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ABSTRACT. Aquatic algae and cyanobacteria can impair water-quality and pose risks to human
and animal health. Several metrics of in-situ water-quality, including chlorophyll-a,
phycocyanin, turbidity, Secchi depth, phytoplankton taxonomy, and hyperspectral
reflectance, were collected in coordination with Sentinel-2 satellite overpasses to
ascertain water-quality conditions and calibrate satellite detection and estimation
of chlorophyll-a concentration. The performance of multiple satellite chlorophyll-a
detection indices was evaluated by comparing satellite imagery to field observations
of chlorophyll-a concentrations. Seventeen chlorophyll-a spectral indices were
implemented using the ACOLITE atmosphere correction; the top performing indices
were selected for further evaluation using the Sen2Cor and MAIN atmosphere cor-
rections. The Moses three-band spectral index delivered the strongest linear agree-
ment with field measurements of chlorophyll-a concentration across all reservoir
sampling sites (R2 ¼ 0.70). Compared to open-water sites, the Moses three-band
spectral index delivered better linear agreement with chlorophyll-a field measure-
ments at inlet sites where there was a greater abundance of near surface aquatic
chlorophyll-a concentrations, and the overall chlorophyll-a hyperspectral reflectance
signal was stronger. Chlorophyll-a concentration estimates were implemented in
a cloud-computation remote sensing platform designed for regional scale remote
sensing analysis to map spatiotemporal patterns of aquatic chlorophyll-a across
10 study reservoirs located primarily in north Texas.
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1 Introduction
Algae and cyanobacteria (commonly known as blue-green algae) are a speciose and function-
ally diverse group of photosynthetic microorganisms that are present in aquatic ecosystems
worldwide.1 The presence of certain types of algae and cyanobacteria potentially have nuisance
or harmful effects on the water-quality in reservoirs. A reduction in dissolved-oxygen levels in
aquatic ecosystems is associated with rapid increases in the population of algae and cyanobacteria
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that can lead to anoxic fish kills and cause nuisance effects, including taste and odor producing
biochemical compounds, such as geosmin and 2-methylisoborneol (MIB).2–4 Toxins produced by
certain cyanobacteria (i.e., cyanotoxins), such as microcystin, are known to cause skin irritation
and acute and chronic toxicity.5 Exposure to cyanotoxins can lead to illness or death in humans,
pets, wildlife, and livestock through direct contact, inhalation, and ingestion or indirectly from
the bioaccumulation of cyanotoxins in fish that are consumed as food.6

Algae and toxin-producing cyanobacteria are common in Texas reservoirs;7 these reservoirs
are extensively used for recreation and often serve as primary sources of drinking-water. This
study emerged from existing regional water-quality monitoring efforts. A 2006 study by the U.S.
Geological Survey (USGS) found that samples collected from 28 of 36 sampling sites represent-
ing 30 reservoirs in north Texas tested positive for at least one of three compounds (geosmin,
MIB, or microcystin) produced by cyanobacteria.7 In Texas, water-quality monitoring for
cyanobacteria by the USGS began in 2016 in cooperation with Dallas-Fort Worth regional water
resource authorities with the collection of baseline phytoplankton, chlorophyll-a, taste-and-odor
compounds, and other toxin data from reservoirs used for drinking water.8 Concerns regarding
cyanobacteria increased when invasive aquatic Zebra mussels, Dreissena polymorpha, were
detected in reservoirs in north Texas.9 The presence of Zebra mussels can lead to the possible
increase in concentrations of toxigenic species; however, the mutualistic relation between cyano-
bacteria and Zebra mussels is a topic of ongoing research.10,11

Cyanobacteria can release toxins at irregular times and under a myriad of conditions, making
toxin concentrations difficult to predict.9 Although the need for information on timing, extent,
and constituency of algae and cyanobacteria is critical, monitoring for algae and cyanobacteria is
challenging. A common approach is to rely on data obtained from periodically collected in-situ
water samples to characterize large water bodies, and in-situ detections measured during an algae
and cyanobacteria event. Consequently, the harmful or nuisance effects of algae and cyanobac-
teria often serve as the first notification that an event is occurring. Analysis of water-quality
samples often requires a minimum of several days before laboratory results are available.12

Thus, as the concern for harmful algae and cyanobacteria increases, timely identification is
especially important for reservoirs that are used for recreation or drinking water supply.

Advancements in remote sensing technology, atmosphere correction (AC) science, and
geocomputation capabilities are rapidly improving the ability to detect and deliver timely water-
quality information to reservoir managers. Satellite sensors offer a range of spectral, spatial, and
temporal resolutions that can be used to expand the perspective from local to regional scale
water-quality monitoring, which can help to fill monitoring gaps and deliver timely information
where and when in-situ data are relatively sparse, and ultimately aid decision makers in rapidly
dispatching personnel to test water quality.12–16

The first Landsat satellite was launched in 1972, and for more than 50 years, the use of
satellite observations have contributed to the detection and monitoring of photosynthetic phyto-
plankton (including chlorophyll-a in algae and cyanobacteria).17,18 Operational water-quality
monitoring methods that rely on ocean color satellite sensors for monitoring chlorophyll-a19 and
cyanobacteria20 are well established, providing relatively coarse spatial resolution for larger
inland bodies of water. For example, Coffer et al.18 observed that the annual frequency of detect-
able cyanobacteria in 135 Texas reservoirs, resolvable by use of the ocean color sensor Sentinel-3
(300 m spatial resolution), increases toward the Gulf Coast; Grapevine Lake had a low (10%)
and Lake Palestine had a relatively high (60%) annual cyanobacterial frequency.18

