNet), and attention recurrent residual UNet (Att-R2 UNet).Traditional
UNet is shown in Fig. 3(a). The first variant of UNet is Residual UNet,38 which was introduced
as an extension to benefit from the residual learning as shown in Fig. 3(b). The second variant is
attention UNet,37 which incorporates attention gates (AGs) to produce soft region proposals to
highlight salient region of interest (ROI) features and suppress feature activations from irrelevant
backgrounds. AG was plugged after the standard convolutional block in the decoder. The AG
architecture37 is shown in Fig. 3(c). The third variant is the recurrent residual UNet architecture,36

shown in Fig. 3(d), in which the recurrent convolutional operation is measured at a discrete time.
The last variant incorporated residual, recurrent, and AGs37 into each encoder and decoder block
to enrich information flow and enforce a semantic discriminative intermediate feature map at
every scale.

Typically, the loss functions applied in segmentation are categorized into distribution-based
losses (minimize dissimilarity between two distributions) ad region-based losses (minimize the

Fig. 2 The proposed phases for segmentation-based HSICD (HSICD_workflow).

Moustafa et al.: Hyperspectral change detection based on modification of UNet neural networks

Journal of Applied Remote Sensing 028505-5 Apr–Jun 2021 • Vol. 15(2)



mismatch or maximize the overlap regions between the two images); details are given in
Refs. 39,40. A common practice is to evaluate small subset of available loss functions to avoid
the impracticability of experimenting on all available loss functions. In this work, we compared
the performance of five widely used loss functions, namely cross-entropy loss, focal loss,
Tversky loss, dice loss, and contrastive loss, to evaluate their performance in imbalanced
HIS datasets.

3 Experimental Results and Analysis

3.1 Evaluation Metrics

The proposed HSICD workflow performance was evaluated based on precision, recall, F-
measure, kappa coefficient, and OA.

Precision computed by Eq. (1) indicates the average of images that are correctly identified to
the total number of images that are correctly and noncorrectly identified with the reference input:

EQ-TARGET;temp:intralink-;e001;116;252PercisionðPÞ ¼ Tp

Tp þ Fp
; (1)

where Tp and Fp represent the true positive images and the false positive images, respectively.
Recall, depicted in Eq. (2), is defined as the average number of images that are correctly

identified out of the total number of images that are correctly and noncorrectly identified:

EQ-TARGET;temp:intralink-;e002;116;171RecallðRÞ ¼ Tp

Tp þ FN
; (2)

where FN represents the false negative.
F1 score is defined by Eq. (3). If the obtained value reaches 1, it is classified as best, and if it

reaches 0, as worst:

Fig. 3 Variant UNet architectures: (a) traditional UNet, after,35 (b) residual UNet block,36 (c) atten-
tion UNet block,37 and (d) recurrent residual UNet block.
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EQ-TARGET;temp:intralink-;e003;116;735F-measure ¼ 2PR
Pþ R

: (3)

Kappa coefficient is calculated as

EQ-TARGET;temp:intralink-;e004;116;689Kappa ¼ PCC − PRE

1 − PRE
; (4)

where PRE ¼ ðTPþFPÞ:MCþðFNþTNÞ:MU

ðTPþFPþFNþTNÞ2 , PCC ¼ ðTPþTNÞ
ðTPþFPþFNþTNÞ.

Finally, OA represents the proportion of correctly identified pixels to the total number of
pixels.

3.2 Experiment Setup

In all experiments, each dataset was separated into three subsets, namely, training (60%), testing
(20%), and evaluation (20%). We implemented a 10-fold cross-validation strategy to ensure bal-
anced outcomes; patches in training and testing subsets are nonoverlapped. In the training and
evaluation phases, the mutually exclusive dataset ensures an event that does not split the training
and testing datasets.

