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Abstract

Significance: Diffuse correlation spectroscopy (DCS) is an emerging optical modality for non-
invasive assessment of an index of regional cerebral blood flow. By the nature of this noninvasive
measurement, light must pass through extracerebral layers (i.e., skull, scalp, and cerebral spinal
fluid) before detection at the tissue surface. To minimize the contribution of these extracerebral
layers to the measured signal, an analytical model has been developed that treats the head as a
series of three parallel and infinitely extending slabs (mimicking scalp, skull, and brain). The three-
layer model has been shown to provide a significant improvement in cerebral blood flow estima-
tion over the typically used model that treats the head as a bulk homogenous medium. However,
the three-layer model is still a gross oversimplification of the head geometry that ignores head
curvature, the presence of cerebrospinal fluid (CSF), and heterogeneity in layer thickness.

Aim: Determine the influence of oversimplifying the head geometry on cerebral blood flow
estimated with the three-layer model.

Approach: Data were simulated with Monte Carlo in a four-layer slab medium and a three-layer
sphere medium to isolate the influence of CSF and curvature, respectively. Additionally,
simulations were performed on magnetic resonance imaging (MRI) head templates spanning
a wide-range of ages. Simulated data were fit to both the homogenous and three-layer model
for CBF. Finally, to mitigate the errors in potential CBF estimation due to the difficulty in
defining layer thickness, we investigated an approach to identify an equivalent, “optimized”
thickness via a pressure modulation.

Results: Both head curvature and failing to account for CSF lead to significant errors in the
estimation of CBF. However, the effect of curvature and CSF on relative changes in CBF is
minimal. Further, we found that CBF was underestimated in all MRI-templates, although the
magnitude of these underestimations was highly influenced by small variations in the source and
detector optode positioning. The optimized thickness obtained from pressure modulation did not
improve estimation accuracy of CBF, although it did significantly improve the estimation accu-
racy of relative changes in CBF.

Conclusions: In sum, these findings suggest that the three-layer model holds promise for
improving estimation of relative changes in cerebral blood flow; however, estimations of abso-
lute cerebral blood flow with the approach should be viewed with caution given that it is difficult
to account for appreciable sources of error, such as curvature and CSF.
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1 Introduction

Adequate cerebral blood flow (CBF) ensures delivery of oxygen and required substrates to main-
tain normal brain function. Assessment of CBF can aid in the diagnosis and management of
numerous conditions, including stroke and traumatic brain injury. Several techniques exist to
assess CBF, including perfusion magnetic resonance imaging (MRI), computed tomography,
and transcranial Doppler ultrasound. Drawbacks of these approaches include the need for patient
transport, exposure to ionizing radiation, and/or lack or microvascular sensitivity. Diffuse cor-
relation spectroscopy (DCS) is an emerging optical tool that quantifies an index of regional
microvascular cerebral blood flow. This approach is especially well suited for continuous, beside
monitoring,1,2 given its high temporal resolution (∼1 to 100 Hz), use of non-ionizing radiation,
relatively low cost (< $50 k), and portability.

In DCS, near-infrared light is injected into the tissue surface and detected some distance away
(typically 1 to 3 cm). Red blood cell motion induces temporal fluctuations in the detected light
intensity.3 A simple analytical model is used to relate these intensity fluctuations to an index of
blood flow (BFI, cm2∕s) of the underlying tissue.4 However, by the nature of this noninvasive
measurement, light must pass through extracerebral layers (i.e., skull, scalp, and/or cerebral
spinal fluid) before detection at the tissue surface. Thus, the BFI measured by DCS reflects
a combination of both cerebral and extracerebral hemodynamics.