Satellite observations such as those made by the European Space Agency’s (ESA)
Copernicus Sentinel-2 satellites21 (hereinafter referred to as “Sentinel-2”) can detect light
reflected from chlorophyll-a, a green pigment present in both algae and cyanobacteria, at 10
to 20 m spatial resolution.22,23 Chlorophyll-a reflects relatively more green light and absorbs
relatively more red and blue light during photosynthesis such that the visible water-color tran-
sitions from blue to green as the concentration of phytoplankton increases.24 In addition to visible
light, the spectral resolution of Sentinel-2 captures the red-near-infrared (NIR) light reflectance/
scattering peak from chlorophyll-a photosynthesis (prior to NIR absorption from water) known
as the “red edge.”25 Chlorophyll-a is commonly used as a proxy indicator of algal and cyano-
bacteria presence.25 Spectral indices that are designed to detect and estimate chlorophyll-a
concentrations cannot differentiate cyanobacteria from algae.12,23 Indices capturing the red-NIR
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region of the electromagnetic spectrum are a known target for delivering successful results;
however, it is recommended to test the performance for a range of indices when calibrating
a previously uncalibrated study area.26 King et al.27 compiled 17 aquatic chlorophyll-a spectral
indices applicable to Sentinel-2 spectral resolution. Chlorophyll-a detection is limited by the
transparency depth in a reservoir water column, which varies across the light spectra and is
dependent on water clarity.28 Constituent detection depth varies across aquatic systems; for
example, it was estimated to be <1 m when chlorophyll-a concentrations reach 10 μg∕L.29

AC is a crucial part of capturing imagery from water surfaces by satellite because water
absorbs most of the light, and the reflectance signals from water surfaces are influenced by
atmospheric effects.30 The total at-sensor radiance signal captured by satellite-based instruments
is corrected for atmospheric effects to isolate the sunlight reflected from water, and therefore the
photosynthetic phytoplankton present on the water surface, entrained within the water column, or
both. AC procedures have advanced in recent years, providing a range of AC options for retriev-
ing light reflectance from water.30–33 Aquatic reflectance (AR) imagery is designed to capture
light that is reflected from the water surface or transmitted through the surface after being
reflected from within the water column.16,31,33,34 In contrast to AR products, bottom of atmos-
phere surface reflectance (SR) imagery is designed to capture the reflectance of sunlight across
the range of land-cover classes present on the surface of our planet.33

Efficient operational satellite earth observation monitoring has recently become possible.35–37

Sentinel-2 image collections are ingested into the high-performance cloud-based remote sensing
platform within approximately 1 day of acquisition, enabling global-scale satellite monitoring35,38

and ultimately contributing to a shift in the field of remote sensing into an earth observation
monitoring paradigm.36 The efficient geoprocessing of image collections enables time-series
analysis39 and visualization of historical image collections, providing new insights into dynamic
histories pertaining to water-quality conditions of inland waters.40–42

The goal of a regional-scale satellite-based monitoring approach is to better inform reservoir
managers about the near real-time presence of algae and cyanobacteria, helping them to effec-
tively respond as needed; however, there are challenges associated with near real-time satellite-
based monitoring. Clouds frequently block the view of the reservoir surface. High winds increase
water-surface roughness, resulting in sun glint and light scattering that interfere with the accurate
detection of light reflectance and thus with the assessment of water-quality constituents, such as
algae and cyanobacteria.25 The composition of turbid productive waters varies depending on the
concentrations of aquatic system constituents (i.e., suspended sediment, algal, and cyanobacteria
concentrations) and can limit the depth of the detection of chlorophyll-a from satellite images.
High NIR reflectance from turbidity and glint can lead to over-correction from AC procedures
and result in negative reflectance values.25 High turbidity has influenced spectral indices to over-
estimate chlorophyll-a concentrations.43

To provide better information on the concentrations of algae and cyanobacteria in north Texas
reservoirs, the USGS in cooperation with the North Texas Municipal Water District and City of
Dallas evaluated a collection of 17 spectral indices selected from the literature27 and three atmos-
phere-correction procedures.32–34 The collection of spectral indices and atmosphere-correction
procedures were tested to optimize the performance of satellite detection of aquatic chloro-
phyll-a for 10 reservoirs in north Texas (and a small part of southern Oklahoma) during 2020.

2 Methods
A regional-scale satellite monitoring approach is described herein that is designed for use in the
Google Earth Engine cloud-based remote sensing platform, along with a discussion for imple-
mentation as part of near real-time monitoring. The goals of this study were to (1) collect in-situ
water-quality, phytoplankton taxonomy, and hyperspectral reflectance data to examine and
advance the knowledge of the spatiotemporal patterns of the presence of algae and cyanobacteria
within the study reservoirs; (2) evaluate 17 spectral chlorophyll-a indices obtained from the lit-
erature across three ACs by comparing their performance to in-situ chlorophyll-a measurements;
and (3) implement the highest ranked index-AC combination to estimate chlorophyll-a concen-
tration in the cloud-based remote sensing platform for regional scale near real-time reservoir
monitoring (Fig. 1).
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2.1 Study Area
The reservoirs sampled for this study include Lake Fork Reservoir, Grapevine Lake,
Jim Chapman Lake, Lavon Lake, Lake Lewisville, Lake Palestine, Ray Hubbard Lake,
Ray Roberts Lake, Lake Tawakoni, and Lake Texoma (Fig. 2). These reservoirs are within the
Neches (Lake Palestine), Red (Lake Texoma), Sabine (Lake Fork Reservoir, and Lake Tawakoni),
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Fig. 1 Workflow diagram of the remote sensing geoprocessing for field water-quality data collec-
tion, matching, and interpretation to obtain chlorophyll-a (Chl-a) concentration estimates, and
implementation in the cloud-based remote sensing platform for near real-time reservoir monitoring.

Fig. 2 Location of reservoirs, sampling sites, and Sentinel-2 overpass footprints within the study
area in north Texas (including a small part of southern Oklahoma for three of the sites on Lake
Texoma).
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Sulphur (Lake Jim Chapman), and Trinity (Lakes Grapevine, Lavon, Lewisville, Ray Hubbard,
and Ray Roberts) River Basins (Fig. 2). All reservoirs, except for Lake Texoma that forms
the border between Texas and Oklahoma, are entirely in Texas.

