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ABSTRACT. Significance: Sickle cell disease (SCD), characterized by painful vaso-occlusive
crises, is associated with cognitive decline. However, objective quantification of
cognitive decline in SCD remains a challenge, and the associated hemodynamics
are unknown.

Aim: To address this, we utilized functional near-infrared spectroscopy (fNIRS) to
measure prefrontal cortex (PFC) oxygenation responses toN-back working memory
tasks in SCD patients and compared them with healthy controls.

Approach: We quantified the PFC oxygenation rate as an index of cognitive activity
in each group and compared them. In half of the participants, a Stroop test was
administered before they started N-back to elevate their baseline stress level.

Results: In SCD compared to healthy controls, we found that (1) under a high base-
line stress level, there were significantly greater oxygenation responses during the
2-back task, further elevated with histories of stroke; (2) there was a marginally
slower N-back response time, and it was even slower with a history of stroke; and
(3) the task accuracy was not different.

Conclusions: Additional requirements for processing time, PFC resources, and
PFC oxygenation in SCD patients offer an important basis for understanding their
cognitive decline and highlight the potential of fNIRS for evaluating cognitive
functions.
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1 Introduction
Sickle cell disease (SCD) is an inherited genetic blood disorder affecting ∼1 in 500 individuals of
African descent in the United States. SCD is characterized by painful, frequent vaso-occlusive
episodes due to microcirculatory occlusions caused by rigid, sickle-shaped red blood cells. The
vaso-occlusive episodes accompany severe pain crises, originating from the surrounding tissue
damage due to oxygen deprivation. One common treatment is blood transfusions, which require
costly hospital visits and follow-ups. Unfortunately, many SCD patients, due to their disadvan-
taged socioeconomic status, often cannot access this essential care. This leads to poorer health
outcomes and a diminished quality of life compared with patients with other chronic diseases in
the United States.

In recent years, numerous studies have aimed at noninvasively identifying physiological
markers of SCD severity, with the goal of guiding longitudinal treatments. Most studies focused
on the alteration of sensory function and the autonomic nervous system caused by frequent
pain crises. Some explored the neuropathways and transmitters responsible for elevated pain
sensitivity in SCD.1–3 Other studies identified an elevated, neurally mediated peripheral vaso-
constriction response to stimuli that trigger pain crises, such as heat or cold.4–7 These findings
were further demonstrated by altered responses in SCD’s autonomic nervous system during
a head-up-tilt test,8 and additional studies have explored similar markers.9–12

Cognitive decline is another complication of SCD, but its dynamics are not fully understood.
It is known that cerebral microcirculatory occlusions can cause silent or overt strokes, which can
lead to cognitive decline.13–15 Previous studies have shown a correlation between intelligence
quotient scores and MRI-based stroke severity assessments in SCD;16 children with SCD have
exhibited difficulties in performing specific memory tasks;17 and recent MRI studies have
revealed shrinkage or hyperintensity of the white matter (indicating infarcts) in SCD, suggesting
evidence of, or factors contributing to, cognitive decline.18,19 However, due to feasibility reasons,
these studies rely on MRI-based, steady-state structural brain imaging rather than observing
real-time brain activations during cognitive tasks. Consequently, our understanding of cognitive
decline in SCD—based on brain hemodynamics—is still lacking.

To address this gap, we conducted a study on functional brain activity in SCD using wear-
able sensors that can be easily deployed and provide objective signal features of cognitive brain
activity. We hypothesized that neurovasculopathy, caused by chronically inadequate cerebral
blood flow as in SCD, leads to poor and slow cognitive functions. We further hypothesized that
these functional deficits would be reflected in the prefrontal cortex (PFC) oxygenation measured
using functional near-infrared spectroscopy (fNIRS) during experimentally designed cognitive
tasks.

We administrated N-back tasks, which require short-term working memory, with simulta-
neous fNIRS monitoring in 23 SCD patients and 18 age- and race-matched healthy subjects.
N-back memory tasks are commonly used to assess mental workload as they activate the PFC,
which is responsible for cognitive processing.20 We also utilized fNIRS as it is portable and
convenient for in situ experiments. Previous fNIRS-based studies have found increased brain
oxygenation within the PFC during demanding memory tasks in non-SCD participants.21–25

Although MRI-based studies on resting state in SCD have been reported,18,26,27 to date, we are
not aware of any studies that utilized fNIRS to characterize PFC oxygenation responses to
a cognitive task in SCD.

2 Methods

2.1 Subject Demographics
This study was approved by the Institutional Review Board and conducted at Children’s Hospital
Los Angeles (CHLA). We enrolled 23 patients with SCD who received care at CHLA and
18 age- and race-matched control subjects. Participants had to be older than 11 years and
free of vaso-occlusive crises or hospitalization within the past 10 days and not have an anxiety
disorder. All participants provided written consent or assent before the study. Within the SCD
group, we further identified eight patients with a history of stroke (SCDhs1). Detailed demo-
graphics are shown in Table 1.
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2.2 Study Design
We utilized the N-back working memory task to evoke prefrontal oxygenation during cognitive
workload.20,30,31 However, not all participants started with the same baseline. Although half of the
subjects began directly with the N-back task, the other half engaged in a word-color-incongruent
Stroop task, a different type of cognitive workload that potentially elevated their baseline stress
levels. This Stroop task and its induction of mental stress have been published by our group.32

Between the Stroop and N-back tasks, we incorporated an ∼5-min questionnaire about the
subjects’ state-trait anxiety levels [Fig. 1(b)].

