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Abstract. An evaluation of land use and cover change is a vital component of any study into
climate change, ecological evolution, and human civilization’s long-term growth. Remote sens-
ing image data-based land use and cover change (LUCC) research has become an essential and
frequently utilized approach. Given the scarcity of high spatial resolution imagery in urban
remote sensing, as well as the low accuracy and efficiency of urban land use classification,
a new satellite image fusion methodology defined as nonshear wave transformation, a pulse
linked neural network, and intensity–hue–saturation theory are suggested. From 2000 to 2020,
the upgraded convolutional neural network approach is used to classify fused pictures and per-
form an in-depth investigation of the spatiotemporal evolution features of urban LUCC in
Zhengzhou, Henan, China. According to the findings, the extent of urbanized land in Zhengzhou
has expanded dramatically during the last 20 years. The share of urbanized land has risen from
9% in 2000 to 22% by 2020. The comprehensive dynamic degree and single dynamic grade of
land use display varied features in different areas and counties; the comprehensive index of the
extent of land use demonstrates more evident regional disparities. The research findings can
expose the man-land system’s inherent conflicting interaction mechanism and give data to pro-
mote urban-related research. © The Authors. Published by SPIE under a Creative Commons Attribution
4.0 International License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.16.034527]
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1 Introduction

Changes in land use and cover (LUCC) can be used to characterize the environmental evolution
and the regional and global development of human civilization.1 Rapid urbanization around the
globe has heightened pressure on finite natural resources and strengthened the bond between
humans and the planet.2,3 According to the United Nations Department of Economic and
Social Affairs’ “2018 World Urbanization Outlook,” more than half of the world’s population
currently resides in urban areas. As much as 90% of the world’s population will live in cities by
2050, mostly in Asia and Africa. In 1949, just 10.64% of China’s permanent population lived in
cities, and, according to data from the Chinese National Bureau of Statistics,4,5 China’s perma-
nent urban population has increased from 172.49 million in 1978 to an expected 848.43 million
by the end of 2019, a rise of 17.92% points in the urbanization rate. Rapid urbanization has
significantly impacted land cover conditions in natural cities as governments try to meet the
needs of a growing population. Rapid urbanization necessitates the development of necessary
infrastructure to meet rising demands in areas, such as housing, transportation, energy, and
basic services, including those related to healthcare, education, and employment. According to
research, urban LUCC is intimately related to a variety of other circumstances, including the
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urban heat island effect,6,7 hydrology,8,9 climate and environmental effects,10 the social economy,
biological systems,11,12 crop phenological period,13 agricultural security,14 and landscape
layout.15 Therefore, studying the characteristics of the temporal and spatial evolution of urban
LUCC can effectively reveal the internal contradictory interaction mechanism of the human-land
system, and they also have practical ramifications for the progression of a harmonious human
society, the building of sponge cities, and the promotion of sustainable urban growth. Satellite
remote sensing (RS) image data have become the primary research instrument for measuring
land-use change in a region, and regional LUCC correlation assessment is based on this
data.16,17 As knowledge has expanded, modeling and simulation of land use processes have
become crucial parts of LUCC study. Accelerating developments in modeling and simulation
approaches can be attributed to the widespread availability of current technologies such as the 3S
(global positioning system, geographic information system, and RS)) and computers. An urban
land-use change model evolved from an initial nonspatial model that considered relatively few
factors in a current single model [Markov model, cellular automata (CA) model, agent-based
model (ABM), slope, landuse, exclusion, urbanextent, transportation, hillshade (SLEUTH)] that
considers nature, man-made, social, and other multifactor indicators model, [conversion of land
use and its effects at small region extent (CLUE-S) model, geometry modification (GEOMOD)
model, and its coupling models] [such as the CA-Markov, CA-ABM, Geo-CA, Markov-CLUES,
multiple layer perception (MLP)-CA-Markov models]. An urban land-use change model
evolved from an initial nonspatial model that considered relatively few factors in a current single
model (Markov model, CA model, ABM model, SLEUTH that considers nature, man-made,
social, and other multifactor indicators model,18 CLUE-S model,19,20 GEOMOD model,21 and
its coupling models, such as the CA-Markov,22,23 CA-ABM,24 Geo-CA, Markov-CLUES, MLP-
CA-Markov25 models). Understanding and explaining the dynamic aspects and processes of the
human-land system’s interaction mechanism is greatly aided by the LUCC model. These models
are currently being used on a wide range of geographic scales, from individual municipalities to
metropolitan regions, river basins, countries, and even the globe. It has been estimated that over
2 billion tons of waste are produced annually by the world’s urban centers, whose gross domestic
product (GDP) exceeds 75% of the global GDP. Every week, the global urban population grows
by almost one million new faces. Every day, urban areas expand by the equivalent of 20,000
American football fields.16 Therefore, scientific and policy-making communities need to acquire
fresh information about urban regions to account for the breadth and velocity of modern
urbanization.

