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ABSTRACT. Machine learning has revolutionized the way data are processed, allowing infor-
mation to be extracted in a fraction of the time it would take an expert. In the field of
neurophotonics, machine learning approaches are used to automatically detect
and classify features of interest in complex images. One of the key challenges
in applying machine learning methods to the field of neurophotonics is the scarcity
of available data and the complexity associated with labeling them, which can limit
the performance of data-driven algorithms. We present an overview of various
strategies, such as weakly supervised learning, active learning, and domain
adaptation that can be used to address the problem of labeled data scarcity in
neurophotonics. We provide a comprehensive overview of the strengths and
limitations of each approach and discuss their potential applications to bioimaging
datasets. In addition, we highlight how different strategies can be combined to
increase model performance on those datasets. The approaches we describe can
help to improve the accessibility of machine learning-based analysis with limited
number of annotated images for training and can enable researchers to extract
more meaningful insights from small datasets.
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1 Introduction
The recent emergence of machine learning approaches has transformed the landscape of
biomedical data analysis. Since the first demonstration that the U-Net could be successfully
applied to single cell segmentation on a limited number of training samples,1 important efforts
have been made in developing machine learning tools that are accessible to the bioimaging
community.2–5 Such tools include user interfaces that integrate image visualization, labeling,
training, and prediction, such as Ilastik5 and Napari,6 as well as pre-trained algorithms designed
to be easily applied to new data, such as Cellpose4 and deepImageJ.7 Efforts are also being made
to facilitate access to the computer resources needed to train the models for microscopy image
analysis, which are often a barrier, such as ZeroCostDL4Mic2 and the BioImage Model Zoo.3

However, supervised machine learning models require datasets that are specifically processed
and annotated for the task that they are designed for (e.g., segmentation, detection, and
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classification). While models can be pretrained on open-access bioimaging datasets,3,8–10 a fine-
tuning step with a subset of annotated data needs to be performed to adapt the model to a new
bioimaging analysis task. The annotated training datasets need to be large enough to represent
accurately the full data distribution to ensure that the model generalizes well at inference. When
the model is applied to a new dataset or to a new batch of images, changes in the features defining
the objects of interest may reduce the performance or require the model to be optimized.
For biological experiments, this means that any change in the experimental settings may require
re-annotation of a subset of the data and retraining or fine-tuning of the model to fit the new data
distribution. In research fields, such as neurophotonics, in which data acquisition is costly and
annotation requires trained experts, strategies need to be developed to mitigate annotation com-
plexity and increase the robustness of machine learning models to data variability and data imbal-
ance. To support the democratization of machine learning approaches for biomedical image
analysis, sharing of open-source models and open-access datasets needs to be combined with
optimized and simple annotation strategies accessible to domain experts. Here, we address two
aspects that can potentially increase the accessibility to annotated data in neurophotonics:
(1) labeling complexity and (2) data scarcity. We present methods we have applied to facilitate
the application of machine learning to solve real neurophotonics-specific challenges we have
encountered.

2 Discussion

2.1 Labeling Complexity
Training fully supervised machine learning models to perform analysis tasks on bioimaging
datasets is challenging as it requires large amount of precisely annotated images.2,11,12

Considering that the acquisition of new data or the annotations of the full dataset is not always
possible due to ethical, time, or cost constraints, alternative strategies need to be proposed to
democratize machine learning approaches in the field of neurophotonics.

We have recently addressed the challenge of labeling scarcity using weakly supervised
learning approaches. We demonstrated that bounding boxes and binary annotations can replace
precise contour annotations to train deep learning models on different tasks (instance segmen-
tation, semantic segmentation, localization, and detection)8,13 [Fig. 1(a)]. Simplifying the anno-
tation process reduces both the annotation time and the inter-expert variability. It is a promising
avenue in cases where the annotation task proves to be tedious and requires the involvement of
trained experts.