We began by measuring the subjects’ PFC oxygenation for 5 min without any task.
Following this period, we presented N-back tasks on a computer screen via E-prime 2.0 software
(Psychology Software Tools, Inc.). In a single block of N-back tasks, a sequence of alphabetic
letters was presented for 0.5 s, followed by a 2.5-s blank screen, and participants were instructed
to press a keyboard button when the current letter matched the one presented N-backs ago
(N ¼ 1, 2, or 3). For the 0-back condition, the target letter was “X” [Fig. 1(a)]. Each N-back
block lasted 42.5 s and had 4 to 6 correct targets for a button press. Each level (0- to 3-back) was
presented by the N-back block, three times in random order, resulting in a total of 12 N-back
blocks per participant (4 levels × 3 trials). A 25-s rest period followed each block [Fig. 1(b)].
The E-prime software recorded the response time (in ms resolution) and the accuracy of the
participant’s performance. For each N-back block, data were excluded from the analysis if the
participant did not provide any keypress responses.

2.3 Noninvasive Brain Oxygenation and Physiological Measurements
We recorded the changes in PFC hemodynamics using fNIRS (Biopac Systems Inc.) concur-
rently with peripheral physiology, including fingertip blood volume change using photoplethys-
mography (PPG, Nonin Medical Inc.), end-tidal CO2 (ETCO2) through a nasal cannula
(Vacumetrics Inc.), and respiratory patterns using inductive belts around the chest and abdomen

Table 1 Population characteristics.

Healthy control N ¼ 18 SCD N ¼ 23 aP-value

Age (years) 19 ± 5 21 ± 6 0.4

Female 8 (44) 10 (43) 1.0

Hemoglobin (g/dL) 12.7 (12.0 to 14.5) 9.6 (8.6 to 11.7) <0.001

bHemoglobin deficit (rg/dL) 0.0 (0.0 to 0.2) 3.2 (1.3 to 4.5) <0.001

Treatment

Chronic blood transfusion 9 (39)

Hydroxyurea 12 (52)

History of stroke

cSilent 5 (63)

Overt d3 (37)

Note: Data are presented as N (column %) for categorical variables, except when presented as mean ± SD for
normally distributed continuous variables and when presented as median (25 to 75th) for non-normal continu-
ous variables.
aT -test was used for normally distributed continuous variables, Wilcoxon/Kruskal–Wallis Rank Sum test was
used for non-normal continuous variables, and Fisher’s exact test was used for categorical variables.

bNormal hemoglobin count was computed using the subject’s age and sex corresponding to “normal hemo-
globin count ranges widely accepted by physicians” from the Disabled World hemoglobin level chart.28

cBeing a “silent” stroke was determined clinically and from patients’ MRI images and the signs of cognitive
decline assessed by neuropsychological testing.29
dLocations of stroke. Patient #1: bilateral deep white matter front lobe, bilateral centrum semiovale, and bilateral
cerebellar lesions; patient #2: bilateral centrum semiovale and right frontal white matter infarctions; patient #3:
the stroke was resolved at the time of the study, and the original locations of stroke (occurred 18 years prior to
the study date) are unknown because of no electronic medical record.
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(Pro-Tech zRIP DuraBelt), as illustrated in Fig. 2. The fNIRS was operated at 785 and 850 nm
wavelengths, as well as with an “off” period to collect and account for ambient light interference.
The two wavelengths of light and dark periods were time-multiplexed across four LED sources,
surrounded by the detectors at 2.5 cm separation. This setup provided a data rate of 2 Hz for each
of the 16 fNIRS channels on the forehead. More technical details about this fNIRS device can be
found in previous publications.22,33,34 PPG and ETCO2 (or respiration in two subjects without
ETCO2) measurements were acquired to account for variations in participants’ autonomic
nervous system and ventilation as they can influence the hemodynamics of extracerebral layers
and non-neuronal components, potentially introducing bias to fNIRS measurements.31,33,35,36

PPG amplitude can indicate vasoconstriction responses in extracerebral layers, and ETCO2
or respiration offers a noninvasive measure of arterial PCO2, known to profoundly impact

2.5 cm
separat ion

Sample at 2 Hz
fNIRS

CO2

Photo-plethysmography (PPG)

Respira�on 
bands

Fig. 2 PFC and peripheral responses to mental task weremade using fNIRS, capnography, photo-
plethysmography (PPG), and respiration bands.

Time

(a) (b)

Fig. 1 N-back working memory task, while half engaged in a word-color-incongruent Stroop task
prior to N-back. (a) The N-back test required a subject to remember the sequence of letters
presented on the screen and then press a button when the currently showing letter is the target.
(b) Each N-back block with the same difficulty level was presented three times, for a total of
12 N-back blocks. A Stroop test was also assigned in half of the subjects before the N-back
test to elevate their baseline stress level. PFC responses and behavioral scores during Stroop
were not analyzed in this work.
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cerebral blood flow and consequently, fNIRS measurements. All of the aforementioned physio-
logical signals, along with “begin” and “end” markers from the fNIRS device and N-back soft-
ware (for data synchronization), were recorded on a Biopac MP 150 system at a 1 kHz sampling
rate (Biopac Systems Inc.).