Until far, relevant literature study has mostly focused on river basins,26,27 urban agglomer-
ations,28 coastal cities,29 and special regions.30 Despite their importance, however, inland cities,
especially those in central China, have received very little attention in the academic literature.
Simultaneously, several studies use RS images to quickly categorize and evaluate urban settings.
Improved spatial resolution was achieved by several picture fusions performed with RS data, and
further research into land-use shifts was conducted. To make up for data shortages and maximize
individual gains, RS image fusion31,32 may heavily use a wide range of data and related infor-
mation. Wavelet, Laplacian Pyramid,31 curvelet, contourlet, nonsubsampled contourlet trans-
form (NSCT), and pulse-coupled neural network (PCNN) transformations are only some of
the methods used in RS information fusion. For RS picture fusion, researchers have been
particularly interested in multiscale decomposition depending on the NSCT transform and the
PCNN technique.

The present study region, Henan Province, encompasses the watersheds of four main rivers
(Yangtze, Yellow, Huai, and Hai). Henan has only 1/16th of China’s arable land, but it produces
10% of China’s grain and four-fifths of its wheat. Central Plains Granary is a nickname for the
province. Zhengzhou is the provincial capital of Henan and the economic heart of the Greater
Central Plains Area. According to the “Outline” of the 13th Five-Year Plan, the city will be
developed and extended together with other major urban agglomerations in central and western
China. Zhengzhou now boasts the most advanced national-level inner city in the country. It is a
top-five GDP city in the country (2019), with a permanent population of about 10 million (in the
city) and more than 6 million (in the metropolitan region), and is the capital of a province with a
population of more than 100 million people. Zhengzhou is one of China’s few megacities,
according to the country’s latest city-scale classification standards.
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The following are the main research concepts of this work, based on the results of the pre-
vious study. Using NSCT and PCNN theory, we provide a method for RS data synthesis by
combining satellite images from several Landsat series over the Zhengzhou area between
2000 and 2020. Using rate band fusion, the original RS images can be found in a new way.
This leads to an image data collection with high spatial resolution and better preservation of
the information from the original multispectral band spectrum; classify the fused imagery using
the convolutional neural network approach; integrate socioeconomic data over time with the
spatial statistical analysis capabilities in ArcGIS; and conduct in-depth research on the unique
characteristics of Zhengzhou’s land-use change over time and space. The results are also meant
to be used as scientific building blocks for future research on how the human-land-environment
system works, urban land development planning, and sustainable urban development.

2 Materials

2.1 Study Area

Zhengzhou (34°44′N, 113°37′E) is the metropolis of Henan Province and the province’s eco-
nomic, political, and cultural hub. Located in northern Henan Province, its borders are the
Yellow River to the north, Mount Song to the west, and the huge Huanghuai Plain to the south-
east. Zhengzhou, also known as Shang Capital, was an important hub in the development of
Chinese culture and is currently recognized as a member of the World Historical Urban
Partnership. It is in the northern temperate zone and has a continental monsoon climate with
four distinct seasons. Figure 1 shows a schematic representation of the study field for this article.

2.2 Data

The major data source for this study was the Landsat series of satellite observations made acces-
sible by the US Geological Survey website, spanning seven time periods. Table 1 shows this to
be true.

3 Methods

This work combines the advantages of intensity–hue–saturation (IHS), NSCT, and PCNN in
picture fusion and then presents a satellite picture merging methodology based on the multi-
spectral and panchromatic band characteristics of Landsat data. It improves the images’ spatial
resolution and keeps the multispectral bands’ original spectral information intact. The multispec-
tral image underwent an IHS transformation, and then NSCT was used to disassemble the pan-
chromatic band and isolate the I component. Several fusion rules were then employed to account
for the changes in characteristics of the decomposed lower and upper-frequency coefficients.

Fig. 1 The geographical location of the research region is depicted in a schematic figure.
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Integration of high-frequency coefficients was accomplished using the PCNN model’s rules,
which are based on an improved PCNN, whereas low-frequency coefficients were combined
using rules derived from fuzzy logic. Lower and higher frequency sub-band components are
reconstructed using the NSCT inverse transformation, and combined images are generated using
the IHS inverse transformation. Using the National Standard for the Categorization of Land
Utilization Status in the People’s Republic of China (GB/T21010-2017) and the actual land
cover situation in the study area, we classified the land use types in the study area as either
arable land, wooded land, urbanized land, water, or some other type of land. The convolutional
neural network technique was used for the classification process. The overall accuracy of the
classification was 95%, meeting the requirements of the study. You can see the development of
this product’s technology in Fig. 2.

Fig. 2 Full-text research roadmap.

Table 1 Image data characteristics from RS are employed.