Multiple methods have been proposed to minimize extracerebral contributions to BFI and to
improve brain sensitivity, including both hardware5–9 and novel analytical approaches.10,11

Analytical approaches are particularly attractive because they can be integrated into the analysis
strategies of any hardware approach. Among those approaches, a model that treats the head as a
series of three parallel, infinitely extending slabs (mimicking scalp, skull, and brain) has been
shown to provide a significant improvement in CBF estimation over the traditional DCS analysis
approach that treats the head as a bulk homogenous medium.12–14 Although a handful of studies
have utilized this three-layer model to analyze in vivo data,12,13,15 the accuracy of this approach is
still under investigation.16,17 While it certainly provides a more sophisticated representation of
the human head compared to the homogenous model, the three-layer model is still a gross
oversimplification. It ignores head curvature, the presence of cerebrospinal fluid (CSF), and
heterogeneity in layer thickness. These parameters are important to account for, as they can vary
significantly across subjects. Curvature changes dramatically through adolescence as the head
circumference undergoes rapid growth. Moreover, the thickness of the CSF layer increases
through early adolescence18 and then further increases in old age as the brain begins to
shrink.19,20 Finally, layer thickness can be highly heterogenous as a function of optode position-
ing on the head.18,21–24 Thus, given the high variability in the structure of the human head, a
rigorous investigation into the influence of these parameters on estimation accuracy of cerebral
blood flow assessed with the three-layer model is needed.

In this study, we quantify the influence of head curvature and the CSF layer on the estimation
accuracy of cerebral blood flow with the three-layer model. We hypothesize that both of these
factors will confound the absolute value of cerebral blood flow index (CBFi) but not the
estimation accuracy of relative changes of CBFi (rCBFi). Further, we use Monte Carlo (MC)
simulations on MRI head templates spanning a wide age range to demonstrate the cumulative
influence of these factors, along with the influence of heterogeneity in layer thickness. Finally,
we investigate a pressure modulation process designed to overcome the difficulties of defining
layer thickness in vivo.

2 Methods

2.1 Influence of CSF

2.1.1 Data simulation

To determine the influence of CSF on the estimation of CBFi obtained with the three-layer
model, data were simulated with MC eXtreme (MCX)25 on a four-layered slab medium
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mimicking scalp, skull, CSF, and brain [Fig. 1(a)]. Four separate media were simulated, each of
different CSF thickness (1, 2, 3, or 4 mm). All other layer thicknesses, as well as optical
properties were constant across simulations: scalp thickness was 6 mm, skull thickness
was 6 mm to simulate the frontal region of a healthy young adult,24 and the optical
properties (i.e., the absorption and reduced scattering coefficient, μa and μ 0

s) of each layer
were fixed at μa;scalp ¼ 0.1 cm−1, μ 0

s;scalp ¼ 10 cm−1, μa;skull ¼ 0.1 cm−1, μ 0
s;skull ¼ 10 cm−1,

μa;CSF ¼ 0.04 cm−1, μ 0
s;CSF ¼ 0.036 cm−1, μa;brain ¼ 0.15 cm−1, and μ 0

s;brain ¼ 4 cm−1.19,24,26–29

The anisotropic factor (g) and index of refraction (n) of each layer were fixed at 0.89 and 1.4,
respectively.

For each simulation, 109 photons were injected into the medium. Two 1-mm diameter detec-
tors were placed on the surface of the top (scalp) layer, spaced 1 and 2.5 cm from the source. For
each detected photon, MCX records the momentum transfer, scattering angle, and total path-
length traveled in each layer. This information is used to calculate the unnormalized electric
field autocorrelation function G1ðρ; τÞ by assuming a blood flow index in each layer.3 We simu-
lated 12 evenly spaced CBFi values ∈ ½2; 9� × 10−8 cm2∕s and 6 scalp blood flow index (SBFi)
values ∈ ½1∕8;1∕3� × CBFi, for a total of 72 combinations of SBFi and CBFi per simulation.
CSF was modeled as a low-scattering medium with negligible (1 × 10−10 cm2∕s) blood flow
index.30,31 Similarly, blood flow index of the skull layers was also set to 1 × 10−10 cm2∕s.24

Finally, to simulate experimental measurements, G1ðρ; τÞ was converted to g2ðρ; τÞ using the
Siegert relation by assuming a coherence factor, β, of 0.5.2