For all variant UNet models, we eliminated one layer from the original UNet architecture
and implemented a three-layer (#L ¼ 3) UNet version to cope with small input patches
(16 × 16 pixels) as shallower architectures are easier to train due to the relatively smaller number
of hyperparameters to be optimized. The encoder is preceded by a bridge layer and a three-layer,
skip-linked decoding path. The adaptive moment estimation (Adam)41 was selected to train the
models due to its minimal tuning parameters requirement. The models were trained with a mini-
batch size of 16, and the number of epochs and the learning rate were set to 20 and 0.0001,
respectively. These parameters were chosen based on their empirically adequate performance.
We conducted all experiments using an Intel (R) Core i7 3.40 GHz CPU with NVIDIA GeForce
GTX 1080-Ti. Due to the computing resources limitations, the optimization of thetraining algo-
rithm parameters may further improve the performance.

3.3 Results and Discussion

We conducted ample experiments to thoroughly analyze each UNet model’s performance and
inference time. The Bay Area dataset obtained results are shown in Table 2, which compares the
performance of the five implemented models (UNet, R-UNet, Att-UNet, R2-UNet, and Att-R2-
UNet). The performance of the results was calculated from the test set results over the 10-fold
cross validation. The implemented Att-R2-UNet architecture performed better on semantic seg-
mentation with respect to several metrics, with the highest OA equals to 94.99% and a maximum
precision score of 93.23%. The lowest OA score was reported for the traditional UNet model and
is equal to 91.5%.

For the residual UNet and recurrent residual UNet architectures, the obtained OA results are
auspicious (0.93 and 0.92), despite their naive architectures. Finally, the attention UNet and atten-
tion recurrent residual UNet architectures present higher performance in comparison with the

Table 2 Results obtained for HSICD using variant UNet models on the Bay Area dataset.

UNet R-UNet Att-UNet R2-UNet Att-R2-UNet

Accuracy 0.915088 0.930299 0.937725 0.919060 0.949942

Precision 0.828569 0.928306 0.884508 0.879393 0.932373

Recall 0.928973 0.826899 0.910247 0.818650 0.893517

F1 score 0.867821 0.870907 0.896927 0.841313 0.911859

Kappa (Cohen’s kappa) 0.795920 0.800804 0.838752 0.776492 0.863853
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traditional UNet and residual UNet models (0.93 and 0.95) since the spatial pyramid pooling out-
come is combined with recurrent and recalibrated features from the encoder blocks. Overall, the
obtained results revealed that the more naive decoder’s architecture leads to lower test accuracy.

Furthermore, the diversity and limitations of the performance of the proposed workflow can
also be confirmed by the results in Table 3 obtained on the Santa Barbara dataset. It can be
observed that there is a trade-off between the simplicity of network architecture and the obtained
accuracy. More specifically, the UNet and residual UNet architectures present a relatively com-
parable accuracy. The same can be observed for the Att-UNet architecture; nonetheless, the OA
was improved at the cost of the Cohen’s kappa metric. Thus, the R2-UNet model and the Att-R2
UNet can be considered to be the most effective since the OA for both of them are very close.
Overall, almost all UNet models denoted comparable accuracies. The Att-R2 UNet model
achieved the best performance numerically and visually in both the Santa Barbara and Bay
Area datasets.

Figures 4 and 5 show the visual results of the obtained change maps from variant UNet
segmentation models. The residual UNet model presents adequate performance for both bench-
mark datasets. On the contrary, the traditional UNet model demonstrated the lowest accuracy in
identifying positive and negative changes. Moreover, the traditional UNet model fails to generate
a change map that correctly captures change and no-change regions. The accuracy is signifi-
cantly improved based on the visual results by integrating recurrent and residual learning.

Table 3 Results obtained for HSICD using variant UNet models on the Santa Barbara dataset.