Image type
Track
number

Cloud
cover Resolution Get time

Landsat5TM 124/36 1.00 30/15 April 5, 2000

Landsat7ETM+ 124/36 0.00 30/15 April 14, 2003

Landsat7ETM+ 124/36 0.02 30/15 June 9, 2006

Landsat7ETM+ 124/36 0.00 30/15 March 16, 2010

Landsat8OLI 124/36 1.32 30/15 June 4, 2013

Landsat8OLI 124/36 0.18 30/15 March 27, 2017

Landsat8OLI 124/36 0.04 30/15 March 19, 2020
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3.1 Basic Theory

3.1.1 Nonsubsampled contourlet transform

Da Cunha et al.33 presented the notion of NSCT transform theory in 2006. Its central idea is to
break down pictures at numerous scales and orientations using a nonsubsampled pyramid trans-
form (NSPFB) and a nonsubsampled directional filter bank (NSDFB). An NSPFB performs
multiscale picture segmentation to guarantee that the image modification has multiresolution
features. To guarantee that the image transformation has multidirectional properties, an
NSDFB disintegrates sub-band pictures at different scales in the direction, yielding images with
varying scales and orientations. One lower-frequency picture and

P
K
k¼1 2

lk upper-frequency pic-
tures could be obtained after K-layer decomposition, where lk is the directional decomposition
degree of the K’th layer. An NSCT has several desirable properties, including those listed above
(multiscale, outstanding spatial and frequency-domain local characteristics, and multidirectional
attributes), as well as translation invariance and uniformly sized sub-band images. The original
image’s edge contour and contour information are preserved more faithfully as a result.
Multisensory images rich in detail and orientation cues may be conveyed using texture detail
information. The schematic representation is shown in Fig. 3.

3.1.2 Fuzzy logic

The conventional multiscale picture fusion method uses equal weights to combine the fore-
ground and background images during the fusion process (the coefficients). When it comes
to human vision, however, both the central and peripheral regions, as well as the individual pixels
in multi-image fusion, are of varied degrees of interest. Fuzzy logic can be useful for resolving
the uncertainty caused by the ambiguity present in the fusion process. For appropriately creating
fuzzy conceptions based on membership functions that are forgiving of incorrect input, fuzzy
logic is a convenient and flexible tool. Unlike fuzzy sets, which can share territory, exact sets
often require a choice between two possibilities and have no shared ground. There is ambiguity
in the realm of image fusion between the matching pixels of distinct target scenes and the total
image. Fuzzy sets are useful for conveying fuzzy notions that cannot be quantified. This uncer-
tainty may be quantified by creating fuzzy membership functions. The fuzzy membership func-
tion is described as follows:

EQ-TARGET;temp:intralink-;e001;116;183A ¼ fx; uAðAÞjx ∈ Ug; (1)

where U denotes the universe of discourse (that is, the set of objects), x indicates the element in
the universe of discourse, A is the fuzzy set in U, and uAðxÞ symbolizes the degree of member-
ship of A, with a value ranging from 0 and 1.

Gaussian, generalized bell-shaped, and triangle membership functions are often employed.
In this work, we use the Gaussian membership function to the image fusion rules as a weighting
function. The Gaussian membership function may be written as

Fig. 3 Schematic diagram of NSCT structure decomposition.
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EQ-TARGET;temp:intralink-;e002;116;735fðx; u; σÞ ¼ exp

�
−
1

2

�
x − u
σ

�
2
�
; (2)

where u is the function’s center and σ defines the function’s breadth, which is normally positive.

3.1.3 PCNN modeling

Eckhorn34 advocated using PCNN to describe how visual cortical cells in the brains of cats and
other small animals interpret visual signals. This technique has been used to a variety of image
processing tasks, including segmentation, edge extraction, target identification, picture fusion,
and others.35 Connecting many PCNN neuron branches together creates a feedback network,
which is the neuron model of a PCNN. Every neuron has its own specialized divisions, including
a receptive field, a modulation element, and a pulse initiator. Since the depth and breadth of
application of a standard PCNN model are constrained by a number of factors, this study
makes use of the commonly used modified PCNN model.36 The equation in question looks
like this:

EQ-TARGET;temp:intralink-;e003;116;543

FijðnÞ ¼ Sij

LijðnÞ ¼ expð−αLLijðn − 1Þ þ VL

X
kl

WijklYklðn − 1Þ

UijðnÞ ¼ FijðnÞ × ½1þ βLijðnÞ�
θijðnÞ ¼ expð−αθÞθijðn − 1Þ þ VθYijðnÞ

YijðnÞ ¼
�
1; UijðnÞ ≥ θijðnÞ
0; else

�
; (3)

where ði; jÞ indicates the neuron or pixel coordinates, n denotes the number of repetitions, Sij
is the external input excitation signal, this represents the gray level of the ði; jÞ’th pixel in the
image, and Wijkl indicates that nerve in the matrix of connection weight coefficients between
elements, Fij, Lij, θij, and Uij indicate neuron feedback input, link input, dynamic threshold,
and internal activity items, respectively. Furthermore, VL and Vθ are the amplitude coefficients
of the threshold function of link input and change, respectively. The temporal constants of the
link input and variable threshold functions, respectively, are αL and αθ. Meanwhile, β repre-
sents link strength, and Yij represents neuron output; when YijðnÞ output is 1, this means that
the pixel ði; jÞ ignites once. When PCNN is used to process pictures, it is a two-dimensional
single-layer network. The number of network nodes is proportional to the count of pixels, and
each neuron has a one-to-one interaction with each pixel.