These 10 reservoirs provide a collective capacity of more than 8.8 billionm3 of developed
water44 and range in surface area from 27.9 to 317 km2. Lake Fork Reservoir, Grapevine Lake,
Lake Lewisville, Ray Hubbard Lake, Ray Roberts Lake, and Lake Tawakoni are used as sources
of drinking water for the city of Dallas and surrounding areas. The City of Dallas has water
rights for Lake Palestine, and this reservoir is expected to provide additional water resources
to the Dallas area by 2027.45

2.2 Sampling Site Design
Thirty-one in-situ sampling sites were established across the 10 selected reservoirs (Fig. 2).
At each reservoir, the sampling sites were divided into open-water (pelagic) sites and inlet sites.
The Google Earth Engine LandTrendr Pixel Time Series Plotter was used to explore the spectral-
reflectance histories of site locations, by plotting Landsat (1984 to 2022) time series of tasseled
cap wetness and greenness spectral indices.39 To account for the variability in spectral reflectance
over the water surface of a given reservoir, different site selection criteria were used. At each
reservoir, one or two open-water sites were selected near the center of the largest part of the water-
surface area at deep locations where light reflection from the reservoir bottom would be considered
negligible under normal reservoir capacity and where consistent tasseled-cap wetness and green-
ness time series spectral indices were obtained. In contrast to the open-water sites, inlet sites with
interannual tasseled-cap wetness and greenness time series signals that varied were selected. As
many as five inlet sites near tributaries, inlets, or coves per reservoir were selected. The sampling
schedule and all of the water-quality data are provided in a companion USGS data release.46

2.3 Field Sampling
In-situ chlorophyll-a, phycocyanin, turbidity, water temperature, Secchi disk depth, phytoplank-
ton taxonomy, and hyperspectral reflectance data were collected from boats during January to
November 2020 to characterize a wide range of aquatic environments within each reservoir. The
collection of in-situ chlorophyll-a samples was coordinated with Sentinel-2 overpasses. Wave
action was avoided as much as possible for boat-operation safety and because surface roughness
can increase light scattering, sun glint, and the occurrence of white caps, all of which can have
negative effects on the spectra extracted from satellite imagery.16 Thus, lower wind speeds are
more suitable for both sampling and imagery analysis. Waterbody sampling was delayed when
wind speeds were greater than 25 kph.

Water-quality field properties were measured using standard USGS sampling protocols.47

The in-situ chlorophyll-a samples were grab samples collected at a depth of 0.3 m. The samples
were chilled to 4°C and shipped on ice to the Trinity River Authority Central Laboratory in
Dallas, Texas, for analysis. Chlorophyll-a concentrations were determined by using standard
spectrophotometric methods,48 and an ambient water reporting limit of 3 μg∕L was set by the
laboratory.49 Reservoir water-clarity depth distributions across reservoir sampling sites were
measured using a standard Secchi disk.47 In-situ turbidity measurements were compared with
the Secchi depth and chlorophyll-a concentration to aid in the interpretation of water-quality
and water-clarity conditions on algorithm performance.25 Phycocyanin, relative fluorescent units
(RFU), turbidity, formazin nephelometric units (FNU), and temperature were measured in-situ
with a YSI EXO2 multiparameter sonde.50 A Kestrel 4500 pocket weather tracker was used to
measure wind speed.51

Phytoplankton samples were collected and analyzed to identify dominant taxa across the
reservoir open-water sampling sites and their spatiotemporal variability. The dominant algae and
cyanobacteria taxonomy present at open-water sites in total biovolume (i.e., volume the indi-
vidual algal organisms occupy in the water column), as well as the relative total biovolume (the
percent total biovolume from the entire sample relative to all other taxa), were determined.48,52–56

The phytoplankton samples were collected in 250-mL brown, opaque high-density polyethylene
bottles and preserved on site with 2.5 mL of 0.25% glutaraldehyde solution. After collection, the
phytoplankton samples were maintained at temperatures <4°C and shipped on ice to PhycoTech,
Incorporated (PhycoTech in St. Joseph, Michigan) for analysis.
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In-situ hyperspectral reflectance data were qualitatively compared with in-situ chlorophyll-a,
phycocyanin, turbidity, and Secchi depth data to evaluate the hyperspectral reflectance observed
for the Grapevine Lake sampling sites. Hyperspectral reflectance data were used to explore
the optical signatures of algae and cyanobacteria pigments, chlorophyll-a, and phycocyanin,
entrained in or accumulating on the water surface to aid in the interpretation of what portion of
the spectrum might be most valuable for highly performing spectral indices.57 Hyperspectral
reflectance data of the water surface were obtained using an ASD HandHeld 2 visible NIR,
400 to 900 nm, spectroradiometer.58 Boat shadows and sun glint were avoided during the
collection of spectral reflectance signatures. The reflectance spectra were averaged during
acquisition to minimize variations in brightness caused by movement of the water surface.

2.4 Satellite Sensors
The first Sentinel-2 satellite was launched in 2015 and was designed for monitoring global lands
and waters.21 The multispectral instrument (MSI) deployed on both the Sentinel-2a and Sentinel-
2b satellites resulting in a combined revisit frequency of 5 days for the study area. The revisit
frequency approximately doubles for reservoirs located where the 290 km overpass paths overlap
(Fig. 2). The Sentinel-2 MSI sensor was selected because of its ability to detect the geophysical
light reflectance of aquatic chlorophyll-a photosynthesis. Sentinel-2 offers expanded spectral
resolution across the visible and NIR region of the electromagnetic spectrum compared with
operational sensors; for example, the Landsat program was designed to monitor terrestrial veg-
etation that reflects brightly in NIR; however, the 800 nm (Landsat 8/9–band 5) frequency is
absorbed by water. Sentinel-2 spectral resolution offers additional NIR bands capturing the “red
edge” region of the spectrum. Sentinel-2 also provides advanced spatial resolution compared to
operational inland (e.g., Landsat OLI) and ocean color sensors (e.g., Sentinel-3 OLCI). Sentinel-
2 spatial resolution ranges from 10 to 60 m across the 13 spectral bands,59 making it possible to
obtain spectral data for narrow inlets with complex shoreline geometry. See Appendix Table 4 for
central wavelength, bandwidth, and spatial resolution per spectral band.