2.4 Signal Preprocessing to Remove Non-Neuronal Influences

2.4.1 Motion artifact identification and correction

We used custom MATLAB scripts (The Mathworks Inc.) for signal processing and analysis.
Motion artifacts were identified and corrected using a combination of spline and wavelet filter-
ing, which has been recommended in recent review papers.33,37,38 These techniques were avail-
able as MATLAB functions in the open-source Homer 3 v1.58.0 software package. We made
a few modifications to their thresholds and settings to suit our data rate at 2 Hz.39–41

First, we subtracted ambient light from the measured light intensity at 785 and 850 nm
wavelengths. We then removed individual fNIRS channels with a saturated, low, or poor
signal-to-noise ratio (SNR) assessed by [average signal intensity]/[standard deviation], as imple-
mented in the “hmrR_PruneChannels.m” function from the Homer software, with “dRange”
set to [40, 4000] and “SNRthresh” set to 2. Next, we estimated the changes in PFC oxygenated
and deoxygenated hemoglobin concentration (ΔHbO and ΔHbR in uM) by applying modified
Beer’s law on the light intensity measurements.42

Motion artifact suspects were identified using the “hmrR_MotionArtifactByChannel.m”
function using a 2-s time window (“tMotion” = 2) with an additional �1 s around the identified
motion artifact period (“tMask” = 1), if the signal exceeded 30 times the running standard deviation
(“STDEVthresh”) or had an instant change in signal amplitude >0.8 uM (“AMPthresh”). These
settings were adapted from Ref. 39 and adjusted for our device’s sampling rate.

We corrected motion artifact periods, found individually per channel, using spline filtering
(“hmrR_MotionCorrectSpline.m”), which involved fitting a cubic spline to the motion artifacts,
subtracting the fit from the original signal, and adjusting the baseline to make the signal
continuous around the corrected period. We used the default options suggested by Homer
software, except we increased the windowing size for computing the signal mean applied in
baseline shifting to “dtShort” = 1.5 and “dtLong” = 15 s to accommodate our 0.5-s data rate.
Next, the spline-filtered signals were filtered using a wavelet transformation-based method,
“hmrR_MotionCorrectWavelet,” which found the distribution of wavelet coefficients, rejected
the outlier coefficients at the tails (using “iqr” = 1.5, meaning 1.5 times the IQR, as suggested
by the Homer software), and reconstructed the original signal.

2.4.2 Model-based filtering (MBF) for reducing extracerebral and respiratory
influences

To reduce the extracerebral and respiratory influences in original fNIRS measurements, we used
a linear, time-invariant signals and systems model to fit non-neuronal confounders and subtract
them from the original signal for each fNIRS channel (Fig. 3). Specifically, we employed
a 2-input 1-output model to estimate the impulse responses between confounders and fNIRS
measurements. We utilized a linear combination of Laguerre basis functions to estimate the
impulse responses, minimizing the number of unknown parameters (2 to 6 basis functions and
up to 30 s of memory).43 The Laguerre basis function expansion technique has been effective in
modeling biological systems, including neuron models.44 To prevent overfitting, we applied
the message-description-length technique,45 which penalizes using too many Laguerre basis
functions while minimizing the variance of the residual.46

The first confounder that we targeted was the hemodynamics from the superficial layer
(mainly the scalp), estimated using the fingertip PPG beat-to-beat amplitude (PPGa).5,10 The
second confounder was the changes in cerebral hemodynamics due to CO2 fluctuation resulting
from varying breathing patterns,35,47 which was reflected in ETCO2. A band-pass filter at 0.003
to 0.08 Hz was applied to remove slow signal drift and other oscillatory physiological noise
outside the expected N-back oxygenation responses.
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As a result, we found dynamic relationships (i.e., impulse responses; h1 and h2 in Fig. 3.)
between the non-neuronal confounders and the fNIRS measurements that best explained the
influences of CO2 and extracerebral blood flow in the original fNIRS measurement. We fitted
the PPGa and ETCO2 signals into ΔHbO and ΔHbR signals, and we considered the residual
ΔHbO and ΔHbR signals, v in Fig. 3, as refined time series in response to neurocognitive
activity.31 This process was performed for each channel in each subject.

2.4.3 Correlation-based signal improvement as a final refinement step

To further enhance neurally evoked oxygenation responses to N-back, we applied the correla-
tion-based signal improvement (CBSI) method to the residual ΔHbO and ΔHbR signals, v,
from the previous model-based filtering. The CBSI method has proven effective in removing
non-neuronal signal artifacts as it assumes that neurally activated HbO and HbR signals are
anti-correlated, whereas motion artifacts increase their positive correlation.48,49 Another advan-
tage of the CBSI method was to reduce the signal dimensionality, from having original HbO and
HbR to either CBSI-HbO or CBSI-HbR as they become mirror images of each other due to the
algorithm. The processing parameters for CBSI remained the same as the original method
published.48 Finally, as described in the subsequent section, we quantified PFC oxygenation
responses using the CBSI-enhanced residual ΔHbO signal, which is referred to as “oxygenation”
time series throughout the rest of this paper.