3.2 Fusion Rule Design

3.2.1 Low-frequency component fusion rules

During the picture fusion step, the relationship is unclear since images are conveyed using a
multi-to-one mapping strategy. Even more, the image’s blurriness will be exacerbated when the
contour information and the noise in the image get entangled. This low-frequency region of the
image reveals the image’s average and contour features and reflects the approximation infor-
mation used to create the image. An appropriate set of fusion rules must be implemented to
handle the mystery of their connection. Knowledge in the low-frequency sub-band is best
explained by the Gaussian membership function. To address this issue, the Gaussian member-
ship function was implemented as an adaptive weighting function in the combiner designed for
the low-frequency band in this study. In mathematical form, it looks like this

EQ-TARGET;temp:intralink-;e004;116;114η0ði; jÞ ¼ exp

�
−
½Lði; jÞ − u�

2ðkσÞ2
�

η1ði; jÞ ¼ 1 − η0ði; jÞ; (4)
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where Lði; jÞ denotes just the lower incidence sub-band factor, u and σ are the median and
deviation of a source picture’s low-frequency sub-band photo, respectively, and k is the
Gaussian function adjustment parameter, which is the extreme value obtained as an empirical
value by the control variable method, which is k ¼ 0.8 The fusion rule for low-frequency
coefficients is as continues to follows:

EQ-TARGET;temp:intralink-;e005;116;675LFði; jÞ ¼ η0ði; jÞLAði; jÞ þ η1ði; jÞLBði; jÞ; (5)

where LAði; jÞ and LBði; jÞ indicate the low-frequency sub-band factors of pictures A and B, and
LFði; jÞ denote the fused low-frequency sub-band coefficients.

3.2.2 High-frequency component fusion rules

Sub-bands at higher frequencies in the image reflect the full breadth of the image’s information.
Common fusion methods focus on the attributes of single or groups of pixels. When analyzing
data, it is common for valuable context to be lost when using aggregate measures such as gra-
dient, variance, maximum absolute value, and regional energy total. Upper-frequency factor
fusing is centered on the PCNN approach to better fuse the properties of the source picture.
It is common practice for PCNN fusion implementations to use the gray value of a single pixel
as feedback input, ignoring any possible association between neighboring pixels. Adding up the
local Laplacian energy between neighboring pixels is a good way to evaluate the edge infor-
mation in an image since it quantifies the amount of difference between them. In this study, the
input to the PCNN model was the improved local Laplace energy sum of the high-frequency
coefficients. The sum of all local Laplacian energies is defined as

EQ-TARGET;temp:intralink-;e006;116;452SMLj;lðx; yÞ ¼
XM

m¼−M

XN
n¼−N

MLj;lðxþm; yþ nÞ; (6)

where ð2M þ 1;2N þ 1Þ is the window size, and MLj;lðx; yÞ represents the Laplacian energy in
discrete form, defined as

EQ-TARGET;temp:intralink-;e007;116;377

MLj;lðx; yÞ ¼ j2Hj;lðx; yÞ −Hj;lðx − s; yÞ −Hj;lðxþ s; yÞj
þ j2Hj;lðx; yÞ −Hj;lðx; y − sÞ −Hj;lðx; yþ sÞj; (7)

where s is the coefficient or the variable distance between pixels.
The weight of the connection channel in the internal activity item and the ignition cycle of the

central neuron may be adjusted based on the strength of the link, which represents the change in
the coefficients. It is crucial to the fusion of images that it allows values between zero and one.
Each neuron’s connection strength in the traditional PCNN model is set by trial and error.
Assuming that all neurons in the human visual system have the same connection coefficient
value is irrational. The input neuron’s value should change as a function of the neuron’s place-
ment, and the connection coefficient should reflect this.37

Commonly used to adaptively tune the strength of connections between PCNN neurons,
pixel definition takes into account factors including spatial frequency (SF), direction informa-
tion, and standard deviation. Based on how people’s brains process visual information, the SF
reveals specifics about the image’s local features and finer details. Although this is the case,
important visual details are lost in the first SF because of its failure to account for the direction
in which the image is moving. The modified spatial frequency (MSF) is determined by beginning
with the original SF. Adding the gradient energies of the two diagonal (DF) images to those of
the horizontal (RF) and vertical (CF) images yields the total gradient energy.