(a) (b) (c)

Fig. 1 Applications of weak supervision, active learning, and domain adaptation. (a) Similar
performance is obtained for a segmentation task on the cell tracking challenge using weakly and
fully supervised training schemes. Weak supervision significantly reduces the annotation time.13

(b) Active learning allows to obtain a better classification performance with fewer training images
compared to random selection of images.14 (c) Domain adaptation can help apply a previously
trained model to new images from a different domain (e.g., batch, device) by adapting the new
images to the original domain.15
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In some cases, the available datasets do not provide any or only a very limited number of
annotated images, making the training of a deep neural network inconceivable. One promising
approach to increase the number of annotated images within a larger dataset in an efficient way is
active learning16 [Fig. 1(b)]. In an active learning context, the training dataset is iteratively
created by asking an expert to label the most informative samples, i.e., those expected to bring
the most improvement to the model’s performance, using a measure of prediction uncertainty17,18

or sample diversity.19,20 However, when the annotation cost (i.e., time to produce an annotation)
of each sample is not constant across the dataset, it should be considered in the design of the
active learning model to avoid increasing the total annotation cost while reducing the number of
annotations.14,21 We have shown how a trade-off between annotation cost and model performance
can be achieved in a simple task, which could be extended to neurophotonics data.14

In neurophotonics datasets, researchers often face the challenge of defining a precise ground
truth for a specific task (e.g., identifying object borders for a segmentation task). In this context,
large intra- and inter-expert variability can be observed.13 Crowdsourcing is a strategy used to
gain access to a large pool of annotations from the community. Crowdsourcing helps alleviate the
challenge of annotating large amounts of data by spreading the task across many people, also
enabling the collection of multiple annotations for each sample. This is initially used to help
aggregate the annotations from non-expert users, but it also grants access to a measure of the
confidence on the obtained annotations. Such a measure could be leveraged to consider the
commonly encountered annotation variability of biological structures in neurophotonics datasets.

Self-supervised learning22,23 (SSL) is a promising avenue for addressing annotated data scar-
city when large datasets are available but the accessibility of ground truth annotations is limited.
SSL is a two-steps paradigm where (1) the general representation of the domain is learned using a
pretext task that does not require labeled data, and (2) the downstream task is learned using the
fraction of the dataset that is labeled.24 The use of SSL for neurophotonics can be limited by the
identification of reliable pretext tasks that are well adapted for microscopy images. Common
pretext tasks for images include context prediction,22,25 jigsaw puzzles,26 rotation prediction,27

and colorization;28 all of which are not directly applicable to microscopy images. The context
prediction and the jigsaw puzzle tasks could have more than one possible answer (particularly for
images where structures are far apart), rotations are not defined in the plane of the image, and
pseudo-colors are arbitrarily defined from photon-counts. Instance discrimination,29 geometric
self-distillation,30 classification of image parameters (e.g., scale31), and image prediction32,33 are
all pretext tasks that are applicable to microscopy images, do not require semantic labels, and yet
still enable the model to learn generalizable representations of the data. Image prediction can be
used as a pretext task to learn denoising in temporal imaging data, improving signal-to-noise ratio
in calcium34,35 and voltage36 imaging without the need for ground-truth denoised images, which
are difficult to obtain. These methods take advantage of the spatial relationship between con-
secutive frames to learn to generate images with reduced noise. Such denoising approaches can
be applied in real-time during imaging, proving particularly useful in photon-limited contexts,
such as two-photon microscopy.37

2.2 Data Scarcity
The expanding range of microscopes and imaging systems that are routinely applied to neuro-
science research questions unlocks new insights into complex biological processes. The gained
flexibility in the choice of devices and acquisition parameters to characterize a given biological
structure can lead to an increased variability in the properties of the generated datasets for a very
similar research question. Images from the same structure acquired by two different groups or
even at different time points on the same device can belong to different data distributions.
Notably, models trained on a given type of images (dimension, resolution, and modality) will
not necessarily be directly applicable to a new dataset.13 While it can be obvious when addressing
completely different modalities, it becomes problematic when differences between the image
datasets are barely perceptible even for a trained expert [Fig. 1(c)].