2.5 Response Quantification and Analysis

2.5.1 Total oxygenation change

Using the CBSI-enhanced residual ΔHbO signal, we quantified the PFC oxygenation responses
by finding the slope of oxygenation during each trial period as an indicator of cognitive
activation. To do so, a straight line was fitted on to the data in each trial window using “polyfit”
in MATLAB. And as suggested in previous reports,22,50 positive slopes were interpreted as
a constant recruitment of the PFC resources to solve difficult tasks, whereas more negative
slopes were interpreted as less cognition activation occurring for easy tasks. We excluded
the first 10-s period from each trial onset as it contained transient or unstable hemodynamics.50

Any trial that included the motion artifact periods exceeding 40% of the trial period including
5 s prior to the trial onset was excluded from the analysis, which was identified using the
“hmrR_MotionArtifactByChannel.m” function in the previous step. Figure 4 shows one repre-
sentative example of oxygenation time series during N-back tasks and how they were quantified
into slopes. As a result, each subject produced a total of 192 PFC oxygenation slope responses
(16 fNIRS channels × 4 levels of difficulty × 3 trials). Throughout this paper, this oxygenation
slope serves as an index of cognitive activity and is interchangeably referred to as the “oxygena-
tion rate” measured in ΔuM∕s.

Fig. 3 Two-input linear dynamic modeling for explaining the contributions from CO2 and skin blood
flow in original fNIRS measurements. Impulse responses (h1 and h2) are found using Laguerre-
basis function expansion and least squares methods.
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2.5.2 Statistical analysis

We used a mixed model to investigate the effects of SCD and stroke history, N-back difficulty,
and their interactions across four PFC quadrants (or referred to as “quads”) while accounting for
the repeated measures from multiple N-back trials and four channels within each quadrant.
Grouping by quadrant improved the signal-to-noise ratio while maintaining the spatial sensitiv-
ity. Our outcome variables included accuracy, response time, and slope of oxygenation during
each N-back difficulty level (refer to Table 2). We also tested for possible confounding and inter-
actions due to age, sex, and the “elevated stress” induced by Stroop. To ensure the normality of
variables, we used the Shapiro–Wilk test and QQ-plots for each level of task difficulties and
diagnosis groups and applied necessary transformations to make them more normally distributed.
We also evaluated the residuals of the model for normality. Given the exploratory nature of
this study, because there is no prior knowledge or data about PFC oxygenation response to
N-back in SCD, we did not adjust for multiple comparisons but set an α level to 0.01 to indicate
meaningful significance when assessing the main effects and the α level to 0.05 for covariates and
interaction tests. Where appropriate, we computed the effect size using partial eta squared

(η2p ¼ Fstatistic×factor degrees of freedom
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F statistic×factor degrees of freedomþerror degrees of freedom
p , with bench marks of small = 0.01,

medium = 0.06, and large = 0.14) for multifactor analysis of variance (ANOVA), or Cohen’s

S

(b)

(a)

Fig. 4 Quantification of the PFC oxygenation responses using the slope of the fNIRS signal mea-
sured during an N-back task. (a) The time course of PFC oxygenation changes due to different
randomized N-back tasks obtained from one fNIRS channel. N-back tasks are grouped by
difficulty and highlighted in the same color. (b) The response quantification using the linear line
or the slope fitted over the oxygenation change.

Table 2 Two-way repeated measures of ANOVA using a mixed model.

Responses Within-subject factorsa Between-subject factors Covariates

• Accuracy
• Response time N-back difficulty level

Diagnosis (SCD and
SCD with stroke history)

• Age and sex
• Elevated stress

Slope of oxygenation
• N-back difficulty level
• PFC locations in four quadrants

aTo account for the repeated measurements in the within-subject factors (i.e., three repeated trials per difficulty
level and four fNIRS channels per quadrant), each of the within-subject factors was set as a “random” effect in
the mixed model.
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d (derived by t statistic
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

degrees of freedom
p , with bench marks of small = 0.2, medium = 0.5, and large = 0.8)

for pair-wise comparisons.22,51–53 All analyses were performed using JMP Pro v15 Software
(SAS Institute Inc.).

3 Results
In this section, we present: (1) the effect of signal refining, including model-based filtering,
(2) comparisons of task accuracy and response times, (3) oxygenation time series across all sub-
jects, and (4) oxygenation rates after accounting for the elevated stress effect. Detailed figures
that demonstrate (1) the effect of signal cleaning and (2) initial comparison of PFC oxygenation
rates in quadrants before accounting for elevated stress are given in the Supplementary Material.