Image information is retrieved precisely and may be used to assess image clarity or activity
level. The enhanced spatial frequency (MSF) is being used as the link strength of PCNN in this
work. For M × N image blocks, MSF is defined as follows:
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EQ-TARGET;temp:intralink-;e008;116;735

MSF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RF2þCF2þDF2

p
RF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MðN − 1Þ

s XM
m¼1

XN
n¼2

½fm;n − fm;n−1�2

CF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðM − 1ÞN

s XM
m¼2

XN
n¼1

½fm;n − fm−1;n�2

DF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðM − 1ÞðN − 1Þ

s XM
m¼2

XN
n¼2

½fm;n − fm−1;n−1�2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðM − 1ÞðN − 1Þ

s XM
m¼2

XN
n¼2

½fm−1;n − fm;n−1�2: (8)

The Laplacian energy enhanced SF of the 3 × 3 neighborhood of the panchromatic picture, and
the high-frequency component of the I component decomposed using NSCT on the full image
are calculated next. As the input excitation signal IijðnÞ and link strength β, to determine the
high-frequency coefficient after fusion by comparing the ignition output of PCNN. The
following are the guidelines:

EQ-TARGET;temp:intralink-;e009;116;506DFði; jÞ ¼
�
DAði; jÞ YAði; jÞ ≥ YBði; jÞ
DBði; jÞ YAði; jÞ ≥ YBði; jÞ

: (9)

DA,DB, andDF are indeed the upper-frequency factors of the panchromatic picture, the image’s
I-component, and the merged photo, respectively; YA and YB are the two images’ ignition out-
puts, respectively.

4 Analysis of the Results

4.1 Merging Results and Evaluation

4.1.1 Fusion results

To illustrate the effectiveness of the strategy, this research uses the fusion of multispectral bands
and panchromatic bands in a single image acquired by the Landsat Enhanced Thematic Mapper
over a specific area in Zhengzhou. MATLAB 2014a was used to generate the 400 × 400 pixel

picture. The experiment employed a 9-7 filter for scale decomposition, a dmaxflat7 filter for
direction decomposition, and stages [0,2,3,4] for direction decomposition; the PCNN model
parameters were as follows: Lij½0� ¼ Uij½0� ¼ θij½0� ¼ Yij½0� ¼ 0, n ¼ 100, αL ¼ 0.7343, αθ ¼
0.2 VL ¼ 1.0, Vθ ¼ 20, W ¼ ½0.707; 1; 0.707; 1;0; 1; 0.707; 1; 0.707�. An overview of the new
method proposed in this study is depicted in Fig. 4 as a flowchart. The figure shows (a) the
original multispectral image, (b) the PCA transform, (c) the GS transform, (d) the wavelet trans-
form, (e) the high-pass filtered result, and (f) the fusion of these two images using the new
method.

4.1.2 Visual evaluation

The visual fusion results in Fig. 4 demonstrate that the proposed method’s image fusion effect (f)
effectively preserves the majority of the information in the multi-spectral image, and the local
details are also significantly enhanced. The end results (f) are better than what can be obtained
using other techniques. The (b)–(e) approach in Fig. 4 shows that while photos merged using
methods (b) and (c) transform exhibit glaring spectral distortion, images fused using methods (d)
and (e) maintain more spatial information of the source image.
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4.1.3 Objective evaluation

For image fusion, the average gradient, SF, and standard deviation are frequently employed as
quality indicators. If the entropy of the combined image increases, then more data will be sent.
Objective indications of the fusion effect generated by different approaches are shown in Table 2.

The lack of statistically significant difference in information entropy among the methods is
shown in Table 2, indicating that they are all capable of acquiring useful knowledge about the
source image. The average gradient and SF indices, which are good measures of image clarity,
also fare well in the algorithm proposed in this paper.

4.1.4 Classification result

In this study, we utilize a convolutional neural network to categorize the combined image data
from Zhengzhou. The diagram of the network’s structure is shown in Fig. 5. Seventy percent of
the data set was utilized for training and the other 30 was used for testing in this experiment.
Figure 6 shows the shifts in the classification model training metrics of accuracy during training,
accuracy during verification, training loss, and verification loss. From Fig. 6(a) and 6(b), it can be
observed that the loss of the model reduces to minimum after 20 iterations, reaches rapid con-
vergence, and remains essentially stable, showing that the classification model has thoroughly
absorbed the properties of the sample. The Kappa coefficient, average accuracy, and overall

Table 2 Objective evaluation indicators for the performance of differ-
ent fusion algorithms.