2.1.2 Cerebral blood flow estimation

Simulated data at 1 and 2.5 cm were simultaneously fit to the three-layer solution of the corre-
lation diffuse equation (CDE) to estimate the blood flow index of the brain and scalp layers
(CBFi and SBFi, respectively).16,17 For these fits, optical properties for each layer were assumed
to be known and set to the properties listed above. Thickness of the top layer was set to the
known thickness of the scalp (6 mm). For the thickness of second layer, we considered two
cases. In the first case, CSF was assumed to be part of skull (layer 2), as CSF has negligible
blood flow akin to skull. Thus, the thickness of the second layer, L2, was Lskull þ LCSF, where
Lskull is the thickness of skull and LCSF is the thickness of CSF. [Fig. 1(b)]. In the second case,
CSF was ignored and lumped with the brain because of its transparency. Thus, the thickness of
the second layer was set to that of skull [6 mm, Fig. 1(c)]. In both cases, the blood flow index in
the second layer was assumed to be zero.

Fig. 1 Scheme for investigating the influence of cerebral spinal fluid (CSF) on the accuracy of
CBFi with the three-layer model. (a). Data were simulated with MC on a four-slab medium to mimic
scalp (blue), skull (yellow), CSF (green), and brain (orange) layers. Simulated data were fit to
the three-layer solution of the correlation diffusion equation by assuming CSF belonged either in
(b) the second layer (L2 ¼ Lskull þ LCSF) or (c) the third layer (L2 ¼ Lskull).
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2.2 Influence of Curvature

2.2.1 Data simulation

To determine the influence of head curvature on the estimation of CBFi with the three-layer
model, data was simulated using a mesh-based MC32 on a three-layer sphere medium, mimicking
scalp, skull, and brain layers. Four separate curvatures were simulated by varying the radius of
the outer sphere from 70 to 100 mm in steps of 10 mm.33 These radii were chosen by approxi-
mating the head as a circle and extrapolating from normal human head circumference ranges
from 1 year to adulthood. Layer thickness and optical properties were constant across simula-
tions and set to the values listed in Sec. 2.1. Detectors were placed along the surface of the outer
sphere, spaced 1 and 2.5 cm from the source [ρcurve in Fig. 2(a)]. As described in Sec. 2.1, we
simulated 72 combinations of SBFi and CBFi for each radius.

2.2.2 Cerebral blood flow estimation

Simulated data were fit to the three-layer solution of the CDE to estimate CBFi and SBFi.16,17 For
these fits, optical properties and thickness of each layer were assumed to be known and equal to
the true (simulated) value. To confirm the error in estimation of CBFi is caused by the influence
of curvature rather than by error in source detector separation (SDS) caused by curvature,
we fit data using both the line SDS [ρline in Fig. 2(a)] and ρcurve.

Fig. 2 Scheme for investigating the influence of curvature on the accuracy of with the three-layer
model. (a) Data were simulated with MC on a three-layer sphere. ρcurve denotes the arc distance
(green curve) along the surface from the source to the detector while ρline denotes the linear dis-
tance. (b) Simulated data were fit to the three-layer solution of the correlation diffusion equation.

Fig. 3 Age-averaged MRI templates. (a) 3D mesh of the contour of each atlas along with the
source (red) and detectors locations (black). (b) Axial view of the plane where source and detec-
tors were placed (scalp in dark blue, skull in light blue, CSF in brown, and brain in yellow).
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2.3 Realistic Human Head Geometry

2.3.1 Data simulation

To quantify the accuracy CBFi estimated with the three-layer model in the presence of CSF, head
curvature, and heterogeneous layer thicknesses, we simulated data with a mesh-based MC32 on
six MRI head templates spanning a wide age range of 5 to 80 years (Fig. 3).34 We limited sim-
ulations to >5 years because the homogeneous model has been shown to be sufficient for youn-
ger children given the relatively thin extracerebral layers.35,36 Age-averaged MRI templates were
obtained from the open-source brain mesh library.37,38 Templates were segmented into scalp,
skull, CSF, gray matter, and white matter layers. For simplicity, gray and white matters were
lumped together as brain. Optical properties of each layer were assigned as in Sec. 2.1.

For these simulations, a source and two detectors were placed over the left forehead in the
same axial plane, roughly 1 cm above the eyebrow and spaced ∼1 and 2.5 cm apart. Detected
photons were used to estimate g2ðτ; ρÞ for a range of 72 simulated SBFi and CBFi, as in Sec. 2.1.