UNet R UNet Att-UNet R2 UNet Att-R2 UNet

Accuracy 0.944399 0.947131 0.953430 0.961011 0.954615

Precision 0.899405 0.910179 0.891454 0.920812 0.926634

Recall 0.885115 0.878233 0.934358 0.933101 0.895326

F1 score 0.890932 0.891838 0.911839 0.926548 0.910192

Kappa (Cohen’s kappa) 0.816347 0.820643 0.854150 0.875530 0.848560

Fig. 4 Bay Area dataset change map: (a) ground-truth, (b) traditional UNet, (c) R-UNet,
(d) Att- UNet, (e) R2-UNet, and (f) Att-R2-UNet.
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Furthermore, the rich salient regions obtained from AGs in the Att-UNet and R2 UNet models
tend to be more robust in binary change identification; however, some false positives were
reported.

Next, we evaluated the efficiency of the proposed workflow at detecting multiclass changes
using the Hermiston dataset as illustrated in Table 4. In particular, the obtained OA for traditional
UNet demonstrated the worst value 0.94 (OA). However, the utilization of residual and recurrent
blocks enhanced the accuracy of R-UNet (0.989) and R2-UNet (0.953). Visually, Figs. 6(a)–6(c)
demonstrated the enhancement of change map when incorporating residual and recurrent blocks.
Moreover, attention mechanism shows more robust results, especially in small ROIs. Att-R2
UNet achieved the highest OA (0.991) on the pixels compared with all other UNet architectures.
The obtained results showed that all UNet models could learn effectively change features from
hyperspectral images in multiclass change cases. To sum up, all CD experiments confirmed that
the integration of residual, recurrent, and attention mechanism facilitates a spectral–spatial–tem-
poral change feature to be constructed effectively.

Furthermore, we carried out comparison between the deployed models to analyze the exe-
cution time and memory required for inference. The average inference time and the number of
parameters of each model are given in Table 5. Overall, traditional UNet among all variant mod-
els presents the fastest in terms of inference time. The R-UNet and R2-UNet models demonstrate
a higher inference time in spite of the number of parameters being lower compared with the
traditional UNet model. This is justifiable because of the residual operations employed in both
models at the encoding and decoding stages. The attention residual recurrent model presents the
highest number of parameters allocation and displays the best performance for both binary and

Fig. 5 Santa Barbara dataset change map (a) ground-truth, (b) traditional UNet, (c) R UNet,
(d) Att- UNet, (e) R2 UNet, and (f) Att-R2 UNet.

Table 4 Results obtained for HSICD using variant UNet models on the Hermiston dataset.

UNet R UNet Att- UNet R2 UNet Att-R2 UNet

Accuracy 0.945470 0.989402 0.986232 0. 953387 0.991611

Precision 0.935675 0.948417 0.900143 0.978676 0.958538

Recall 0.951087 0.923722 0.908169 0.920067 0.946333

F1 score 0.942151 0.935821 0.893870 0.919009 0.952342

Kappa (Cohen’s kappa) 0.950427 0.945470 0.930937 0.900139 0.957096
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multichange identification cases. In conclusion, the recurrent residual UNet model was an ideal
solution for binary and multichange identification for the hyperspectral problem with its high
performance and relatively comparable inference speed.

Next, we conducted various experiments to evaluate the following loss functions: focal loss,
Dice loss, Tversky loss, and contrastive loss on the three HSI benchmarks using the standard
UNet architecture described above. Based on the results in Table 6 from the Bay Area dataset, we
select the contrastive loss, Dice loss, and focal loss as the top three performing loss functions. As
shown in Table 6, in Hermiston dataset, the focal loss was associated with the best recall–pre-
cision balance, and it outperformed the contrastive loss and dice loss in recall and precision
scores.

Finally, Figs. 7, and 8 present Bland–Altman plots and linear regression plots for area (seg-
mented) and area (truth) for the Bay Area dataset and Santa Barbara dataset, respectively. This
experiment was conduct using the standard UNet to visualize the robustness of the proposed

Table 5 Comparison of variant UNet models in terms of mean infer-
ence time and number of parameters.

