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Abstract

Significance: Motor function evaluation is essential for poststroke dyskinesia rehabilitation.
Neuroimaging techniques combined with machine learning help decode a patient’s functional
status. However, more research is needed to investigate how individual brain function informa-
tion predicts the dyskinesia degree of stroke patients.

Aim: We investigated stroke patients’ motor network reorganization and proposed a machine
learning-based method to predict the patients’ motor dysfunction.

Approach: Near-infrared spectroscopy (NIRS) was used to measure hemodynamic signals of
the motor cortex in the resting state (RS) from 11 healthy subjects and 31 stroke patients, 15 with
mild dyskinesia (Mild), and 16 with moderate-to-severe dyskinesia (MtS). The graph theory was
used to analyze the motor network characteristics.

Results: The small-world properties of the motor network were significantly different between
groups: (1) clustering coefficient, local efficiency, and transitivity: MtS > Mild > Healthy and
(2) global efficiency: MtS < Mild < Healthy. These four properties linearly correlated with
patients’ Fugl-Meyer Assessment scores. Using the small-world properties as features, we con-
structed support vector machine (SVM) models that classified the three groups of subjects with
an accuracy of 85.7%.

Conclusions: Our results show that NIRS, RS functional connectivity, and SVM together con-
stitute an effective method for assessing the poststroke dyskinesia degree at the individual level.
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1 Introduction

Stroke has been ranked as the second leading cause of death and disability-adjusted life-years
worldwide. It has a high incidence, disability rate, recurrence rate, mortality rate, and financial
burden.1 Motor, language, and swallowing dysfunctions are commonly observed in stroke sur-
vivors. The most common function deficit after a stroke is motor dysfunction, which can leave
patients disabled and have a negative impact on their quality of life. Rehabilitation can assist in
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restoring some of the lost limb functions.2,3 At present, various clinical rating scales are usually
used to evaluate the motor function of stroke patients, such as the Fugl-Meyer Assessment
(FMA), Berg Balance Scale, and Brunnstrom. Although these methods are well validated and
acknowledged, they are still limited by physician subjectivity, large time consumption, and low
resolution.4

To provide accurate and personalized rehabilitation programs, it is essential to assess limb
functions automatically at the individual level.5 With the advancement of sensor technology and
machine learning algorithms, objective and accurate data can now be gained to provide physi-
cians with additional information about patients’ motor functions.6–8 For example, Zhang et al.9

collected upper limb position data from stroke patients and healthy controls with a posture sensor
and differentiated among individuals with different types of upper limb dysfunctions with
machine learning algorithms. In another study, Xi et al.10 demonstrated the effectiveness of using
surface electromyography (EMG) in rehabilitation monitoring by combining time, time-
frequency, and entropy domain features and the support vector machine (SVM) technique.
The present quantitative assessment of motor function in stroke patients focuses primarily
on movements, gaits, and EMG signals. However, the origins of motor dysfunction in stroke
patients are damages to the brain’s neural circuit. It is quite necessary to evaluate patients’motor
function based on brain functional activity.

Functional magnetic resonance imaging (fMRI), near-infrared spectroscopy (NIRS), and
electroencephalography are effective and non-invasive methods for studying brain functions and
recovery in stroke patients.11–13 After a stroke, state-specific and general brain function reorgan-
izations coexist and interact.14–17 Resting-state (RS) connectivity can provide useful information
about post-stroke brain functions and recovery.18–20 Using fMRI and the graph theory, Cheng
et al.21 studied the reorganization of whole brain RS functional connectivity (RSFC) in stroke
patients and found a positive correlation between the characteristic path length and patients’
motor function. Wang et al.22 also used the graph theory and found that RSFC reorganization
in the motor system was associated with stroke patients’ dyskinesias. Both RSFC and task-
related effective connectivity can explain patients’ motor dysfunction.23 These indicate that
RS has great potential for assessing post-stroke motor function.

Neuroimaging techniques combined with machine learning approaches are helpful with decod-
ing patients’ functional status at the individual level and realizing precision medicine.24–26 For
example, Jane et al.27 applied Gaussian process regression to decode upper limb motor impairment
with a structural MRI in chronic stroke patients, and the correlation between the actual and model
predicted scores was 0.66 (RMSE = 0.79). Rehme et al.28 classified patients with hand motor
deficits compared with controls and nonimpaired patients with an 82.6% to 87.6% accuracy
by combining the whole-brain RS connectivity and SVM. However, more research is required
to investigate how individual brain function information can be used to predict varying degrees
of motor dysfunction in stroke patients. In this study, we aim to develop a method for classifying
the dyskinesia degree in stroke patients by combining NIRS, RSFC, and machine learning.