2.3.2 Cerebral blood flow estimation with the 3-layer model

Simulated data at 1 and 2.5 cm were simultaneously fit to the three-layer model to estimate CBFi
and SBFi.16,17 For these fits, optical properties of each layer were assumed to be known and equal
to the true (simulated) value. Layer thickness for these simulations was challenging to determine
because of heterogeneities under the region spanned by the optodes. Thus, we explored two
approaches to assess the layer thicknesses.

1. Volume-averaged thickness: because photons propagate through a three-dimensional region
under the source/detector, we measured layer thickness in 11 axial slices (5 slices below the
S-D plane, the slice containing the S-D plane, and 5 slices above the S-D plane). Slices were
spaced 2 mm apart, thus, the total interrogated region spanned�1 cm above/below the S-D
plane. For each slice, we used the method outlined in Ref. 24 to estimate thickness. For each
node on the surface of scalp between the x- and y-locations of the source and 2.5-cm detec-
tor, the depth to each layer (i.e., skull, CSF, and brain) was defined as the shortest distance
between the scalp node and the nearest layer node. Scalp (L1) thickness was defined as the
depth to the skull layer; skull thickness (L2) was calculated depth to CSF minus depth to
skull; and CSF thickness was calculated as depth to brain minus depth to CSF. Finally,
L1;measured and L2;measured were estimated by averaging across all nodes and all slices.

2. Pressure-optimized thickness: an alternative approach to estimate layer thicknesses
involves a brief pressure modulation.13 Here we assume that applying pressure to the scalp
decreases SBFi but does not change CBFi. To simulate this procedure, for each MRI tem-
plate we simulated two sets of g2ðτÞ at 1 and 2.5 cm to mimic the pressure on/off con-
ditions. For these simulations, CBFioff ¼ CBFion ¼ 5.2 × 10−8 cm2∕s, SBFioff ¼ 1.7 ×
10−8 cm2∕s, and SBFion ¼ 6.5 × 10−9 cm2∕s. The choice of a 60% decrease inscalp flow
from the pressure off-to-on condition comes from in vivo observations of BFI changes at
1 cm with gentle pressure.

Next, simulated g2;off at 1 and 2.5 cm were simultaneously fit for SBFioff and
CBFioff . For these fits, we assumed known layer optical properties, along with a range
of layer thickness (L1 ∈ ½L1;measured − 0.2; L1;measured þ 0.2� cm, L2 ∈ ½L2;measured − 0.2;
L2;measured þ 0.2� cm, step size = 0.05 cm) to estimate CBFioff;fitðL1; L2Þ. A similar
process was applied to g2;on to estimate CBFion;fitðL1; L2Þ. Last, we defined the opti-
mized thicknesses, L1 and L2, as those that minimized the relative change in CBFi.

EQ-TARGET;temp:intralink-;sec2.3.2;116;165L1;optimized; L2;optimized ¼ argminL1;L2

����� CBFion;fitðL1; L2Þ
CBFioff;fitðL1; L2Þ

− 1

����
�
:

2.3.3 Cerebral blood flow estimation using the homogeneous model

To compare the three-layer model to the traditionally employed homogenous model, we also
fitted MRI simulated data with this more commonly utilized approach. For these fits, optical
properties were assumed to be μa ¼ 0.15 cm−1 and μ 0

s ¼ 4 cm−1.
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2.4 Evaluations of Estimation Accuracy of CBFi

We calculated the percentage error in estimated CBFi as ðCBFiest − CBFiknownÞ∕
CBFiknown × 100. Further, because we are often clinically interested in assessing relative changes
in CBF as a function of time, we quantified relative changes in CBFi. For each simulated CBFi
value, we defined the relative change in CBFi as rCBFi ¼ ðCBFi − CBFi0Þ∕CBFi0, where the
subscript 0 denotes a baseline/reference measurement, which was arbitrarily chosen to be
CBFi0 ¼ 5.18 × 10−8 cm2∕s and SBFi0 ¼ 1.04 × 10−8 cm2∕s. This baseline ensured a wide
range of simulated rCBFi (−61 to 74%) and rSBFi (−76 to 189%). Error in estimated
rCBFi was defined as rCBFiest − rCBFiknown.