A model proven to be effective for the segmentation of F-actin nanostructures in STimulated
Emission Depletion (STED) images of fixed hippocampal neurons8 was unsuccessful in seg-
menting the same structures on new images acquired a few years later on the same device.
To avoid annotating a new dataset to retrain a deep neural network from scratch, we explored
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two alternative approaches: transfer learning (fine-tuning the original segmentation network) and
synthetic data generation using a conditional generative adversarial network (cGAN) for domain
adaptation.15 cGANs create synthetic images from one domain based on input images from
another domain.38,39 It allows adaptation of the image features from a new distribution to match
those of the original distribution [Fig. 1(c)]. Both methods (transfer learning and training on
domain-adapted synthetic data) improved the segmentation accuracy on the new dataset over
the original segmentation network. Synthetic data may also be generated using biologically and
optically accurate simulations without the use of neural networks.40,41 This proves useful in par-
ticularly data-hungry learning methods, such as reinforcement learning, where acquiring the
required amount of imaging data for training is unreasonable.42

The idea of using knowledge obtained from one dataset before learning a task on a second
dataset was proven effective for many applications and is a well-established method for address-
ing data scarcity.43,44 When training a deep neural network using transfer learning, we rely on a
large labeled dataset to learn the initial weights of the model. This model can be fine-tuned to the
new domain associated with a smaller dataset (Fig. 2). Using transfer learning reduces the train-
ing cost since the pretraining step is performed on very large open-source datasets. However,
transfer learning might offer little benefit in neurophotonics since the features defining the struc-
tures in microscopy images differ significantly from the features in the common large datasets
composed of natural images.44 Encouraging the shift toward open-source data will allow building
huge field-specific community datasets from which general representations can be learned,
similarly to commonly used computer vision datasets.

2.3 Data Imbalance
A dataset where the number of training examples is not constant across classes is called imbal-
anced. Data imbalance is a prevalent challenge across bio-imaging applications, because
elements of interest tend to correlate with fewer occurrences.45 In neurophotonics, segmentation
tasks often meet the data imbalance problem since the number of pixels to which a class is
assigned can be far inferior to either the number of pixels from a different class (e.g., cell bodies
versus neuritis46 and active versus inactive neurons in two-photon calcium imaging47) or the
number of unlabeled pixels (background or non-studied structures). If this data imbalance is
not addressed, models can become overconfident for the more prevalent classes and avoid
learning the distinctive features of less common classes.

Data augmentation in computer vision is the process of applying geometric transformations
(e.g., rotations, scaling, flips, crops, and skewing), color transformations (e.g., brightness,
contrast, and saturation), or appearance transformations (e.g., Gaussian filtering, Sobel filtering,
and noise addition) to increase the number of different training examples from a given number of
data samples.48 Data augmentation can alleviate the consequences of data imbalance by aug-
menting the images of rare classes until their number matches the most common class.
However, not all types of transformations designed for natural images can be applied to micros-
copy images. For example, scaling images during training could prevent a model from learning

Fig. 2 (Left) Solutions to address common data-driven challenges in neurophotonics: data
scarcity, label scarcity, and data imbalance. (Right) Green and red boxes represent images from
different domains, and blue and yellow rectangles represent annotations for different tasks.
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size features that can be useful for analyzing images acquired at a constant magnification.49

Colors also hold a different meaning in fluorescence microscopy than for natural images and
this meaning must be preserved through color transformations.50 The application of filters can
decrease the resolution of the images, and nanoscale elements can be lost through the blurring
effects, affecting the possibility for the model to recognize nanoscale features.51 Careful consid-
erations must be taken for what types of transformations can be applied to the images without
altering the significance of their assigned labels.

3 Conclusion
In the field of neurophotonics, challenges associated with data and label scarcity can be
exacerbated by the complexity of the image acquisition, the requirement for expert knowledge
for annotations, and the experimental variability. We covered a few possible methods for tackling
data and label scarcity through concrete challenges we have encountered. To democratize
machine learning-based quantitative bioimaging, the development of approaches that are acces-
sible, reproducible, documented, and broadly available to the community will be essential. Their
deployment will be coupled with strategies to improve the efficiency of the training process of
deep learning models, both in terms of required data and annotations.
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