2.5 Description of Atmosphere Corrections
Three AC procedures, ACOLITE,32 MAIN,32 and Sen2Cor33 were combined with spectral
indices to identify optimal index-AC equations. These ACs were selected for previously
demonstrated performance and because they can be implemented in Google Earth Engine.
The ACOLITE dark spectrum fitting AC approach31,34 has been demonstrated to achieve
global-leading performance for optical water types with elevated chlorophyll-a and suspended
solids concentrations in a comparison of state-of-the-art aquatic ACs.30 Imagery processed
with ACOLITE was produced by downloading imagery from the ESA Copernicus portal and
processing with ACOLITE locally for analysis. The Modified Atmospheric correction for
INland waters (MAIN) calculates AR and is designed to run within the Google Earth Engine
environment.32 The Sentinel-2 Sen2Cor bottom-of-atmosphere reflectance image collection33 is
delivered by the ESA and is available in the Google Earth Engine data catalog as an analysis-
ready dataset.32

2.6 Chlorophyll-a Detection Indices and Satellite Imagery Matches
The 17 chlorophyll-a detection spectral indices selected by King et al.27 from the literature are
applicable to Sentinel-2a/b based on the central wavelengths of spectral bands. Table 1 lists each
index (also referred to as algorithms) that was tested herein and cites the paper that describes
the equations represented by a given index name.22,24,60–66 Semi-analytical ratio indices are
simplified empirical approximations of radiative transfer theory, whereas derivative spectral
shape indices quantify the curvatures of spectral shape.25 Semi-analytical indices are sensitive,
and derivative indices are designed to be less sensitive to the effects of atmosphere.25

The full in-situ chlorophyll-a dataset was initially matched with satellite imagery to maxi-
mize the sample size and to represent the range of conditions observed during this study. Filtering
and masking logic were consistently applied across the three AC image collections to achieve
a consistent comparison of index-AC performance.

A 90% cloud cover filter was applied to maximize the potential for matching in-situ water-
quality data with satellite imagery across the regional study area. The Sentinel-2 operational
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cloud mask was applied for all image collections. Water detection and masking were applied
using the normalized difference water index that utilizes Senintel-2 bands b3 and b8a
(NDWI = (b3 - b8A)/(b3 + b8A)) to detect active water pixels and mask non-water pixels.67

The chlorophyll-a spectral index value was retrieved using a 50 m radius for ACOLITE and
50 m diameter mean reducer for the MAIN and Sen2Cor image collections at each sampling
site. In-situ chlorophyll-a samples were matched with satellite acquisitions nearest in time
(±2 days) to the sample date.

The satellite imagery matches were manually reviewed across all three image collections for
consistency and image quality at the sampling sites. Matchups were eliminated from the analysis
in cases of excessive sun glint and when cloud or water masking did not remove all clouds or
cloud shadows in proximity to a sampling site. In addition, the image collection matchups were
manually reviewed to verify that there were no negative values in the blue wavelength at the
sampling sites as low AR values have the potential to be overcorrected by AC procedures.25

Because the ACOLITE AC is demonstrated to deliver high performance for waters with
elevated concentrations of chlorophyll-a and suspended solids,30 the chlorophyll-a detection
indices were initially computed and ranked using ACOLITE in the R scripting environment.68

If an index-ACOLITE combination achieved suitable performance metrics, then the index was
tested across all three AC image collections.

2.7 Estimating Chlorophyll-a Concentration with Spectral Indices
Univariate linear regression models were developed to relate the value of each spectral index-
atmospheric correction combination to the observed chlorophyll-a concentration, each with the
following form:

EQ-TARGET;temp:intralink-;sec2.7;117;88Ŷ ¼ β0 þ β1 × Indexi þ ϵi;

Table 1 Spectral indices tested for the study area.27

Index number Index name Index equation using Sentinel-2 spectral bandsa Citation

1 Be162Bsub b5 − b4 Beck et al.47

2 BR23 b2
b3 O’Reilly et al.24

3 BR54 b5
b4 Gons et al.60

4 BR8a4 b8a
b4 Tebb et al.61

5 Go04MCI b5 − b6 Beck et al.62

6 KIVU b2−b4
b3 Beck et al.59

7 L83BDA
�

1
b2 −

1
b4

�
� b3 Beck et al.59

8 FLHviolet b3 − ðb4þ ðb1 − b4ÞÞ Beck et al.59

9 MCI b5 − b4 − ðb6 − b4Þ �
�
704.1−664.6
740.5−664.6

�
Le et al.63

10 Moses3b
�

1
b4 −

1
b5

�
� b6 Moses et al.64

11 NDCI54
�

5−b4
b5þb4

�
Mishra and Mishra65

12 NDCI8a4
�
b8a−b4
b8aþb4

�
Beck et al.59

13 S23BDA
�

1
b4 −

1
b5

�
� b8a Beck et al.59

14 FLHblue b3 − ðb4þ ðb2 − b4Þ) Beck et al.59

15 SABI
�
b8a−b4
b2þb3

�
Beck et al.59

16 Toming b5 −
�
b4 þ b6

2

�
Toming et al.22

17 ZhFLH b8a − ðb5þ ðb4 − b5ÞÞ Beck et al.62

aDetailed descriptions of Senintel-2 bands and their multispectral properties are available from the European
Space Agency.21
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where Ŷ is estimated chlorophyll-a concentration, β0 is a fitted intercept, β1 is a fitted coefficient,
Indexi is the spectral indices considered, and ϵi is an error term. With this approach, modeled
chlorophyll-a concentrations less than zero are possible, which is unrealistic. As a possible means
of preventing negative chlorophyll-a concentrations, regression models in which chlorophyll-a
concentration was log-transformed were tested;24,69 however, increased heteroscedasticity in the
residuals70 of the log-transformed equations was observed when compared with equations using
the untransformed chlorophyll-a observations. Thus, untransformed chlorophyll-a observations
were used as the dependent variable in regression models. Negative chlorophyll-a estimates were
retained for model evaluation. To ensure the use of linear regression models was appropriate,
residual and Q-Q plots (not shown herein) were prepared and evaluated to qualitatively assess
normality.70

The coefficient of determination (R2)70 resulting from a regression between observed chloro-
phyll-a and index-AC values was used to identify the top performing index-AC combination.
Coefficients of determination were computed and ranked for the 17 spectral indices combined
with ACOLITE. Spectral indices in which at least a moderate fraction of the variance was
explained by the regression model (R2 > 0.5) using ACOLITE were then computed and ranked
for their performance with the Sen2Cor SR and the MAIN-based AR image collections. The
relation between in-situ chlorophyll-a and in-situ turbidity was computed using the coefficient
of determination. To explore and compare the spectral influence of turbid waters on the chloro-
phyll-a estimator across the three AC procedures, the coefficient of determination was computed
from the top performing chlorophyll-a index and in-situ turbidity.