3.1 Signal Cleaning and MBF Results
Motion artifact detection based on the sliding window signal variation method, followed by
spline and wavelet transformation filtering, removed both step and spike types of signal artifacts
and improved the quality of the fNIRS data (Fig. S5 in the Supplementary Material).
Subsequently, the model-based filtering corrected the potential signal bias caused by non-neuro-
nal changes during the N-back task. Figure 5 illustrates an example of the MBF process, with the
fitted impulse responses of the ETCO2 and PPGa on the first two rows [Figs. 5(a) and 5(b)]. On
the right side of the first and the last panels, the pink line represents the fitted contribution of CO2

in the original HbO NIRS data, which showed a better fit/contribution when a sigh was present
[Figs. 5(c) and 5(f), evident at time points around 100, 500, and 900 s]. Figure 5(d) shows the fit
of PPGa changes onto the remaining fluctuation of the original fNIRS signal. Finally, the residual
v was obtained by subtracting the fitted, non-neuronal contribution from the original fNIRS sig-
nal and used for subsequent analyses.
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Fig. 5 Example of MBF in one fNIRS channel, showing the ETCO2 fit on vasoconstriction
responses to sighs and the PPGa fit on the rest of the background fluctuation. This fNIRS
HbO change during the whole N-back session showed about 30% contribution from non-neuronal
components, attributable to breathing (ETCO2) and skin blood flow (PPGa). (a), (b) The estimated
impulse responses associated with ETCO2 and PPGa, and (c), (d) their contributions to fNIRS
HbO in terms of normalized mean square error (NMSE) = 0.69 and 0.73, respectively.
(c), (f) The first row (in pink) highlights the contribution of CO2 to the original fNIRS signal, par-
ticularly notable during sigh events. (d) The second row shows the systemic/peripheral blood flow
indicated by PPGa fit, embedded in the original fNIRS signal. (e) The fitted signal (non-neuronal
influences) were subtracted so that they were mitigated in the final residual fNIRS signal, v . This
process was done for each fNIRS channel.
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3.2 N-back Task Accuracy and Response Time
We observed significantly decreased accuracy and increased response time in response to
more difficult N-back (P < 0.0001, F3;113.3 ¼ 72.08, and effect size ðη2pÞ ¼ 0.66 for accuracy;
P < 0.0001, F3;114.1 ¼ 77.94, and effect size ðη2pÞ ¼ 0.67 for response times; see Fig. 6).
Meanwhile, we did not find significant differences in accuracy related to SCD or history of stroke
(ANOVA P ¼ 0.9 for each effect). For the response time, we applied a log-transform to achieve
normality and found strong tendencies toward slower response times in the SCD group and SCD
without the history of stroke (SCDhs0) during 1-back, as well as in the SCDhs1 group during
3-back, compared to controls (P ¼ 0.02, 0.007, and 0.025; t91.53 ¼ 2.29, t82.42 ¼ 2.77, and
t82.50 ¼ 2.11; Cohen’s d ¼ 0.24, 0.31, and 0.23, respectively, without adjusting for multiple
comparisons [see Figs. 6(a) and 6(a-1)]). There were no significant confounding or interacting
covariates, including the elevated stress effect, associated with accuracy and response time.

3.3 Grand Average Responses to N-back in all Subjects
Figure 7 presents the average fNIRS time series from all 41 participants. Both the HbO and HbR
responses showed a typical response trend to N-back, as indicated by the gradual increase or
decrease in both the mean levels and slopes. And 10-s post-trial showed oscillating trends
returning to the baseline. The motion detection algorithm and spline + wavelet filtering reduced
the signal variability, bringing the median and mean closer together [Figs. 7(a) and 7(b)]. The
effect of the MBF can be seen from Figs. 7(b) and 7(c), especially evident in the 3-back con-
dition, which shows less contamination from the peripheral blood flow as indicated by PPGa.
The last two rows of Fig. 7 show larger fluctuation and vasoconstriction responses reflected in the
PPGa during the first 10 s of each N-back task, and mild and sustained increase in ETCO2 trends
were observed during the tasks. The following CBSI process further isolated the oxygenation
increase based on the expected anti-correlation between HbO and HbR during neural activation.
After each signal refining step, we obtained more typical N-back responses, characterized by

• No significant interac�on nor confounding 
effects with age and/or ‘elevated stress’

• Error bar: 95% confidence interval of the 
mean
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Fig. 6 (a), (a1) Slower response times toN-back in the SCD groups than the healthy control group.
(b) However, task accuracy was not different among the groups, suggesting that longer and less
efficient processing is needed in SCD to complete a task as competently as in healthy controls.
P-values shown are before adjusting for multiple comparisons, and the error bars indicate 95%
confidence interval of the mean after accounting for repeated measurements in each subject.
*SCDhs0/1: SCD without/with histories of stroke.
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increasing HbO or decreasing HbR signal mean levels and slopes with more difficult N-back
and by less signal fluctuation during the 10-s transient period.

3.4 Indications of Increased PFC Oxygenation in SCD Compared to Healthy
Controls

Figure 8 presents average PFC oxygenation responses from SCD and healthy controls. Both
groups displayed flat or negative oxygenation during the 0- and 1-back tasks, while showing
increased oxygenation during the 2- and 3-back tasks. Notably, a marked contrast in oxygenation
slope during the 2-back task suggested hyperactivation in the SCD group. However, this did not
reach the statistical significance at α level 0.01. Furthermore, the control group did not exhibit
the expected negative oxygenation changes during the 0-back task, which prompted further
investigations as discussed in the next sections.