Average
gradient

Information
entropy

Standard
deviation SF

PCA 7.8385 6.5175 23.633 17.789

GS 8.8446 6.5647 24.279 21.4847

Wavelet 6.8885 6.596 25.144 15.3210

HDF 7.5204 6.42 21.87 19.8279

New algorithm 9.0590 6.50 22.50 22.6219

Fig. 4 Visual comparison of fusion results. (a) Original multispectral image, (b) PCA transform,
(c) GS transform, (d) Wavelet transform, (e) High-pass filtered, and (f) Proposed method.
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accuracy after classification are all higher than 95%, which meet the requirements of further
research. The results of these classification efforts are shown in Fig. 7. Because of space lim-
itations and the absence of a compelling reason to display the whole data, we only provide partial
years of classification results.

4.2 Characteristics of Temporal and Spatial Evolution

4.2.1 Quantity of land use

As shown in Fig. 8, Zhengzhou’s urban footprint has grown substantially over the past two
decades, from 9% in 2000 to 22% in 2020. This has led to a major decrease in the amount
of farmable land in the Zhengzhou area and an overall weakening of the region’s water systems.
The area of land covered by forests fell between 2000 and 2006, a period of time considered to be
a deforestation crisis. Loss of forest cover was rather large, estimated at 52%, and followed a
pattern of rapid expansion followed by slowing depletion over a 7-year period. The total area of
forested land has stabilized at a somewhat same size since 2013.

Figure 9(a)–9(l) shows the changing percentages of land usage in several Zhengzhou districts
and counties from a to l through time. These districts and counties include Dengfeng, Erqi,
Gongyi, Guancheng, Huiji, Jinshui, Shangjie, Xinmi, Xinzheng, Xingyang, Zhongmu, and
Zhongyuan. Dengfeng City, Xinzheng City, Guancheng Hui District, Xingyang City, and
Zhongmu County demonstrate increasing urbanization over time, as shown in Fig. 9. The total
amount of urbanized land in the remaining districts and counties has varied significantly during
the research period, but it has continued to expand spatially. As the urbanized region has
expanded, it has consumed a larger and larger share of agricultural land, reducing the amount
of arable land to variable degrees in all districts and counties during the past 20 years. Although
the percentage of area covered by forests and waterbodies fluctuated over time in different
administrative divisions, overall, there was evidence of a continual dynamic adjustment state.

Fig. 5 Structure diagram of convolutional neural network.

Fig. 6 Accuracy and loss of training and verification. (a) accuracy-epoch; (b) loss-epoch.
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4.2.2 Rate of land cover change

Figure 10 shows this going from (a) to (d), all districts and counties in Zhengzhou City have
increased their rates of dynamic change of land during the previous 20 years, largely in the range

Fig. 7 Results of study area classification by study year.

Fig. 8 Variations in the percentage of various terrain types in Zhengzhou.
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Fig. 9 The percentage of various land categories in Zhengzhou’s various districts and counties.
(a)–(I) Dengfeng, Erqi, Gongyi, Guancheng, Huiji, Jinshui, Shangjie, Xinmi, Xinzheng, Xingyang,
Zhongmu, and Zhongyuan.
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of 0.1 to 0.2, with the exception of Xinzheng and Zhongmu, which witnessed considerable
change between 2010 and 2013. Changes in forest land dynamics showed a somewhat wide
range, from 0.13 to 1.41 over the study periods of 2006 to 2010 and 2013 to 2017. Over the
remaining years of the study, the dynamic range of forest land was much narrower, falling
between 0.25 and 0.04. In particular, the forest land dynamic curve remained at a fundamental
level across the 2 research years of 2010 to 2013 and 2017 to 2020, indicating that forest land
development in each district and county was adequately balanced during this time. In Xinmi,
Xinzheng, Xingyang, and Zhongmou counties, the dynamic range of agricultural land was fairly
confined during the school years. Waterbody dynamics have been reasonably stable in most
districts and counties during the previous 20 years, with the exception of Guancheng County,
which saw substantial changes between 2010 and 2013 (Figs. 10 and 11).

Zhengzhou’s general dynamics have been relatively stable over the last 20 years, with values
ranging from 0.07 to 0.13, whereas the dynamics of urbanized land, with values ranging from
0.03 to 0.07, have remained in a moderate adjustment state. When compared with natural
environments, such as forests, rivers, and farms, the dynamics of urbanized land are negligible.

Fig. 10 Changes in a single dynamic land use degree. (a) Construction land, (b) Woodland, (c)
Agricultural land, and (d) Waterbody.

Fig. 11 Zhengzhou’s comprehensive land cover mechanics.
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Still, most forested areas and bodies of water have experienced the most rapid shifts, with values
ranging from 0.15 to 0.44 (Fig. 12).

Complete land cover patterns have evolved during the past two decades in numerous different
areas and counties. Compared with earlier epochs, the dynamics of comprehensive land use were
significantly larger throughout the 2010 to 2013, 2013 to 2017, and 2017 to 2020 research peri-
ods. With the exception of Gongyi and Dengfeng, where general land-cover dynamics have been
relatively modest in recent decades, the apex of global land-cover changes occurred between
2010 and 2013. Erqi District land-use dynamics decreased from high to low in the last three
time periods, but stayed higher than comprehensive land-use dynamics in the first three time
periods. Between the years of 2000 and 2010, the dynamic range of land use was generally
minimal and restricted to select districts and counties. For several of the study periods, land
use trends were comparable across various jurisdictions.