3 Results

3.1 Influence of Cerebrospinal Fluid

Grouping CSF into the second layer leads to large errors in the estimation of CBFi [Fig. 4(a),
green]. As CSF thickness increases, CBFi is significantly overestimated. Note, when CSF thick-
ness was 4 mm, the fitting process failed to converge. In contrast, ignoring CSF, i.e., grouping
CSF with the third layer, leads to underestimation in CBFi [Fig. 4(a), orange]. In this situation, as
the thickness of CSF increases, the error in CBFi decreases monotonically, although the mag-
nitude of this error is considerably less that the case where CSF is grouped with the skull layer.
Relative changes in CBFi can be accurately recovered in both models to within approximately
10%; however, the range of error in estimated rCBFi across all combinations of CBFi and SBFi
tested is smaller when CSF is grouped in the third layer compared to the second layer [Fig. 4(b)].

3.2 Influence of Head Curvature

Across all simulated head circumferences, curvature led to a median underestimation of CBFi of
roughly −10 to −25% [Fig. 5(a)]. This error was relatively independent of circumference.
Similarly, the choice of source–detector separation (line versus curve) had minimal influence
on this underestimation [orange versus green, Fig. 5(a)]. Moreover, errors in rCBFi caused
by curvature were within 15% of the true value across all SBFi/CBFi combinations tested
[Fig. 5(b)].

3.3 Accuracy of Three-Layer Model as a Function of Age

The volume-averaged measured thickness of the extracerebral layers in the MRI age-averaged
templates increased with age, as expected [Fig. 6(a)]. These increases were driven by increases in

Fig. 4 Influence of CSF. Boxplots showing the percentage error in estimated CBFi (a) and relative
changes in CBFi (rCBFi) (b) when considering CSF as part of second (green) or third (orange)
layer during the fitting process. For each boxplot, the central line denotes the median, and the
bottom and top edges of the box indicate the 25’th and 75’th percentiles, respectively, of the
72 samples tested. The whiskers extend to the most extreme data points not considered outliers.
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skull thickness from 5 to 20 years, and by increases in CSF thickness from 40 to 80 years.
Average head circumference sharply increased during adolescence and remained constant
throughout adulthood. The standard deviation in the head circumference of 10 to 15 mm reflects
the variation of head size across axial slices. Figure 6(b) shows the optimized thickness of the
skull and scalp layers derived from the pressure modulation method outlined in Sec. 2.3. As
shown in Fig. 6(c), the optimized scalp thickness is correlated with the volume-averaged mea-
sured scalp thickness, but the two measures can deviate by as much as 2 mm. In general, the
optimized skull thicknesses deviate more from the volume-averaged skull thickness than the
optimized/measured scalp thicknesses.

As shown in Fig. 7(a), when using either the homogeneous or the 3-layer model to estimate
CBFi from the MRI age-averaged templates, CBFi was typically significantly underestimated.
The magnitude of this underestimation varied wildly as a function of age for the three-layer
estimations, presumably due to heterogeneity in layer thickness that can have appreciable in-
fluence on estimation accuracy. For relative changes in CBFi, the median error across all simu-
lated combinations of CBFi/SBFi was approximately zero. As expected, the variation in this
error about the median was appreciably larger for the semi-infinite compared to the three-layer
model. The three-layer model with optimized thickness has the smallest range of error in rCBFi
across the CBFi/SBFi combinations tested [Fig. 7(b)].

Fig. 5 Influence of curvature. Boxplots of the percentage error in estimated CBFi (a) and relative
changes in CBFi (rCBFi) (b) when using the three-layer analytical model with the arc distance
along the surface from the source to the detector (green) or the linear distance between source
and detector (orange). For each boxplot, the central line denotes the median, and the bottom and
top edges of the box indicate the 25’th and 75’th percentiles, respectively, of the 72 samples
tested. The whiskers extend to the most extreme data points not considered outliers.