Next, we grouped the oxygenation slope for each channel into PFC quadrants (i.e., treated as
four repeated measures). Initially from this quadrant analysis, we found potentially greater oxy-
genation in the SCD group during the 2-back task compared to the healthy control group at quad
3, although this difference did not reach our threshold for statistical significance (P ¼ 0.017,
t226.4 ¼ 2.408, d ¼ 0.16, see Fig. S3 in the Supplementary Material). However, this finding was
accompanied by a significant interaction with the elevated stress factor (i.e., whether the subject

(a)

(b)

(c)

(d)

Fig. 7 Effect of cleaning and improvement on N-back responses to become more characteristic in
all 41 subjects. (a), (b) Motion detection algorithm and spline + wavelet filtering cleaned the signal.
(b), (c) The proposed model-based filtering helped to reveal more positive and greater brain
oxygenation changes as task difficulty increased, and they did not adversely alter the original
signal shape. (c), (d) CBSI helped extracted neuronal activation by amplifying anti-correlation of
HbO and HbR. CBSI-based signal was used as a “final oxygenation time series” for the analysis.
Oxygenation responses 10 s after the trial onset (highlighted on the plots) were used to quantify
the slope of the oxygenation response. The 10-s post-trial showed an oscillating trend returning to
the baseline.
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completed the N-back or the Stroop test first; Pstress�difficulty ¼ 0.012, F3;111.2 ¼ 3.80, η2p ¼ 0.09,
and Pstress�difficulty�diagnosis ¼ 0.029, F3;111.2 ¼ 3.13, and η2p ¼ 0.08).

3.5 Interaction with Elevated Stress
To further investigate the interaction by the elevated stress, we stratified the subjects into those
who completed the Stroop test first (elevated stress group; 21 subjects) and those who completed
the N-back test first (minimal stress group; 20 subjects). As a result, as indicated in Fig. 9, the
minimal stress group displayed no significant difference or atypical trends [Fig. 9(a)]. However,
the elevated stress subjects, particularly in the control group, exhibited unanticipated positive
oxygenation trends during 0-back and more negative oxygenation trends toward the 2-back task
[i.e., not monotonically increased, Fig. 9(b)]. And when we normalized the responses to 0-back
tasks, these unanticipated trends in the control group made the N-back PFC oxygenation in SCD
significantly higher than the control group (see Supplementary Material).

In the elevated stress group, the SCD group showed greater oxygenation changes during
2-back compared to the control group. Across all quadrants, the differences were statistically
significant (P ¼ 0.001, t142.5 ¼ 3.23, and d ¼ 0.27), whereas the healthy control group showed
positive and marginally greater oxygenation than the SCD group during 0-back (P ¼ 0.06,
t143 ¼ −1.89, and d ¼ 0.16). Further, post hoc analyses revealed that quads 1 to 3 had
significantly higher oxygenation in the SCD group during 2-back (P ¼ 0.01, 0.008, and
0.0004, respectively; t104 ¼ 2.60, d ¼ 0.25 for quad 1, t101.2 ¼ 2.72, d ¼ 0.27 for quad 2, and
t101.2 ¼ 3.69, d ¼ 0.37 for quad 3; not shown). Conversely, quad 2 suggested elevated oxygena-
tion in healthy controls during 0-back (P ¼ 0.016, t101.8 ¼ −2.45, and d ¼ 0.24). Meanwhile,
in the minimal stress group, there were no clear differences between the groups (P ¼ 0.5,
F3;54.4 ¼ 0.84, and η2p ¼ 0.04), and no differences were found from any PFC quads.
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Fig. 9 Interactions due to Stroop mental stressor prior to the N-back task, with the control group
showing a typical N-back response trend in the (a) “N-back first” group, and (b) the “elevated
stress” group showing a positive 0-back response and suppressed oxygenation during 2-back
(P ¼ 0.06 and 0.001, respectively).

Oxygenation rate mean 
& 95 % confidence interval

(18)
(23)

(back)

(ΔuM/s)

(a) (b)

Fig. 8 Comparison of average PFC oxygenation responses to N-back tasks of varying difficulty in
control and SCD groups. An upward trend of PFC oxygenation in response to difficult tasks (i.e.,
2 and 3 backs) is observed across both groups. (a) The PFC oxygenation response is quantified as
the slope of the linear fit from 10 s post the onset of each trial (highlighted in yellow). This quanti-
fication reveals a marked increase in PFC oxygenation during 1- and 2-back tasks in the SCD
group as compared to the control group. (b) The mean and 95% confidence interval of the whole
PFC oxygenation over the N-back tasks are presented. Although no significant contrast was
discovered at alpha = 0.01, marginal differences were observed, with P2-back ¼ 0.06.
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3.6 Effects of Stroke History
We examined the effect of stroke history (SCDhs1 versus SCDhs0 versus healthy controls) using
the analysis model described previously. The model showed a significant interaction with
the Stroop-induced elevated stress, requiring two separate analyses stratified by the first task
performed. However, due to the limited number of SCDhs1 subjects in the N-back first group
(n ¼ 2), we did not perform a statistical test on the effect of stroke in the minimal stress group.