The linear regression models with the highest R2 values for selected spectral indices that
were used for chlorophyll-a concentration estimation were plotted with their corresponding pre-
diction intervals and confidence intervals. The linear regression models were evaluated for per-
formance across all sites, open-water sites, and inlet sites by comparing accuracy, precision, and
bias.69 Accuracy of predicted chlorophyll-a concentration values was assessed with both mean
absolute error (MAE) and bias (systematic error), and root mean square error (RMSE) served as a
measure of precision.70 Although the RMSE and MAE metrics are similar, RMSE is influenced
by outliers, whereas MAE is less sensitive to outliers.69 Precision refers to the variability of the
measurement error; the coefficient of variation (CV) was used to assess precision and is defined
as the ratio of the standard deviation to the mean, thus expressing the extent of variability relative
to the mean. Bias was measured as the average of the residuals, indicating under- or over-
estimation of the true value.69

The highest performing index-AC combinations were implemented in Google Earth Engine
to produce reservoir-surface raster visualizations representing the spatial distribution of chloro-
phyll-a for visual comparison. Finally, a time series plot depicting the annual seasonal variation
of chlorophyll-a was estimated for 50 m diameter mean values for all open-water and inlet
sampling sites and filtered for cloud and sun-glint free satellite overpasses.

3 Results

3.1 Water-Quality and Reservoir Conditions
The chlorophyll-a concentrations measured in periodically collected in-situ water samples
ranged from less than the reporting level of <3 to 87 μg∕L; the turbidity ranged from 0.9 to
43.5 FNU, and the Secchi depth ranged from 0.06 to 2.83 m (Table 2). The phycocyanin
fluorescence ranged from 0.18 to 5.25 RFU. The reservoir water temperature ranged from
10.1°C to 32.4°C.

The suitable satellite image overpasses (n ¼ 49) were matched with 44 field chlorophyll-a
samples acquired at open-water and inlet sites. No satellite imagery matches were achieved for
Lake Fork because the synchronized image acquisitions did not meet image quality thresholds at
this reservoir. The resulting data are presented in tabular and graphical form. Summary statistics
including the range, mean, and median values for chlorophyll-a, turbidity, and Secchi depth are
provided (Table 2). A scatterplot (Fig. 3) depicts the seasonal variation of in-situ chlorophyll-a
with corresponding satellite imagery matches. For the nine reservoirs with satellite imagery
matches, a sunburst diagram (Fig. 4) depicts in-situ chlorophyll-a concentrations that were
matched with satellite imagery by sampling date and site for each of the reservoirs.
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During the study period, all reservoirs were at some point dominated in relative biovolume
by cyanobacteria (i.e., Cyanophyta); by contrast, Cryptomonads algae (i.e., Cryptophyta) and
diatoms (i.e., Bacillariophyta) emerged as the dominant taxonomy less frequently for a subset
of reservoirs.46 Cyanobacteria from mid-June to mid-October dominated at most reservoirs
except for the Jim Chapman Reservoir in August. Cyanobacteria had a larger dominance relative
to other groups in the summer months (June to August) that declined in September and October.
Bookending the cyanobacteria-dominated months were diatoms. Diatoms had the highest

Table 2 Descriptive statistics of in-situ chlorophyll-a (chl-a), turbidity, and Secchi depth collected
for this study and compared to the satellite imagery matches subset.

Data set Site description Statistic Chl-a (μg∕L) Turbidity (FNU) Secchi depth (m)

Satellite imagery
matches

All sites Range <3 to 87 1.47 to 35.23 0.12 to 1.34

Mean 29 8.71 0.65

Median 25 6.23 0.55

Inlet sites Mean 36 11.88 0.49

Median 37 8.93 0.43

Open-water sites Mean 22.26 5.14 0.72

Median 21 4.25 0.67

All field data All sites Range <3 to 87 0.9 to 43.5 0.06 to 2.83

Mean 28.88 9.05 0.65

Median 25 6.23 0.55

Inlet sites Mean 33.65 12.59 0.47

Median 33.5 8.59 0.41

Open-water sites Mean 22.6 4.42 0.88

Median 23 3.74 0.76
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Fig. 3 Scatterplot depicting seasonal variation of in-situ chlorophyll-a (Chl-a) concentration
collected in the field with the subset of corresponding satellite imagery matches for open-water
and inlet sites, January to November 2020.

Stengel et al.: Near real-time satellite detection and monitoring of aquatic algae. . .

Journal of Applied Remote Sensing 044514-9 Oct–Dec 2023 • Vol. 17(4)



relative biovolume from January to early June and then again in late October to November. The
shift in dominance may be from relatively high water temperatures in north Texas during the late
spring to early autumn. Butterwick et al. observed that the diatom, Asterionella formosa, had
slightly lower growth rates than the cyanophyte, Tychonem bourrellyi, at temperatures above
25°C, whereas the reverse is true for temperatures below 10°C. Cryptomonads were dominant
at only one point in time (April) at only one reservoir (Grapevine). Figure 5 depicts dominant
phytoplankton taxonomy and sampling calendar dates. The companion data release46 provides
water-quality, phytoplankton taxonomy, and hyperspectral data for the sampling locations.
Water-quality and phytoplankton taxonomy data are also stored in the USGS National Water
Information System database (NWIS).71

3.2 Satellite Chlorophyll-a Detection Performance
The Moses three-band spectral index (Moses3b) produced the highest ranked R2 values across all
index-AC combinations led by the Sen2Cor AC. The results for all index-AC combinations are
provided in the Appendix [Fig. 11]. Moses3b applied to ACOLITE, MAIN, and Sen2Cor yielded
R2 values of 0.66, 0.62, and 0.70, respectively, for all sites (Table 3). The Moses3b-Sen2Cor
combination was selected and implemented as the chlorophyll-a estimator and further evaluated
for performance (Fig. 6). All Moses3b AC combinations at inlet sites outperformed open-water
sites in terms of the R2 metric. The Moses3b-Sen2Cor combination delivered the lowest overall
measure of MAE and RMSE for all sites, as well as for the inlet sites (Table 3). All three

4/30, 3
1/8, 6 

8/3, 7

11/16, 4

Fig. 4 In-situ chlorophyll-a concentrations in micrograms per liter (μg∕L) with the sample date
(outer ring), sampling site (middle ring), and reservoir (inner ring) matched with satellite imagery
selected within ±2 days of a satellite overpass, January to November 2020. The width of the
star-burst plot is representative of the observed in-situ chlorophyll-a concentration sample value.
The various shades of green differentiate individual reservoirs.
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Fig. 5 Dominant phytoplankton taxonomy relative total biovolume (%) across reservoirs at open-
water sampling sites, designated with sampling date, January to November 2020. Cyanobacteria
are symbolized by a blue circle; cryptomonads are symbolized by a dark green diamond; and
diatoms are symbolized by a green square.

