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Imaging of post-synaptic membrane trafficking
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ABSTRACT. Membrane trafficking of post-synaptic cargo is a key determinant of synaptic trans-
mission and synaptic plasticity. We describe here the latest developments in visu-
alizing individual exocytosis and endocytosis events in neurons using pH-sensitive
tags. We show how these tools help decipher the spatial and temporal regulation of
membrane trafficking steps during synaptic plasticity.
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1 Introduction
Membrane trafficking in dendrites, in particular exocytosis, endocytosis, and recycling of post-
synaptic receptors, is a key determinant of synaptic transmission and synaptic plasticity.1 Indeed,
blocking exocytosis mediated by VAMP1-3 with post-synaptic dialysis of tetanus toxin, through
a patch-clamp recording pipette, bocks long-term potentiation (LTP)2–4 while blocking dynamin
mediated endocytosis with a peptide interfering with its function blocks long-term depression
(LTD).5 In addition, exocytosis of recycling endosomes (REs) increases following LTP induc-
tion6 and endocytosis of post-synaptic receptors increases following LTD induction.7 Based on
these data, a model has been built describing endocytosis, sorting and recycling of post-synaptic
receptors within dendrites [Fig. 1(a)]. However, its spatial organization and dynamics, as well as
many molecular players involved are still unknown. Therefore, live cell imaging of individual
exocytic or endocytic events is crucial to determine if and how membrane trafficking is modu-
lated following the induction of synaptic plasticity, and whether these processes contribute to its
spatial selectivity.11 Here we will review the methods developed to image individual exocytosis
and endocytosis events, how it helped decipher the cellular and molecular mechanisms, and the
challenges ahead to deal with their limitations.

2 Imaging of Individual Exocytosis Events
The method of choice to image exocytosis events has been to rely on the fact that intraluminal pH
of secretory vesicles, recycling endosomes (REs), or synaptic vesicles is acidic (pH ∼5.5 to 6).
Therefore, the fast change in pH (from 5.5 to extracellular pH 7.4) occurring at the time of exo-
cytosis can be detected by a pH-sensitive fluorophore conveniently positioned at the intraluminal/
extracellular side of the transmembrane cargo of interest, such as post-synaptic α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), or the transferrin receptor
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Fig. 1 Visualization of post-synaptic membrane trafficking in neurons. (a) Scheme of the steps of
membrane trafficking visualized with SEP-labeled cargo (brown sticks), visible at neutral pH
(green lollipops) but not at the acidic pH of REs (dark gray). A presynaptic terminal is depicted
in blue, and the PSD facing this axon in the post-synaptic spine has concentrated receptors. The
internalization of receptors occurs near the PSD (red stippled line, figuring clathrin) or further
away in the dendritic shaft. Blue arrows depict the progression of trafficking along the endosomal
pathway to end in exocytosis near the PSD or further away. (b) Kymograph showing the detec-
tion of two exocytosis events in a portion of dendrite of a neuron transfected with TfR-SEP. For
the event a, the vesicle is visible for several seconds, due to kiss-and-run exocytosis, while for
event b, it is transient due to receptor diffusion. Reprinted from Ref. 8. (c) The frequency of exo-
cytosis events, visualized by VAMP2-SEP, VAMP4-SEP, or TfR-SEP, increases after induction
of LTP by the perfusion of a solution containing glycine (100 μM) and no Mg2þ, which activates
synaptic NMDA receptors. Reprinted from Ref. 9. (d) Images of a portion of dendrite taken at
alternating pH of 7.4 and 5.5 enable the detection of an endocytic vesicle containing TfR-
SEP at time 0. It appears at a CCS labeled with clathrin. (e) Location of endocytic events (blue
and magenta crosses) relative to PSDs labeled with Homer1c-tdTomato (image of the fluores-
cent label). (f) Cumulative frequency of endocytic events labeled with SEP-GluA2. It increases
during induction of LTD with NMDA. (d)–(f) Reprinted from Ref. 10. (g) Images of a cultured
neuron (top) and a CA1 pyramidal neuron in a cultured hippocampal slice (bottom) transfected
with Homer1c-tdTomato and clathrin-GFP. In both cases, CCS are visible throughout the den-
dritic shaft and in most spines. Right, kymographs of clathrin-GFP show that they are very stable
in cultured neurons but transient in the slice.
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(TfR), a ubiquitous RE marker. The pH-sensitive protein with the close to ideal properties to
sense this transition is the GFP mutant super-ecliptic pHluorin (SEP), isolated more than 20
years ago.12 The SEP is virtually non-fluorescent at pH 5.5, making the SEP-labeled cargo
in REs or secretory vesicles invisible, such that single exocytosis events can be visualized as
bright punctae throughout somatodendritic compartments of the neuron, including dendritic
spines. Modeling of exocytosis and diffusion in the plasma membrane with experimentally
derived parameters shows that AMPAR exocytosis must occur in the vicinity of synapses for
rapid control of AMPAR number at synapses.13 After exocytosis, fluorescence decays with vari-
ous kinetics, revealing different modes of exocytosis [Fig. 1(b)].8,14,15 Photobleaching of parts, or
even the whole cell, nearly erases the fluorescence of fluorescent of cargo residing in the plasma
membrane while preserving the non-fluorescent cargo in acidic compartments, allowing a better
isolation of exocytic events and quantification of whole-cell exocytosis rates.9,16 In addition, the
red pH-sensitive fluorescent proteins, pHuji and pHmScarlet17,18 or SNAPtag ligands labeled
with the pH-sensitive red fluorophore Virginia Orange,19 are available to permit multicolor im-
aging of various cargo proteins. Recent developments in research on post-synaptic exocytosis
and synaptic plasticity include the effect of local induction of LTP at single spines on exocy-
tosis,20–22 the role of L-type calcium channels in controlling exocytosis after LTP induction,22 and
the identification of several classes of REs containing either VAMP2 or VAMP4 having distinct
roles in LTP [Fig. 1(c)].9