In the elevated stress group (i.e., Stroop first), which consisted of a sufficient number of
SCDhs1 subjects and was balanced (SCDhs1 = 6, SCDhs0 = 7, and control = 8), we observed
a similar contrast as in the SCD versus control. And there was an even greater spread between
SCDhs1 and controls during 2-back (Pall quads ¼ 0.001, t55.04 ¼ 3.39, and d ¼ 0.46). Significant
differences were found in quad 1 (P ¼ 0.002, t100.1 ¼ 3.21, and d ¼ 0.32), quad 2 (P ¼ 0.003,
t98.21 ¼ 3.01, and d ¼ 0.30), and quad 3 (P ¼ 0.0008, t98.3 ¼ 3.46, and d ¼ 0.35) (Fig. 10).
Meanwhile, we did not detect clear differences between SCDhs1 and SCDhs0.

4 Discussion

4.1 N-back Performance in SCD versus Healthy Controls
We investigated the impact of SCD on PFC oxygenation during an N-back working memory
task, utilizing fNIRS. Our results showed that N-back accuracy decreased, and the response time
increased in all participants as the N-back became more difficult. We did not find any significant
difference in accuracy attributed to SCD or a history of stroke. However, there were strong
tendencies toward slower response times in the SCD group, particularly in the SCD group with
a history of stroke (SCDhs1) during 3-back and in the SCD group without a history of stroke
(SCDhs0) during 1-back compared to controls (P ¼ 0.02, 0.025, and 0.007, respectively).

4.2 PFC Utilization in SCD
All participants’ grand average PFC oxygenation response showed a monotonically increased
oxygenation rate with increasing N-back difficulty. The following group analysis found a greater
oxygenation increase in the SCDhs1 group compared to the healthy control group during 2-back.
These findings suggest the potential effects of SCD and stroke on short-term memory processing.
However, these observations interacted with the elevated stress in half of the participants, which
made it difficult to draw a definitive conclusion.

4.3 Model-Based fNIRS Signal Filtering Confounders
One notable contribution of this work is the utilization of a model-based filtering method to
refine fNIRS measurements. This technique allowed for the correction of confounding influences
from non-neuronal but rather physiological origins, such as skin blood flow or breathing patterns.
We reduced the confounding influences due to skin blood flow using finger PPGa, a represen-
tation of peripheral blood flow changes, as an input to a dynamic systems model based on
the assumption that we could recover scalp blood flow influences through modeling. This was
evident in 3-back results from Figs. 7(b) and 7(c), even for the HbR signal that is typically
less contaminated, highlighting its effectiveness in the absence of short-separation scalp-blood
measurements. The similarity between finger PPGa and another short-separation NIRS device

P-values shown are before adjus�ng for mul�ple comparisons
Error bar: 95% confidence interval of the mean
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Fig. 10 Oxygenation to N-back in SCD with a history of stroke was even greater compared to
healthy controls. Oxygenation responses during 2-back in quads 1 to 3 showed significantly
greater oxygenation compared to controls. There were no clear differences between SCDhs0 and
SCDhs1.
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measuring scalp blood flow suggests that scalp blood flow and finger PPGa have a common
origin, and there are additional factors to model (Fig. S2 in the Supplementary Material). As
a result, we obtained more characteristic responses to the N-back task, demonstrating the effec-
tiveness of our model-based filtering [Figs. 7(b) and 7(c)]. Although we have demonstrated
the utility and potential of the model-based filtering method in this particular study, extending
this technique to other fNIRS datasets in general would require validation against standard
approaches, such as short-channel regression or general linear modeling with systemic physio-
logical regressors.

4.4 Robust Quantification of PFC Oxygenation to N-back
To quantify PFC oxygenation responses to mental tasks, we used the slope of oxygenation
changes beginning 10 s after each trial. We chose this approach because it provided a less biased
quantification of fNIRS oxygenation as it showed a monotonic increase toward difficult tasks,
compared to other metrics that we tried, such as signal mean, time-to-peak, or total amplitude of
oxygenation changes. These other metrics can be biased by signal spikes caused by motion arti-
facts and/or the rapid transient period caused by physiological changes during the first 10 s of
each trial. These considerations provided a fail-safe mechanism, ensuring that our final results
were robust to variations in signal cleaning and preprocessing procedures.

4.5 Longer Response Time in SCD and What it Means
Our study found a potential effect of SCD and stroke on short-term memory processing in the
behavioral results, as evidenced by longer response time in certain N-back tasks. Specifically,
participants with SCD with a history of stroke (SCDhs1) exhibited longer response times in
3-back tasks, and SCD with no history of stroke (SCDhs0) showed longer response times in
1-back tasks compared to healthy controls. These longer response times may reflect slower and
less efficient processing speed, potentially attributable to white matter loss in SCD that can cause
delays in axonal transmission.18 Our findings align with previous studies that reported longer
response times in SCD during cognitive tasks.30,54

4.6 PFC Oxygenation to N-back Interacted with Elevated Stress
There was an interaction between the elevated stress due to Stroop and PFC oxygenation trends
to N-back, particularly in the healthy control group. This interaction made it challenging to
analyze the effect of SCD and stroke with confidence. Our data showed significantly greater
oxygenation in SCD than controls, only when a Stroop test was administered prior to N-back.
Correspondingly, this also implied significantly lower oxygenation responses in healthy controls
compared with SCD when the Stroop test was administered first. Healthy controls exhibited
negative PFC oxygenation during the “difficult,” 2-back tasks and positive PFC oxygenation
during the “easy,” 0-back tasks, which were not typical. This atypical pattern contributed to
a significant contrast in SCD and healthy controls. Such atypical responses were not observed
in the SCD group, even though they performed Stroop prior to N-back. This interaction with
elevated stress set by Stroop was significant.