Table 3 Aggregated performance metrics for the Moses3b chlorophyll-a detection spectral index
comparing ACOLITE, MAIN, and Sen2Cor performance for sampling sites.

Statistic ACOLITE MAIN Sen2Cor Sample size Site type

R2 (μg∕L) 0.66 0.62 0.70 49 All sites

0.51 0.41 0.49 23 Open-water sites

0.69 0.67 0.84 26 Inlet sites

RMSE (μg∕L) 11 11.53 10.31 49 All sites

10.21 11.03 11.44 23 Open-water sites

11.66 12 9.2 26 Inlet sites

MAE (μg∕L) 8.31 8 7.4 49 All sites

8.18 8.36 8.45 23 Open-water sites

8.43 7.69 6.48 26 Inlet sites

CV 54 51 52 49 All sites

57 56 60 23 Open-water sites

44 40 48 26 Inlet sites

BIAS (μg∕L) 0 0 0 49 All sites

1.33 0.19 3.13 23 Open-water sites

−1.17 −0.16 −2.27 26 Inlet sites
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Moses3b-ACs combinations produced similar variance magnitudes for all sites and the open-
water and inlet classes. For the all sites group, the three combinations produced bias-free results
(each delivered the same bias of 0 for all sites) and produced consistent positive bias for open-
water sites and negative bias for inlet sites; refer to Table 3 for Moses3b performance comparison
across ACs and site descriptions (all sites, inlet sites, and open-water sites). The correlation of
in-situ chlorophyll-a and in-situ turbidity resulted in a low R2 value (R2 ¼ 0.35) (Appendix
Fig. 12). The influence of turbidity on the remotely sensed chlorophyll-a signal was evaluated
by correlating the results of Moses3b values with in-situ turbidity. R2 values (R2 ¼ 0.11 for
ACOLITE, R2 ¼ 0.33 for MAIN, and R2 ¼ 0.17 for Sen2Cor) indicated that the influence of
turbidity on the Moses3b index was consistently low (Appendix Fig. 13).

Grapevine Lake was used as an example for a qualitative comparison of index-AC combi-
nations, in-situ water-quality data, and hyperspectral reflectance data because the August 19,
2020, site visit to this lake corresponded with high-quality satellite-imagery acquisition. The
highest performing index-AC combination, Moses3b-Sen2Cor, was compared across the AC
image collections and the highest-ranking indices to map and visualize aquatic chlorophyll-a
concentrations (Figs. 7 and 8). In Fig. 7, chlorophyll-a concentration estimates obtained from
the Moses3b index across the three ACs are compared {Sen2Cor [Fig. 7(a)], ACOLITE
[Fig. 7(b)], and MAIN [Fig. 7(c)]}. In Fig. 8, the patterns of chlorophyll-a concentration esti-
mates for the three highest performing chlorophyll-a indices applied to the Sen2Cor AC image
collection are compared (Moses3b (R2 ¼ 0.70), S23BDA (R2 ¼ 0.65), and BR54 (R2 ¼ 0.61)]
(Appendix Fig. 11).
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Fig. 6 Comparison of in-situ and satellite estimated chlorophyll-a concentration (μg∕L) using
the Moses3b index across all matchups applied to (a) ACOLITE AR, (b) MAIN AR, and
(c) Sen2Cor SR.
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Fig. 7 Images of chlorophyll-a concentration estimates obtained from the Moses3b index obtained
by applying the (a) Sen2Cor, (b) ACOLITE, and (c) MAIN ACs for Grapevine Lake, August 19,
2020.
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Figure 9 depicts the relation between chlorophyll-a and phycocyanin spectral features
acquired for the open-water and inlet sites compared with the Sentinel-2 spectral bands used
in the chlorophyll-a detection indices (Table 1). The reflectance and absorption brightness mag-
nitude of the spectrum indicate photosynthetically active waters with the unique spectral signa-
ture of cyanobacteria:57 the green peak at about 560 nm (partially captured by Sentinel-2 band 3),
the phycocyanin absorption trough at about 620 nm, the chlorophyll-a absorption trough at about
675 nm (partially captured by Sentinel-2 band 4), the NIR reflectance/scattering peak at about
700 nm (partially captured Sentinel-2 band 5), and NIR absorption by water at about 740 nm
(partially captured Sentinel-2 band 6). Figure 9 shows there are more pronounced spectral fea-
tures at the inlet site compared with the open-water site. The taxonomy observed at the open-
water site was dominated by cyanobacteria.46 In-situ chlorophyll-a concentrations, phycocyanin,
and turbidity were concurrently higher at the inlet site than at the open-water site (chlorophyll-a

(a)

0 25 50

(b) (c)

Fig. 8 Visual patterns of chlorophyll-a concentration estimates for the three highest-performing
chlorophyll-a indices applied to the Sen2Cor AC image collection: (a) Moses3b, (b) S23BDA, and
(c) BR54 for Grapevine Lake, north Texas, August 19, 2020.
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Fig. 9 In-situ hyperspectral reflectance from Grapevine Lake with selected Sentinel-2 spectral
bands showing the magnitude and shape of chlorophyll-a and phycocyanin spectral features
acquired August 19, 2020, for the inlet and open-water sampling sites. Solid vertical lines indicate
light measured by Sentinel-2 spectral bands for green (band 3), red (band 4), red edge (band 5),
and NIR (band 6 and band 8a); dashed vertical lines correspond to the phycocyanin absorption
trough at about 620 nm, the chlorophyll-a absorption trough at about 675 nm, peak chlorophyll-a
reflectance at about 700 nm, and NIR absorption by water at about 740 nm. The “red edge” region
of the spectrum extends from 670 nm to 700 nm and indicates the presence of chlorophyll-a.
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was 19 μg∕L at the inlet site and 18 μg∕L at the open-water site, phycocyanin was 1.36 RFU
at the inlet site and 1.16 RFU at the open-water site, and turbidity was 9.27 FNU at the inlet site
and 3.26 FNU at the open-water site). The Secchi disk depth was observed to be greater at the
open-water site (0.79 m), compared with the inlet site (0.39 m).