Fig. 6 (a) Mean and standard deviation of the volume-averaged scalp (dark blue), skull (light
blue), and CSF (yellow) thickness as well as head circumference (orange) across several axial
slices near the source–detector plane on each MRI templates. (b) Optimized scalp and skull (light
and dark blue, respectively) thickness obtained from pressure modulation. (c) Comparison of mea-
sured volume-averaged layer thickness with the optimized thickness estimate from pressure
modulation for scalp (L1, in dark blue) and skull (L2, in light blue). Different shapes denote the
six different MRI templates: circle is 5y, diamond is 8y, square is 20y, upper triangle is 40y, right
triangle is 70y, and pentagram is 80y. Dotted line denotes the line of unity.

Zhao and Buckley: Influence of oversimplifying the head anatomy on cerebral blood flow measurements. . .

Neurophotonics 015010-7 Jan–Mar 2023 • Vol. 10(1)



4 Discussion

The three-layer model is designed to separate cerebral hemodynamics from extracerebral con-
taminations to the DCS measured signal. Although this model does not fully recapitulate the
complex structure of the human head, it strikes a balance between model complexity and esti-
mation accuracy, while providing a significant improvement over the traditional homogenous
model, which suffers from substantial extracerebral contaminations. Despite these advantages,
there are several key features that the model fails to incorporate, including CSF, head curvature,
and layer heterogeneity. The findings herein demonstrate that these factors can lead to appreci-
able errors in the estimation of cerebral blood flow. However, relative changes in CBFi can be
recovered in a manner that is relatively insensitive to these factors, suggesting that the three-layer
model is a promising approach to improve brain sensitivity of relative changes in perfusion
with DCS.

Our results show that grouping CSF with the skull layer [Fig. 1(b)] leads to an overestimation
of CBFi, while totally ignoring CSF [Fig. 1(c)] causes an underestimation of CBFi. In general,
the correlation diffusion equation (CDE) breaks down in the presence of the very low absorption
and scattering coefficient of the CSF. This breakdown can be visualized in Fig. 8 wherein we
compare g2 from a three-layered medium with a CSF as layer 2. Data were generated with MC
and the three-layer solution to the CDE. The CDE generated curve is right shifted compared to
the MC data. Thus, when CSF is grouped with the skull layer as layer 2 [Fig. 1(b)], using the

Fig. 7 Comparison of three-layer and homogeneous models. Boxplots of the error in estimated
CBFi (a) and relative change in CBFi (b) as a function of age. For each boxplot, the central line
denotes the median, and the bottom and top edges of the box indicate the 25’th and 75’th per-
centiles, respectively, of the 72 samples tested. The whiskers extend to the most extreme data
points not considered outliers.

Fig. 8 Effect of CSF. Comparison of intensity autocorrelation curves, g2ðτÞ, simulated using
Monte Carlo (MC, black) and the correlation diffusion equation (CDE, red) at 1 cm (solid line) and
2.5 cm (dashed line) for a three-layer slab medium consisting of 10 mm scalp/skull (layer 1), 2 mm
CSF (layer 2), and brain (layer 3).
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CDE to fit MC-generated data in the presence of CSF leads to an overestimation of CBFi.
However, the same overestimation was not found when CSF is grouped with the layer 3
[Fig. 1(c)]. We believe this contrary finding is because in the latter case, other factors also con-
tribute to the error in CBFi. For one, the effective layer 3 flow in this case is a weighted combi-
nation of the zero flow CSF and brain flow, so we expect the estimated CBFi to be
underestimated. Further, the effective optical properties of layer 3, which are a weighted combi-
nation of CSF and brain optical properties, are smaller than the values assumed in the fitting
process. Overestimated layer 3 optical properties can have an appreciable effect on CBFi.16 In
total, it appears these effects combine to lead to a net underestimation of CBFi, which agrees
with a previous work investigating the influence of CSF with the two-layer model.39 We note that
the influence of overestimated optical properties is not relevant in the former case when CSF is
grouped in layer 2 because errors in layer 2 optical properties have minimal influence on CBFi
estimation with the three-layer model.16