NIRS was used to collect the RS brain activity in the motor cortex. NIRS has become an
important tool in stroke research due to its non-invasive nature, low cost, portability, little con-
straint for subjects, great anti-interference capability, and minimal environmental requirement.29–31

The motor network’s topology was analyzed with graph theory. We investigated the motor network
reorganization of stroke patients and how this reorganization was linked to their motor function.
Then, the stroke patients were divided into two groups based on FMA scores: the mild dyskinesia
group (referred to as Mild) and the moderate-to-severe dyskinesia group [referred to as moderate-
to-severe (MtS)]. We tried to establish models that used the selected brain network properties as
features to categorize various groups of subjects.

2 Methods

2.1 Subjects

Thirty-one stroke patients enrolled from the Chinese Medicine Rehabilitation Center of Beijing
Rehabilitation Hospital Affiliated to Capital Medical University participated in this study.
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The inclusion criteria were as follows: (1) MRI or CT confirmation of the first unilateral stroke,
(2) age: 30 to 80 years, (3) modified Ashworth score ≤2 points, (4) Glasgow coma ccale
score ≥ 8, and (5) ability to maintain the sitting position for at least 6 min. The exclusion criteria
were as follows: (1) previous experience with mental illness or taking antipsychotic medication
or (2) having any of the following conditions: congestive heart failure, respiratory failure, deep
vein thrombosis of the lower extremities, malignant progressive hypertension, active liver
disease, or severe liver or kidney insufficiency. FMA was used to evaluate the patient’s motor
function. According to the FMA scores, stroke patients were divided into two groups: Mild
(15 patients, FMA ≥ 85) and MtS (16 patients, FMA < 85). We also recruited 11 healthy people,
ranging in age from 48 to 59 years (mean ± SD: 50.91� 3.09), as the control group.
All subjects signed an informed consent form and were informed of the basic requirements and
procedures prior to the experiment. The Ethics Committee of Beijing Rehabilitation Hospital
Affiliated to Capital Medical University reviewed and approved this study. The registration num-
ber for the clinical trial is ChiCTR2000040137.

2.2 Data Collection

We used the ETG-4000 (Hitachi, Japan), a 22-channel NIRS imaging device, to measure the
hemodynamic signals in the motor cortex from subjects in the RS. The NIRS cap consisted
of 7 detectors and 8 emitters (light sources), making up 22 channels. The distance between the
detector and emitter was 30 mm, and the brain region below each channel (i.e., midpoint between
detector and emitter) was the main detection area for the channel. Referring to the 10/20 elec-
trode placement system, Cz was used as the anchor point for placing the NIRS cap, and the lower
edge of the NIRS cap was parallel to the coronal axis (Fig. 1). According to previous studies, this
source-detector placement covers the motor-related cortex area, including the premotor cortex,
the supplementary motor cortex, and the primary motor cortex.32–35 The experiment was con-
ducted in a dark, quiet setting. To reduce movement artifacts, participants were instructed to
close their eyes, remain conscious, and refrain from moving their bodies throughout the experi-
ment. With a sampling rate of 10 Hz, NIRS data were obtained for 6 min.36

2.3 Data Processing

By measuring the attenuation variations of near infrared light at two wavelengths (695 and
830 nm), ETG-4000 used the modified Beer-Lambert law to calculate two cerebral

Fig. 1 NIRS-measured brain area schematic diagram.
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hemodynamic signals: the concentration changes of oxygenated hemoglobin (Δ½HbO2�) and
deoxygenated hemoglobin (Δ½Hb�). The hemodynamic signals were pre-processed in Matlab.
The pre-processing involved the following steps: (1) detecting and correcting motion artifacts
with the standard deviation and spline interpolation method, (2) removing frequency noise and
low-frequency baseline drift with a second order band-pass Butterworth filter (0.01 to 0.1 Hz),37

(3) reducing the superficial interference with the common average reference spatial filtering,38,39

and (4) excluding the first and last 5 s of data to ensure a stable signal. Most subjects had 350-s of
data for subsequent brain network analyses, whereas nine participants used 180-s of data for
brain network analyses due to residual artifacts. Compared with Δ½Hb�, Δ½HbO2� has a higher
signal-to-noise ratio and a higher correlation with the blood oxygen concentration dependence
signal.40 Thus, only the HbO2 data were analyzed in this paper, and the corresponding results of
Hb are shown in the Supplementary Material.