Finally, annual chlorophyll-a concentration was estimated across sampling sites from
January to December of 2020. Chlorophyll-a concentrations were estimated from a 50 m diam-
eter mean area for each open-water and inlet site from regional-scale cloud and sun-glint free
satellite overpasses (n ¼ 49). Seasonal variations in chlorophyll-a concentrations were observed
for open-water and inlet sites (Fig. 10).

4 Discussion of Findings
The calibration and estimation of chlorophyll-a concentrations was implemented in a novel
approach using the cloud-based platform for near real-time regional and time series monitoring
of reservoirs in north Texas. The cloud-based platform facilitated efficient geoprocessing for
sampling site selection and study design and visualization for analysis of the index-AC combi-
nations over the study area. The historical Landsat archive was inspected using time-series tools
to select reservoir sampling sites on the basis of interannual spectral reflectance to represent the
range of spectral reflectance present across the study reservoirs. Estimates of chlorophyll-a con-
centrations were produced to reveal seasonal variation for open-water and inlet sites (Fig. 10).
The seasonal patterns of estimated chlorophyll-a were consistent with seasonal patterns observed
in the field data (Fig. 3) and with seasonal variation reported in the literature12 (i.e., elevated
aquatic chlorophyll-a during the warm season).

Data collected for the study46 revealed that cyanobacteria primarily dominated during
the warm season. Different spatial patterns in water-quality emerged between inlet and open-
water sites. Consistent with Ref. 1, inlet sites exhibited more eutrophic aquatic conditions
than open-water sites. Higher chlorophyll-a and turbidity values and shallower Secchi depths
were observed at inlet sites compared with open-water sites (Table 2). Mean water temperatures
were higher for the inlet sites (27.2°C) compared with the deeper open-water sites (25.4°C).

The Moses3b spectral index achieved the highest ranking across all index-AC combinations
that were evaluated. The top performing index-AC combinations, as shown in Figs. 7 and 8,
reveal relatively consistent patterns in the estimates of chlorophyll-a concentration, with concen-
trations generally higher in the inlet sites and lower in the open-water sites, e.g., consistent with
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seasonal variation for the open-water and inlet sites, January 2020 to December of 2020.
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the patterns revealed at Grapevine Lake, August 19, 2020 (Fig. 9). Compared to open-water sites,
the Moses3b-Sen2Cor combination delivered better linear agreement with chlorophyll-a field
measurements at inlet sites where there was a greater abundance of near surface aquatic chloro-
phyll-a concentrations, and the overall chlorophyll-a reflectance signal was stronger (Fig. 9). An
advantage offered by Sentinel-2 is the ability to detect chlorophyll-a at a higher spatial resolution
on the range of tens of meters compared with coarser (300 m) spatial resolution available with the
Sentinel-3 or with other water-quality monitoring methods that also rely on ocean color satellite
sensors with a resolution that also is on the range of hundreds of meters. This finer resolution is
particularly advantageous at inlet sites because it allows for detailed monitoring of these near
shore areas that are frequented by people, pets, and wildlife.

The Moses three-band index utilizes Sentinel-2 spectral bands 4, 5, and 6 (Table 1). The algo-
rithm was designed for aquatic chlorophyll-a detection in turbid coastal waters and was reported to
have demonstrated potential for near real-time monitoring by Moses et al.65 This index enables
detection of chlorophyll-a for both cyanobacteria and other algae present on or entrained near the
water surface in a turbid reservoir system. The response of bio-optical spectral features to water-
quality provides further evidence of why the Moses3b approach performed well and is an example
of why the authors of this study tested multiple spectral indices to optimize the performance for the
study area. Indices BR54, NDCI54, and S23BDAwere among the top ranked indices (Table 1)
across all three ACs, and they captured the “red edge” portion of the spectrum (Fig. 9). The
sensitivity of these wavelengths to aquatic chlorophyll-a is consistent with the literature.25,26

This outcome is consistent with the findings reported in Ref. 27; when King et al. tested these
same 17 algorithms, the red edge algorithms Moses3b and S23BDA delivered the highest accu-
racies. The Moses3b and S23BDA indices are similar (Table 1); both use the Sentinel-2 red (band
4), red edge (band 5), and an NIR band, but they use different parts of the NIR absorption spectra
[Moses3b: band 6 (740 nm), S23BDA: band 8a (864 nm)] (Fig. 9), where there appears to be
slightly less absorption of NIR in the 740 nm region of the electromagnetic spectrum compared
with the 864 nm region, ultimately producing different chlorophyll-a estimation results. In addition,
like the Moses3b algorithm, the normalized difference chlorophyll index (NDCI54) is reported to
produce successful results for estimating chlorophyll-a in turbid productive waters.65,66

4.1 Limitations and Areas for Improvement in Real-Time Satellite Monitoring of
Water-Quality

Challenges associated with detection of algae and cyanobacteria from satellite sensors are not
unique to this study and are well documented.25 Real-time earth observation requires robust
approaches that are resilient to changes in dynamic environmental conditions including water-
quality, phytoplankton communities, and atmospheric conditions. Satellite sensor technology is
currently (2023) undergoing rapid development that is enabling advanced spectral resolution,
increased overpass frequency, imaging across a range of spatial scales, interoperability and
harmonization of satellite sensors, and high performance cloud platforms that facilitate advance-
ments in geoprocessing and spatial data science.27,36,72

The chlorophyll-a concentration estimates described herein are limited to the in-situmatches
between water-quality data and satellite imagery obtained during the study period. Because of the
performance uncertainties described herein, chlorophyll-a concentrations estimated from satellite
imagery would benefit from additional field observations for validation purposes. Deploying field
crews across the region for in-situ water-quality monitoring coordinated with cloud-free satellite
overpasses is logistically challenging. The detection and estimation process would benefit from the
integration of additional data (e.g., from shore and buoy sensors7) to better inform and study the
complexities of the dynamic reservoir systems observed across the north Texas region. Considering
the relatively stronger performance at inlet sites, follow-up studies could benefit from calibration
efforts that specifically target varying aquatic conditions observed within the reservoirs.