3 Imaging of Individual Endocytosis Events: Clathrin Dynamics
Unlike exocytosis, the formation of endocytic vesicles is not accompanied by sudden changes
in pH, rendering imaging of endocytosis at high speed with single-vesicle resolution difficult.23

In the case of clathrin-mediated endocytosis (CME), one solution is to label clathrin or asso-
ciated proteins and image clathrin-coated structures (CCSs). The CCSs are located all over
dendrites, but a significant proportion is located in the vicinity of post-synaptic densities
(PSD), <300 nm away, such that 75% to 85% of PSDs have a nearby CCS.10,24–26 The pro-
portion of PSDs bearing a CCS is decreased to ∼40% when the three isoforms of Shank1-3,
PSD proteins that interact with endocytic and actin binding proteins, are downregulated by a
miRNA27 or when the immediate early gene Homer1a is overexpressed, which displaces Shank
proteins from PSDs.25 Peri-PSD CCSs play a specific role in post-synaptic receptor endocy-
tosis,25 even if some AMPARs may internalize through clathrin independent endocytosis.28–30

How does imaging of CCSs reveal the dynamics of CME? The CCSs are transient structures
appearing and disappearing in living cells: this would reflect the clustering of cargo, invagi-
nation to form a vesicle, scission, clathrin uncoating, and movement away from the plasma
membrane. Therefore, CCS lifetime, around 1-2 min in most cell types, can be used as a proxy
for endocytic activity with single CCS resolution.31 However, super-resolution microscopy and
correlative light electron microscopy have revealed the existence of complex CCSs that pro-
duce more than one endocytic vesicle.32,33 Therefore, vesicles can form without CCS disap-
pearance or even measurable changes observed with classical wide field microscopy, so-called
non-terminal endocytic events (Refs. 34 and 35; see also following paragraph). In dendrites of
mature neurons in culture, CCSs are almost all stable in a period of at least 10 min, despite the
fact that they internalize CME cargo at a much higher rate.10,24–26 Therefore, even if some
changes in the size or number of CCS have been observed after induction of LTP or
LTD,26 observing CCSs in living neurons cannot reveal the precise moment of vesicle forma-
tion, hence the rate of endocytosis.