2.4 Correlation Matrix and Graph Construction

We used the 22 NIRS channels as network nodes and calculated Pearson correlation coefficients
between each pair of channels to obtain a correlation coefficient matrix of 22 × 22. Fisher’s Z
transformation was used to convert the correlation matrix into a Z-value matrix to improve the
normality.41 The matrix’s diagonal value was set to zero. Finally, the Z-value matrix was con-
verted into the corresponding binary matrix by sparseness with different thresholds. All analyses
were carried out over a range of thresholds because there is no “correct” threshold.42 We selected
the threshold ranges of 0.3 to 0.7 with a step size of 0.01 to rarefy the network. 0.3 was chosen to
exclude the low-level correlation in topology, and 0.7 was chosen to reduce the data splitting.43

The absolute values of Z-scores in the matrix were sorted from smallest to largest, and those with
absolute values greater than the threshold were set to 1 in the corresponding binary matrix, and
the others were set to 0. For example, when the threshold was set as 0.4, the first 60% absolute
values of Z were set to 1 in the corresponding binary matrix, and the others were set to 0. Avalue
of 1 indicated that two channels were connected, that is, an edge existed between these two
channels. Constructing graphs in this manner guaranteed the comparison of different groups’
topological properties under the same connection number.

2.5 Small-World Properties

To analyze the motor network characteristic, we used the brain connectivity toolbox to calculate
the following small-world properties of each binary network:44 clustering coefficient (C), char-
acteristic path length (L), transitivity (T), local efficiency (LE), global efficiency (GE), normal-
ized clustering coefficient (γ), normalized characteristic path length (λ), and small-worldness (δ).

A node’s clustering coefficient (Ci) represents the degree of connectivity between the node
and its neighbors. The network’s clustering coefficient (C) is the average of all node clustering
coefficients [Eq. (1)], and it reflects the entire network’s degree of local clustering and segre-
gation; it is given as

EQ-TARGET;temp:intralink-;e001;116;242C ¼ 1

m

Xm

i¼1

Ci ¼
1

m

Xm

i¼1

2ei
KiðKi − 1Þ ; (1)

where Ci represents the clustering coefficient of node i, ei represents the number of neighboring
nodes directly connected to node i, Ki represents the node degree, and m is the total number
of nodes.

The characteristic path length (L) is the average of all shortest paths between pairs of nodes
[Eq. (2)] and reflects the overall routing efficiency and integration of the network. A shorter L
indicates faster information propagation. L is calculated as

EQ-TARGET;temp:intralink-;e002;116;121L ¼ 1

mðm − 1Þ
X

i≠j∈m
di;j; (2)
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where the shortest path length di;j refers to the minimum number of edges required to connect
nodes i and j.

The global efficiency (GE) reflects the network’s global transmission capacity, which is the
average of efficiencies between nodes and is calculated as

EQ-TARGET;temp:intralink-;e003;116;687GE ¼ 1

mðm − 1Þ
X

i≠j∈m

1

di;j
: (3)

The local efficiency (LE) is the mean efficiency of the subgraph Gi, which consists of all of
the neighboring nodes for each node and is calculated as

EQ-TARGET;temp:intralink-;e004;116;614LE ¼ 1

mðm − 1Þ
Xm

i¼1

EðGiÞ: (4)

Transitivity (T) is the ratio of triangles (closed triples) to triples (three nodes that have
connections) in the network. It is given as

EQ-TARGET;temp:intralink-;e005;116;541T ¼ Triangle number

Triple number
: (5)

To check whether the motor network had a small-world characteristic, its clustering coef-
ficient and characteristic path length were compared with those from a random network with
a similar node number and degree distribution. In general, we expected the small-world network
to have ratios of γ > 1, λ ≈ 1, and δ > 1

EQ-TARGET;temp:intralink-;e006;116;448γ ¼ C∕Crand; (6)

EQ-TARGET;temp:intralink-;e007;116;404λ ¼ L∕Lrand; (7)

EQ-TARGET;temp:intralink-;e008;116;382δ ¼ γ∕λ; (8)

where Crand and Lrand are the averaged C and L of 100 random networks, respectively.
To overcome the threshold influence on statistical analyses and modeling, we calculated the

area between the topological property curve and the X-axis by the numerical integration method
to get the area under the curve (AUC).45 The AUC can provide an aggregated scalar that is not
affected by the choice of a single threshold46 and is sensitive to the network topology change.47,48

We compared the AUC indicators between groups, analyzed the correlation between patients’
FMA and AUCs of topology properties, and used the AUC indicators as features in SVM.