Chlorophyll-a estimations produced outliers for the highest chlorophyll-a observations in the
in-situ dataset (chlorophyll-a: 87 μg∕L; Secchi depth, 0.49 m at Lake Lavon, Site L1 on August
6, 2020) for the Moses3b approach across all ACs (Fig. 6). The Moses3b-ACOLITE combination
yielded the second highest chlorophyll-a observation (chlorophyll-a: 83 μg∕L; Secchi depth:
0.37 m at Lake Lavon, Site L1 on September 14, 2020). The Moses3b index combined with
Sen2Cor and MAIN each generated a single negative estimate, when ACOLITE did not produce
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negative estimated values. The minimum reporting limit for chlorophyll-a of 3 μg∕L49 is used for
calibration and presents an opportunity for improvement in chlorophyll estimation <3 μg∕L
because negative estimates are physically impossible. This study did not examine the intercom-
parison of the AC techniques and therefore cannot provide an explanation for why individual AC
procedure performances achieve different outcomes; the use of AC factors is an ongoing topic of
research in the remote sensing community.30

The cloud-based remote sensing platform facilitates the seamless integration of additional
satellite sensors which would improve the likelihood of obtaining high-quality cloud and
sun-glint-free image acquisitions. Sensors with expanded spectral resolution that can detect
phycocyanin (e.g., Sentinel 3) could be ingested into the real-time earth observation system
to leverage sensor assets and capabilities across multiple satellite platforms.30 Cyanobacteria
genera reveal unique hyperspectral signatures,57 and when applied to space-borne hyperspectral
imagery, they have demonstrated potential to differentiate aquatic cyanobacteria genera72 advanc-
ing detection beyond chlorophyll-a and phycocyanin proxy estimators of algae and cyanobacteria.

Clouds, smoke, wind, and sun glint can impair the performance of satellite chlorophyll-a
retrieval. Although AC routines and cloud cover masking are designed to correct for atmospheric
effects on satellite detections, extensive cloud cover presents a physical limitation for real-time
monitoring. Cloud cover is common in the study area. For example, in part of north Texas con-
sistent with the study area, Wilson and Jetz73 reported the presence of cloud cover in 47% of
overpasses within the study area using high frequency daily MODIS satellite overpasses. As
technology improves, cloud and cloud shadow detection and masking, as well as sun-glint cor-
rection techniques, will likely continue to advance the quality of near real-time earth imaging.

5 Conclusions
The U.S. Geological Survey, in collaboration with reservoir managers from the City of Dallas
and North Texas Municipal Water District, developed a regional reservoir satellite monitoring
system to aid in the ability to monitor algae and cyanobacteria across 10 water-supply reservoirs
located primarily in north Texas. Water-quality sampling site visits were coordinated with
Sentinel-2 satellite overpasses to match in-situ data with satellite imagery to estimate chloro-
phyll-a concentration, and to ascertain water-quality conditions. Seventeen chlorophyll-a
retrieval indices were initially tested using the ACOLITE atmosphere correction and ranked
by the coefficient of determination. The moderate to high performing indices were further tested
and compared using the Sen2Cor and MAIN atmosphere corrections. The linear relation between
in-situ Chlorophyll-a and satellite retrieval of chlorophyll-a were quantitatively evaluated for
accuracy, precision, and bias across all sites, and differentiated by open-water sites, and inlet
sites. The performance outcome was additionally compared to in-situ hyperspectral reflectance,
phycocyanin, turbidity, Secchi depth, phytoplankton taxonomy, and other water-quality param-
eters. The Moses three-band spectral index designed for chlorophyll-a detection in turbid coastal
waters delivered the highest ranked performance across all atmosphere correction procedures.
Compared to open-water sites, the Moses3b-Sen2Cor combination delivered better linear agree-
ment with chlorophyll-a field measurements at the near-shore inlet sites where there was a greater
abundance of in-situ aquatic chlorophyll-a concentrations, and the overall chlorophyll-a hyper-
spectral reflectance signal was stronger. The chlorophyll-a concentration estimator was imple-
mented in a cloud-computation remote sensing platform to reveal spatiotemporal patterns of
aquatic chlorophyll-a from Sentinel-2 imagery. The methods applied herein provide expanded
regional monitoring aiming to support water resource managers and interested members of the
public in the identification of near real-time conditions across dynamic reservoir systems.

6 Appendix
Appendix Fig. 11(a)–(d) depicts the collection of Index-AC combinations correlated with in-situ
chlorophyll-a ranked by the coefficient of determination (R2). Appendix Fig. 12 presents the
correlation of in-situ chlorophyll-a and in-situ turbidity which resulted in a low R2 value.
Appendix Fig. 13 presents the correlation between in-situ turbidity on the remotely sensed
chlorophyll-a signal. R2 values indicated that the influence of turbidity on the Moses3b index
was consistently low.
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Fig. 11 (a)–(d) Index-AC combination scatterplots ranked by coefficient of determination (R2) with
linear regression equation.

Stengel et al.: Near real-time satellite detection and monitoring of aquatic algae. . .

Journal of Applied Remote Sensing 044514-17 Oct–Dec 2023 • Vol. 17(4)



R2 = 0.3465

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100
T

u
rb

id
it
y
, 
F

N
U

Chlorophyll-a, �g/L 

In-situ turbidity compared to 
in-situ chlorophyll-a
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Fig. 13 In-situ turbidity compared to Moses3b for the Sen2Cor (a), ACOLITE (b), and MAIN (c)
atmosphere corrections by coefficient of determination (R2) (N ¼ 49).
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Code and Data Availability
The data presented in the article are published as a U.S. Geological Survey data release available
at https://doi.org/10.5066/P9X1R5IM. The data were processed with previously published algo-
rithms as explained in the Methods section.
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Table 4 ESA Sentinel-2a and Sentinel-2b MultiSpectral Instrument spectral band number, central
wavelengths, bandwidth, and spatial resolution.21

Band number

S2A S2B

Spatial
resolution (m)

Central
wavelength (nm)

Bandwidth
(nm)

Central
wavelength (nm)

Bandwidth
(nm)

1 442.7 21 442.2 21 60

2 492.4 66 492.1 66 10

3 559.8 36 559 36 10

4 664.6 31 664.9 31 10

5 704.1 15 703.8 16 20

6 740.5 15 739.1 15 20

7 782.8 20 779.7 20 20

8 832.8 106 832.9 106 10

8a 864.7 21 864 22 20

9 945.1 20 943.2 21 60

10 1373.5 31 1376.9 30 60

11 1613.7 91 1610.4 94 20

12 2202.4 175 2185.7 185 20
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