4.2.3 Degree of land use

Districts and counties can be distinguished from one another based on land use, as shown in
Fig. 13. To be more specific, there was a fixed range of variation for the comprehensive index
of land use intensity within a certain district or county, with some districts and counties having
wider ranges than others. Dengfeng, Gongyi, and Xinmi; Erqi, Guancheng, Jinshui, Huiji,

Fig. 12 The evolution of comprehensive dynamics in different research periods in Zhengzhou
districts and counties.

Fig. 13 Comprehensive index map of land use degrees in Zhengzhou districts and counties.
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Shangjie, and Zhongyuan; and Xinzheng, Xingyang, and Zhongmu are the three groups of dis-
tricts and counties that have a fairly similar range in the comprehensive index of land use (Fig. 14).

More districts and counties experienced negative changes in the holistic factor of land cover
than experienced positive changes during the two study periods of 2006 to 2010 and 2013 to
2017, but the changes in the general indicator of the degree of land cover appear to have been all
positive from 2000 to 2003. For all three time periods (2003 to 2006, 2010 to 2013, and 2017 to
2020), positive improvements in land cover indicators outnumbered negative ones in a large
majority of counties (Tables 3–8).

Fig. 14 Changes in the Zhengzhou districts and counties’ comprehensive score of land utilization
degrees.

Table 3 2000 to 2003 Land use change transfer matrix (km2).

2000

2003

Construction land Woodland Water Arable land Unused land

Construction land 377.73 154.56 33.12 112.89 89.05

Woodland 63.16 854.20 27.75 282.60 38.23

Water 12.21 29.37 65.34 17.25 3.98

Arable land 200.83 541.33 23.31 4557.41 39.58

Unused land 0.04 0.05 0.03 0.21 0.01

Change rate (%) 17.34 −19.85 −14.31 7.89 −99.80

Table 4 2003 to 2006 Land use change transfer matrix (km2).

2003

2006

Construction land Woodland Water Arable land Unused land

Construction land 421.25 87.18 14.94 365.89 0.14

Woodland 24.76 589.19 11.41 156.13 0.00

Water 66.99 57.67 86.36 60.21 0.02

Arable land 254.26 531.90 15.45 4780.03 0.18

Unused land 0.08 0.01 0.00 0.21 0.00

Change rate (%) 15.91 −38.27 111.66 4.09 −11.76
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There has been a noticeable change in Zhengzhou’s land cover during the past 20 years. At a
rate of between 10.59% and 21.26% annually, urban sprawl has been expanding at the expense of
farmland, forests, and natural waterways, all of which have seen their footprints shrink or expand
in recent years. The rate at which useable land was recovered from the dormant state between the
years 2000 and 2003 was one such example. Both forest and water body areas decreased dras-
tically, by as much as 19.85% and 14.31%, respectively, with the biggest decline for woodland
occurring between 2003 and 2006, when it dropped by 38.27%. The area of water and arable
land rapidly decreased between 2006 and 2010, with rates of change reaching 45.71% and
24.27%, respectively, whereas idle land may be exploited more effectively. With the passage

Table 5 2006 to 2010 Land use change transfer matrix (km2).

2006

2010

Construction land Woodland Water Arable land Unused land

Construction land 515.35 15.06 63.00 390.16 0.03

Woodland 152.51 689.29 71.17 1253.38 0.01

Water 21.99 13.45 90.21 21.62 0.00

Arable land 199.55 63.69 46.87 3916.65 0.26

Unused land 0.00 0.00 0.00 0.00 0.00

Change rate (%) 10.59 177.21 −45.71 −24.27 −100.00

Table 6 2010 to 2013 Land use change transfer matrix (km2).

2010

2013

Construction land Woodland Water Arable land Unused land

Construction land 392.35 103.84 21.38 651.98 0.00

Woodland 20.90 920.13 12.99 253.52 0.00

Water 68.77 48.75 88.32 76.42 0.00

Arable land 501.57 1093.63 24.58 3245.11 0.00

Unused land 0.00 0.00 0.00 0.00 0.00

Change rate (%) 18.91 −44.26 91.66 15.09 0.00

Table 7 2013 to 2017 Land use change transfer matrix (km2).