2.6 Relation Between Network Properties and Patients’ Motor Function

To explore the relationship between patients’ motor function and the motor network properties,
we calculated the Partial correlations between patients’ FMA and the AUCs of topology proper-
ties with age and gender as control variables.

2.7 SVM Classification

We used SVM to classify Mild patients, MtS patients, and Healthy controls in Python. SVM is a
supervised machine learning algorithm. Through the selection of function subsets and corre-
sponding discriminant functions, the actual risk of the SVM classifier is minimized according
to the structural risk minimization criterion. SVM’s optimal decision plane is dependent only on
the position and number of support vectors, which can perform well in the case of small samples.
Essentially, SVM is a two-group classifier. It is possible to use one-versus-rest (OVR) or one-
versus-one strategies for multigroup classification.

We used the AUCs of eight topological properties as alternative characteristics and used the
recursive feature elimination method to select the features. The performance of SVM was
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validated using a nested cross-validation (CV) process with an outer and an inner loop. In the
outer loop, we used leave-one-out CV, with one subject as the test sample and the remaining
subjects as the training samples that were input to the inner loop. In the inner loop, we used 10-
fold CVand used grid search to optimize the optimal model parameters. Specifically, all possible
parameter combinations were enumerated by the grid search, and each parameter combination
was trained 10 times. Then we selected the parameter combination with the best performance in
the inner loop and applied it to the model evaluation in the outer loop. The OVR approach was
used for the multigroup classification, and we calculated the sensitivity and specificity of each
classifier.

2.8 Statistical Analyses

The analysis of variance (ANOVA) with age and gender as covariables and group (Healthy, Mild,
and MtS) as the between-subject factor was used to examine the differences in network topo-
logical properties among groups. Then posthoc T-tests (LSD correction) were performed for
multiple comparisons. The Shapiro-Wilk test was used to determine whether the data had a nor-
mal distribution, and the Levene test was used to determine whether the variance was homo-
geneous. Statistical Package for the Social Sciences (SPSS) was used for statistical analyses, and
the level of statistical significance was set to 0.05.

3 Results

3.1 Clinical Results

In this study, stroke patients were at 1.2� 1.04months after a stroke. As shown in Table 1, there
was no significant difference in gender among the three groups, but there was a significant differ-
ence in age between groups. In the later analyses, we took both age and gender as control var-
iables to eliminate their influence on the results. Lesion side and time after stroke onset were not
significantly different between the Mild and MtS groups, and the FMA score was evidently
lower for the MtS group than the Mild group (Table 1).

3.2 Small-World Properties

The hemodynamic signals at a typical channel from one Healthy subject, one Mild patient, and
one MtS patient are shown in Fig. 2. Δ½HbO2� was used for calculating the motor network’s
small-world properties. The trends of the motor network’s small-world properties for the three
subject groups are depicted in Fig. 3. The majority of node pairs had connections when the
threshold was low. When the threshold increased, some connections were lost, which led to
a C decrease. Therefore, connections between node pairs had to go through more nodes, result-
ing in the L increase. The number of closed triples, as well as the local and global information

Table 1 Subject characteristics.

Stroke patients

Healthy subjects
p (1χ2-test
or 2ANOVA)Mild MtS

Age (years) 65.26 ± 8.12 59.68 ± 10.98 50.91 ± 3.09 2<0.01

Gender (male/female) 13/2 12/4 10/1 10.212

Lesion side (left/right) 7/8 7/9 10.870

FMA 94 ± 5.05 40.38 ± 26.22 2<0.001

Time after stroke onset (month) 1.08 ± 0.83 1.33 ± 1.21 20.512
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transmission efficiency, decreased. High clustering (γ > 1), small characteristic path (λ ≈ 1), and
small-world characteristics (δ > 1) were observed in all three groups.

Our first goal was to study the patients’ motor network reorganization. Thus, we examined
how the three groups’ network properties differed from each other. As shown in Fig. 3, C, LE,
and T for the Mild group were lower than those for the MtS group and larger than those for the
Healthy group. This was observed across a wide range of thresholds. At certain thresholds, GE
for the Mild group was larger than that for the MtS group and lower than that for the healthy
group. L, γ, and δ were greater in both the mild and MtS groups than in the healthy group under
some thresholds. There was almost no intergroup difference in λ among the three groups.