Model Inference time #Parameters

UNet 102.491962 7,787,270

R-UNet 105.8280697 1,358,502

Att-UNet 126.4024163 23,886,470

R2-UNet 108.850071 7,916,969

Att-R2-UNet 130.6800033 24,016,169

Fig. 6 Hermiston dataset change map (a) ground-truth, (b) traditional UNet, (c) R-UNet,
(d) Att-UNet, (e) R2-UNet, and (f) Att-R2-UNet.

Table 6 UNet performance using variant loss functions on hyperspectral datasets. Numbers in
boldface denote the highest values for each metric.

Loss function

Bay Area dataset Santa Barbara dataset Hermiston dataset

OA Precision Recall OA Precision Recall OA Precision Recall

Focal 0.935 0.886 0.918 0.942 0.909 0.926 0.965 0.907 0.939

Dice 0.941 0.876 0.929 0.947 0.922 0.936 0.944 0.878 0.916

Tversky 0.909 0.875 0.916 0.932 0.988 0.914 0.924 0.899 0.921

Contrastive 0.961 0.891 0.817 0.956 0.927 0.933 0.953 0.861 0.892

Cross-entropy 0.915 0.828 0.928 0.944 0.899 0.885 0.945 0.935 0.931
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Fig. 7 (a) Linear regression results and (b) Bland–Altman plots for the comparison of change
and no-change areas detected by the proposed workflow and corresponding ground truth for the
Bay Area dataset.

Fig. 8 (a) Linear regression results and (b) Bland–Altman plots for the comparison of change
and no-change areas detected by the proposed workflow and corresponding ground truth for the
Santa Barbara dataset.
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Fig. 9 (a) Linear regression results and (b) Bland–Altman plots for the comparison of five change
class detected by the proposed workflow and corresponding ground truth for the Hermiston
dataset.
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workflow to identify the change and no-change zones. Specifically, the linear regression analysis
(Figs. 7 and 8) indicates correlation with R2 ¼ 0.255 and 0.358 for the identification of change
zones for the Bay Area and Santa Barbara datasets, respectively. On the other hand, R2 ¼ 0.441

and 0.435 for the unchanged zones. Bland–Altman plots indicate a slight bias for detecting
change zones detection. Figure 9 shows Bland–Altman plots and linear regression plots for each
class in the Hermiston dataset.

4 Conclusions

This paper proposes a CD workflow for bitemporal hyperspectral datasets based on DL segmen-
tation. The workflow is composed of four phases, namely preprocessing, training, testing, and
evaluation. We incorporate ROS in preprocessing, DL, and bagging ensemble to handle imbal-
anced dataset. The obtained results imply that the proposed workflow contributes significantly to
future research activity regarding change identification in hyperspectral imageries. The contri-
butions of this work can be summarized as follows:

• Four variant UNet models, namely residual UNet (R-UNet), residual recurrent UNet (R2-
UNet), attention UNet (Att-UNet), and attention residual recurrent UNet (Att-R2-UNet),
were implemented. We compared these models with traditional UNet’s ability to segment
and classify change and no-change regions.

• Extensive analytical experiments were conducted on three hyperspectral benchmark data-
sets. The imbalanced class distribution was addressed in the proposed workflow while
training the DL models.

• The UNet-based CD algorithm accurately reveals the changed and unchanged areas using
convolutional layers.

The obtained results show that the proposed workflow attention residual recurrent UNet
(Att_R2_UNet)-based CD architecture successfully highlights the change and no change areas.
Furthermore, the attention residual recurrent model presents the highest number of parameters
allocation and displays the best performance for both binary and multichange identification
cases. Therefore, the recurrent residual UNet model was an ideal solution for binary and multi-
change identification for hyperspectral problem with its high performance and relatively com-
parable inference speed. This study strengthens the idea that deep neural networks can learn
highly complicated features, and when combined with HSI data they might have potential to
improve HSI CD.
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