2013

2017

Construction land Woodland Water Arable land Unused land

Construction land 544.29 45.08 80.11 706.84 0.00

Woodland 171.44 945.01 50.73 1403.09 0.00

Water 15.32 7.13 94.15 21.15 0.00

Arable land 438.26 210.27 57.10 2733.41 0.00

Unused land 0.24 0.06 0.16 0.40 0.00

Change rate (%) 17.68 112.85 −51.19 −29.31 0.00
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of time, once underutilized property was being put to better use. Between 2010 and 2013, forest
land area rose by 177.21%, the fastest rate of increase. Between 2013 and 2017, forest area
increased by 112.85% while the amount of water and arable land decreased by the greatest
amounts. The state of forests and farmland is expected to worsen until 2020. Over time, met-
ropolitan areas have expanded and shifted their locations, consuming previously agricultural,
forested, and unused land. This decrease is evidence that the increasing urbanization of
Zhengzhou City has led to a greater rate of land reclamation and utilization.

4.2.4 City center of gravity

The migration trajectory and migration rate of the urban land use center of gravity can intuitively
reflect the process of urban land use spatial pattern changes, as well as the spatial trajectory of
human use and transformation of land resources, which is crucial for comprehending decisions
regarding the direction of economic and social growth, as well as the strength and impact of
government policies throughout time. The spatial analysis tools of ArcGIS (ESRI, Redlands,
California) were used to estimate the trajectory of center of gravity transformation of various
land types in Zhengzhou at different research stages. Figure 15 shows the calculation results for
(a) urbanized land, (b) forest land, (c) water bodies, and (d) agricultural land.

As seen in Fig. 15 from (a) to (d), in terms of population density, Erqi District wins hands
down. You can find the border between Xingyang City and Zhongyuan District in Erqi District.

Table 8 2017 to 2020 Land use change transfer matrix (km2).

2017

2020

Construction land Woodland Water Arable land Unused land

Construction land 942.22 431.71 27.75 266.78 0.45

Woodland 218.31 1723.43 11.09 391.19 0.14

Water 36.14 19.22 86.83 23.01 0.10

Arable land 178.97 395.84 11.86 2757.44 0.17

Unused land 0.67 0.06 0.23 0.61 0.00

Change rate (%) 21.26 −8.80 19.99 −2.76 81.78

Fig. 15 The center of gravity shift’s characteristic map.
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Xinmi City was home to the majority of the city’s trees, whereas Zhongyuan District was where
most of the water was located until recently, when it began a slow but steady migration to the
northeast. The hub of the agricultural area was located close to where Xinmi City and Erqi
District meet.

5 Conclusions

A new image merging technique based on NSCT, PCNN, and IHS theory is offered as a solution
to the problem of inadequate spatial resolution in urban RS images. Adaptive fuzzy logic algo-
rithms are the foundation for the fusion of low-frequency components. Based on human vision
attributes that are more sensitive to picture edges and directions, high-frequency component
fusion uses enhanced local Laplacian energy as the input to the PCNN model to augment the
edge information of the image. Moreover, the connection strength of PCNN is adapted to the
increased SF, which is used to enhance the characteristics and detailed information of local areas
in images. Findings from merging indicate that the suggested merging strategy is consistent with
human visual perception, can extract spectrum characteristics from the input image, can more
effectively emphasize the image’s target information, and can increase the fusion image’s degree
of information and clarity. Classification of the fused RS pictures using the proposed convolu-
tional neural network deep learning model yielded Kappa coefficient, average accuracy, and final
accuracy after classification values more than 95%, satisfying the criteria for future study.

Zhengzhou has experienced rapid urbanization over the past 20 years, with the most notable
performance being a dramatic reduction in arable land area as a result of the extraordinary scale
of urbanized land growth. The water area remained mostly the same over time, whereas the
woodland region evolved gradually. Diverse regions of the Zhengzhou metropolitan area have
different land use patterns because of their unique histories. Over the course of the study, there
was little discernible change in the dynamics of land usage in the Zhengzhou area. Zhengzhou’s
urbanization process has accelerated since the year 2000, as seen by the city’s more active and
intensive usage of all available land.

Distinct regional characteristics of municipalities and counties become more apparent when a
comprehensive land use index is applied. To be more specific, the index of land-use intensity in a
given district or county was constrained to change only within a given range, and this range was
not constant across all districts or counties. An analysis of Zhengzhou’s land use transfer matrix
over the past two decades reveals a dramatic increase in urbanization and a significant shift in
the city’s land-use patterns. The clearing of land for urban development was the price paid for
this success, however. Zhengzhou’s rapid urbanization has led to the increased reclamation of
formerly undeveloped plots of land and the consequent rise in land utilization, as seen by the
city’s shrinking supply of idle land. The concentration of urban areas has altered during the past
two decades.

Using the suggested RS picture merging approach and the machine learning-based CNN RS
satellite picture categories approach, this dissertation compensates for the loss of image reso-
lution in urban RS and enhances land use classification accuracy. It also presents an in-depth
examination of the geographical and temporal evolution features of land cover in Zhengzhou
over the last 20 years of rapid urbanization. This sort of research is particularly interested in the
features of land use development during the urbanization process.
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