Fig. 2 Time course ofΔ½HbO2� andΔ½Hb� at a typical channel (Ch13) from one Healthy subject (a),
one Mild patient (b), and one MtS patient (c).

Fig. 3 Mean C (a), L (b), LE (c), GE (d), T (e), γ (f), λ (g), and δ (h) for the three groups under each
threshold. The shaded part indicates the standard error (SEM). The black, blue, and red small
triangles represent significant differences between Healthy and Mild groups, Mild and MtS groups,
and Healthy and MtS groups.(p < 0.05, FDR correction) under this threshold, respectively.
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ANOVAwith age and gender as covariables revealed that the group effect was significant for
the AUCs of Cðp ¼ 1e−13Þ, Lðp ¼ 7e−3Þ, LEðp ¼ 2e−7Þ, GEðp ¼ 3e−4Þ, Tðp ¼ 2e−9Þ, and
γðp ¼ 0.019Þ. Then, we performed posthoc T-tests to analyze AUC differences between groups,
and the results are shown in Fig. 4.

3.3 Relation Between Network Properties and Patients’ Motor Function

With age and gender as control variables, we conducted Partial correlation analyses between
patients’ FMA and the AUCs of eight network properties. The results displayed that AUCs
of C, LE, and T had a significant negative correlation with FMA, whereas the AUC of GE had
a significant positive correlation with FMA (Fig. 5).

3.4 SVM Classification

We used AUCs of all topological properties as alternative characteristics, and the results of fea-
ture selection showed that C (weight = 0.232) presented the highest distinguishing ability, fol-
lowed by LE (weight = 0.222), T (weight = 0.162), L (weight = 0.120), GE (weight = 0.110), γ
(weight = 0.103), δ (weight = 0.038), and λ (weight = 0.013) in sequence. The established SVM
model achieved the highest accuracy of 85.7% for classifying the three groups of subjects using
the first six network properties’ AUCs as features. The receiver operator characteristic (ROC)
curves of the SVM models are shown in Fig. 6(b). The AUCs of ROC curves of SVM1 (Healthy
to others); SVM2 (Mild to others) and SVM3 (MtS to others) were 98%, 89%, and 97%, respec-
tively; the sensitivities of SVM1, SVM2, and SVM3 were 81.8%, 93.3%, and 81.3%, respec-
tively; and the specificities of SVM1, SVM2, and SVM3 were 100%, 88%, and 95.8%,
respectively. The small-world properties demonstrated high sensitivity and specificity for
Healthy, Mild, and MtS subjects.

4 Discussion

In this study, we used the graph theory approach to study the RS motor network reorganization in
stroke patients and attempted to establish a machine learning-based assessment model to predict
patients’ motor dysfunction at the individual level. The motor network’s small-world properties
were significantly different between healthy subjects and stroke patients as follows: (1) C, LE,

Fig. 4 AUC indicators of the small-world properties for the three groups, * indicates p < 0.05, **
indicates p < 0.01, and *** indicates p < 0.001 (LSD correction).
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and T: MtS > Mild > Healthy; (2) GE: MtS < Mild < Healthy. C, LE, T, and GE all correlated
with patients’ FMA scores. Using the small-world properties, we constructed SVM models that
could differentiate among the three groups of subjects with a classification accuracy of 85.7%.

After a stroke, the neurological disconnect may result in function reorganization of the whole
brain network.45,49 Even though most stroke patients did not have a lesion in the motor cortex,
their motor network differed from healthy subjects. Stroke patients’ C and T increased

Fig. 6 (a) The confusion matrix of the classification result and (b) the ROC curves of the three
SVM models.