Our results also show that curvature can lead to an underestimation of CBFi. Curvature can
cause changes in the photon pathlength distribution,40 particularly for photons detected at 2.5 cm
[Figs. 9(a) and 9(b)]. These changes are largely caused by a right-shift in the pathlength dis-
tribution within the scalp/skull and a slight left shift in the pathlength distribution in the brain
[Fig. 9(c)]. The net effect of this distribution change is that the autocorrelation curves are slightly
right shifted, which translates to an underestimation of CBFi. As was the case with CSF, these
underestimations do not propagate to the error in rCBFi, thus the effect of curvature on rCBFi is
minimal.

The simulations performed on the three-/and four-layer slab and sphere models allowed us to
isolate the effects of curvature and CSF. In contrast, our modeling results from the MRI age-
averaged templates provide insights into the cumulative effects of these factors on the accuracy
of CBFi. Consistent with the results from Figs. 4 and 5, we found that CBFi was underestimated
in all MRI-templates with the exception of 40 years. As shown in Fig. 10, the magnitude of these
errors is highly influenced by small variations in the positions of the source and detector optodes.
By varying the axial location of the optodes by�1 cm, the error in CBFi varied from ∼ − 50% to
50% [Fig. 10(e)], demonstrating that the cumulative effects of curvature, CSF, and layer hetero-
geneity on the estimation accuracy of CBFi can be appreciable. We note that the investigation of
optode position (Fig. 10) was performed in the 40Y template. We anticipate that as extracerebral
thickness decreases, brain sensitivity of the model should increase, and as such, CBFi variability
with optode positioning should be reduced.

To mitigate the errors in CBFi estimation due to the difficulty in defining layer thickness,
we investigated an approach to identify an equivalent, “optimized” thickness via a pressure
modulation. While this approach did not improve estimation accuracy of CBFi [Figs. 7(a) and
10(e)], it did significantly improve the estimation accuracy of rCBFi, as was suggested by
Ref. 13. Thus, we recommend utilizing this pressure modulation approach to improve esti-
mation accuracy of rCBFi when using the three-layer model. However, we note that pressure
modulation in vivo may induce variations in scalp thickness that were not accounted for here
and that could affect estimation accuracy in practice. Future research is needed to explore the

Fig. 9 Distribution of the total pathlength of all detected photons at 1 cm (a) and 2.5 cm (b) for
simulations performed on the sphere with radius 70 mm. (c) Distribution of pathlength of all
detected photons at 2.5 cm in each layer (scalp in gray, skull in yellow, and brain in orange).
In each subplot, the solid line denotes the three-layer slab and the dotted line denotes the
three-layer sphere geometry.
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validity of this pressure-modulation approach via an in vivo comparison against a gold stan-
dard perfusion technique.

There are several limitations in this study. Noise was not considered in our simulations; thus,
the errors reported likely represent the best-case scenario. Moreover, we assumed optical proper-
ties for scalp, skull, and brain layers were known. Inaccuracies in these properties will likely
compound estimation inaccuracies.16

5 Conclusion

We quantified the influence of curvature, CSF, and layer heterogeneity on the estimation of
cerebral blood flow when using a three-layer model to analyze DCS data. These factors cause
significant errors in CBFi; however, the influence of these factors on the estimation of relative
changes in cerebral blood flow are minimal.
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Fig. 10 (a) Three different source–detector pair locations (A, B, C) on the surface of the forehead.
(b) Visualization of the axial slices containing the source–detector pairs from panel (a).
(c) Measured volume-averaged layer thicknesses (scalp in dark blue, skull in light blue, and
CSF in yellow) and (d) optimized layer thickness for the three different locations of source–detector
pairs shown in (a, b). (e) Boxplots of the error in estimated CBFi and (f) relative change in CBFi
(rCBFi) at these locations using the three-layer model with measured thickness (green), optimized
thickness (orange), and the homogeneous model (purple). For each boxplot, the central line
denotes the median, and the bottom and top edges of the box indicate the 25’th and 75’th per-
centiles, respectively, of the 72 samples tested. The whiskers extend to the most extreme data
points not considered outliers.
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