4 Imaging of Individual Endocytosis Events: Direct Detection
of Vesicle Formation

By definition, endocytosis depicts the process of vesicle formation, i.e., the isolation of a mem-
brane cargo from the extracellular space. Testing this connection could thus provide a direct
assay for vesicle formation, overcoming the limitation of observing CCS dynamics. This con-
nection can be tested with a cargo protein labeled with pH-sensitive tag such as SEP and with
repeated pulsed pH changes (ppH) from 7.4 to 5.5. Cargo on the plasma membrane becomes
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invisible at extracellular pH 5.5 while cargo in non-acidic vesicles (e.g., endocytic vesicles not
yet acidified) will remain visible. The moment of vesicle formation is thus detected when a pH
resistant vesicle appears in an image taken at extracellular pH 5.5, with a temporal precision
matching the ability to exchange the two solutions rapidly, typically less than 2 s for whole
cells but faster for small neurites [Fig. 1(d)].8 A good cargo protein to use is, like for RE exo-
cytosis, TfR-SEP. In addition to its location in RE (which are acidic and thus invisible with the
SEP tag), it is also located on the plasma membrane and constitutively internalized through
CME. Multiple control experiments show that CME is not affected during the ppH
protocol.34,35 In neurons, despite the activation of acid-sensing ion channels by the low pH
solution, blocking these channels does not affect the rate of CME, and quenching SEP fluo-
rescence with cell-impermeable Trypan purple instead of acidic pH enables the detection of
vesicles, albeit for only a few minutes due to progressive accumulation of the dye on the plasma
membrane.10 Multiple endocytic events indeed appear at individual CCSs with a median
inter-event interval of 168 s.10 Moreover, endocytic vesicles containing the AMPAR subunit
SEP-GluA2 detected with the ppH protocol form preferentially near PSDs while those con-
taining the non-synaptic TfR-SEP do not [Fig. 1(e)].10 Moreover, application of N-methyl-
D-aspartic acid (NMDA), which leads to internalization of AMPARs and LTD, provokes a
transient increase in the frequency of SEP-GluA1 and SEP-GluA2 endocytic events
[Fig. 1(f)].10,29,36,37 The characterization of the dynamics of post-synaptic endocytosis is thus
well under way. Nevertheless, several outstanding questions remain. How is endocytosis regu-
lated after LTD at individual spines? What is the fate of endocytic vesicles? Are specific pop-
ulations targeted to degradation or recycled? Does it occur locally? To address these questions
at the single event level, new protocols and tools are required with new types of markers, such
as protocols, inducing LTD in individual spines38 or fluorophores with inverse pH sensitivity.39

5 Current Limitations and Perspectives
Endogenous AMPARs are for the most part heteromers of GluA subunits associated with several
accessory proteins,40 so overexpression of SEP-GluA subunits likely biases the labeling towards
homomeric receptors with specific trafficking routes.30 Genome editing of GluA genes to tag
endogenous AMPARs, either in single neurons41,42 or in transgenic mice with bi-allelic gene
editing43 should reveal the unbiased trafficking of post-synaptic receptors. Another important
step towards understanding membrane trafficking in a physiological context is the ability to
image tagged proteins of interest in more intact systems. Although most live imaging studies
have been performed in cultured neurons grown on glass coverslips, imaging of exocytosis
in cultured slices has been proven possible by two photon microscopy.20 Imaging endocytosis
in slices remains more challenging, as the ppH-based methods may lack the required time res-
olution due to the convoluted extracellular space. Nevertheless, our preliminary data show that
CCSs are more dynamic in slices than in cultured neurons on glass [Fig. 1(g)], paving the way for
an estimation of local endocytic activity and its modulation during synaptic plasticity based on
imaging of CCSs.

Finally, to better assess the membrane trafficking of receptors in a physiological context
in situ, we can anticipate the development of brighter pH-sensitive fluorescent proteins (it is
remarkable that SEP was not optimized since its discovery in 2000, despite the constant improve-
ment of GFP based fluorescent proteins44) and fast, sensitive imaging techniques, such as lattice
light-sheet microscopy with adaptive optics.45
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