Fig. 5 Scatterplots of significant correlations between FMA and C-AUC (a), LE -AUC (b), T -AUC
(c), and GE-AUC (d).
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(MtS >Mild > Healthy), indicating an increase in the amount of local short connections and the
emergence of high local clustering in patients’ motor network, which resulted in an increase of
LE (MtS > Mild > Healthy). When patients’ motor function got worse, this phenomenon
became more serious. Stroke patients had a higher L (MtS, Mild > Healthy), which indicated
that the motor network’s capacity for integrating and transmitting information became worse for
patients,50 which resulted in a decrease of GE (MtS < Mild < healthy). Yin et al. found an
increase of LE and a decrease of GE in the motor-related cortical network for stroke patients
with motor pathway damage compared with healthy controls.51 Our results are consistent with
their research. In addition, we found that this network property change was present in both the
MtS and Mild groups. The patients’ higher LE in the motor network might be a defense mecha-
nism in response to motor injury.52 The stroke patients also had a higher γ and δ (γ and δ: MtS,
Mild > Healthy > 1), which suggested that the structure of the motor network shifted toward a
regular network. On the other hand, there was no significant difference in the normalized path
length (λ ≈ 1) between the three groups, indicating that the reorganization of the motor network
may primarily involve separation rather than integration.53

Machine learning has been widely used in medicine due to its ability to identify discriminant
variables that can be used for prediction54 and easily incorporate new data to improve prediction
performance.55 Machine learning has improved the assessment and prediction for both diagnosis
and treatment purposes in stroke research.56,57 The goal of this study was to develop a machine
learning-based assessment approach to provide an objective evaluation of stroke patients’ motor
function. According to the selected topological properties, the established SVM models were
able to categorize the three groups of subjects with different motor function capacities with high
accuracy. Any translational implementation should take into consideration the fact that the cost
of misclassifying an ill person as healthy is greater than the cost of misclassifying a healthy
person as ill.25 Our OVR-based classifiers demonstrated high sensitivity and specificity, with
100% specificity for SVM1 classifying healthy controls and stroke patients [Fig. 6(a)], which
indicated that no stroke patients had been misclassified as healthy. Additionally, the motor net-
work properties (C, LE, T, and GE) linearly correlated with patients’ FMA. It has been proved
that stroke patients’ motor performance was more accurately classified by M1 RS connectivity
than by lesion location.28 These all point to the effectiveness of using the RS motor network as a
diagnostic marker to gauge the poststroke dyskinesia degree.58

Because the RS is task-free, stroke patients with severe dyskinesia can also be included to
carry out automated assessments,59,60 significantly expanding the application scope of our
method. NIRS is portable, low-cost, and invasive.61 Our assessment method can be used repeat-
edly throughout a patient’s rehabilitation process. NIRS devices that are wireless and wearable
have been developed.62 They facilitate the rehabilitation follow-ups within home and community
settings and allow doctors and physicians to track a patient’s functional status and provide timely,
accurate and targeted treatment plans.63,64 The development of NIRS and the proposed new
indicators will undoubtedly promote the use of NIRS in clinical applications. It is anticipated
that our method could be adapted to other diseases with dyskinesia, such as Parkinson.65,66

There are also some limitations in this study. First, the sample size was small. However, the
post-hoc tests showed that the differences in small-world properties between the three groups
were reliable. Second, the lesion location and size were not consistent in patients. The time from
the stroke onset to NIRS measurement varied widely among patients. These factors may increase
the RSFC measurement variability. In future studies, we will recruit more patients and further
validate our method by dividing patients into specific subgroups according to the lesion site and
FMA scores. Third, the age differed between groups. But the age factor was treated as a control
variable in the ANOVA and correlation analyses, and the regression analysis results of age and
each network property’s AUC showed no significant correlation. We will match age and gender
between different groups, because there might be a more complex relationship (rather than a
simple linear correlation) between demographic factors and network properties. So, it would
be better to match age and gender between different groups. Finally, Pearson correlation was
used to define the strength of functional connectivity. Previous studies have shown that the small-
world properties obtained from Pearson’s correlation exhibit high reliability when the length of
data exceeds 2.5 min.67 The data length selected for analyzing the small-world properties in this
study can ensure the stability of network properties. Other methods (such as coherence analysis
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and mutual information) can be used in the future to provide more information on brain con-
nectivity, which would reduce the error rate and improve inferences about underlying neural
mechanism.68

5 Conclusions

This study proved the motor network reorganization and its correlation with motor function in
stroke patients: more serious dyskinesia is associated with larger C, LE, and T and smaller GE.
The combination of NIRS, RSFC, and SVM constitutes a sensitive technique for assessing stroke
patients’ dyskinesia degree at the individual level. All data were acquired during a routine
imaging session, highlighting the clinical viability of our method in patients with acute and
severe motor disorders. Our study has great significance for the immediate evaluation of motor
function during rehabilitation, which could be done repeatedly, and the guidance of personalized
rehabilitation programs; it can also reduce the workload of clinicians.
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