The color-word incongruent/conflicting Stroop test is known to activate the executive func-
tion of the brain, which is associated with the lateral PFC;55,56 it requires participants to suppress
the automatic response of reading the word and answer the color of the calligraphy of the word.
Studies have shown that the Stroop test also activates sympathetic-driven peripheral
vasoconstriction.32,57 These activities from both the autonomic and central nervous systems could
cause mental stress. Furthermore, such stress in our subjects might have been escalated due to
sitting in the same place for an extended period (>30 min) until conducting the N-back as the
last task of the study. It raises intriguing questions of whether or how the PFC cognitive activities
differ under elevated stress levels, particularly after being exposed to stimuli that can trigger pain
crises in SCD.

4.7 Significance of Our Study Findings
To the best of our knowledge, there has been no prior report investigating PFC oxygenation
responses in SCD using fNIRS. In our study, we observed significantly greater PFC oxygenation
during an N-back task in SCD patients compared to healthy controls, particularly after exposure
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to mental stress. This trend was consistently seen in Figs. 8, 9(b), and 10. Post hoc analysis
further revealed that, during the 2-back task, SCD patients (including those with a history of
stroke) exhibited greater oxygenation increase in PFC quads 1 to 3 [Figs. 9(b) and 10].
Given these findings and results, it is possible that SCD patients experience greater processing
demands and more widespread recruitment during challenging tasks compared to the healthy
controls.

4.8 Study Limitations
Our study has several limitations worth noting. The elevated stress induced in half of our par-
ticipants showed an interaction with PFC responses to N-back. We accounted for this interaction
by stratifying the analysis based on which task was performed first. Nevertheless, the effect of
elevated stress on cognitive function can be complex and difficult to interpret. The previously
mentioned, atypically low oxygenation response to difficult tasks in healthy controls within the
elevated stress group is that example. Therefore, caution should be exercised when drawing con-
clusions about the effects of SCD and stroke on short-term memory processing from our results.
Future studies should avoid stacking different types of mental tasks as their effects can interact
and reduce statistical power. Despite this, our study found significant results when acknowledg-
ing preconditioned or elevated mental stress, which could be an interesting topic for further
investigation.

From a signal processing viewpoint, the CBSI method, which relies on the linear combi-
nation of HbO (prone to non-neuronal influences) and HbR (with low SNR), operates under
assumptions (i.e., the positive correlation between HbO and HbR is artifactual and a fixed ratio
of HbO to HbR) that, if violated, could undermine its validity. Also the absence of short-
separation channels poses challenges in isolating true neuronal components. Despite these
challenges, we addressed them with motion artifact removal, bandpass filters, model-based
physiological contamination filtering, and utilizing linear slope fitting for quantifying oxygena-
tion responses. Another methodological limitation, as mentioned above (in “model-based
fNIRS signal filtering confounders”), is that the model-based filtering technique introduced
in this study is relatively novel and requires further validation for application to other fNIRS
studies. Furthermore, we grouped fNIRS channels into quadrants, which might dilute localized
responses. However, we believe that this strategy offered robustness given different head sizes
across subjects and signal processing challenges.

Another limitation is the small sample size, particularly in SCD patients with histories
of stroke, consisting of both silent and overt stroke phenotypes. These two phenotypes can
have different brain physiology and hemodynamics, influencing the fNIRS measurements.
Additionally, we did not find consistent correlations between response time, accuracy, and oxy-
genation trends, making it difficult to describe what cognitive decline means using these primary
metrics. For example, response time and accuracy did not consistently correlate, nor did changes
in oxygenation consistently indicate better or worse behavioral performance. Despite these
limitations, our study provides an examination of PFC oxygenation during short-term memory
tasks in SCD patients. This research contributes to a better understanding of the cognitive decline
reported in SCD and highlights the need for more extensive studies with more robust experi-
mental designs to uncover the underlying mechanisms.

5 Conclusion
We monitored PFC hemodynamics in SCD patients and healthy control subjects during N-back
working memory tasks using fNIRS. Unwanted influences from extracerebral origins were mini-
mized using dynamic systems modeling followed by a correlation-based signal improvement
method. Our results showed a monotonic increase in average PFC oxygenation, quantified
by the linear slope, as task difficulty increased in all participants. Notably, we observed greater
oxygenation during 2-back tasks in SCD patients compared to healthy controls when the stress
levels were elevated. However, task accuracy was not different between the groups. Also con-
sidering the longer response times in the SCD group compared to healthy controls, our findings
suggest potential alterations or inefficiencies in PFC processes in SCD patients, and such changes
may serve as indicators of their cognitive decline. Further investigation addressing our study
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limitations and the application of an fNIRS-based assessment on a larger SCD population will
help monitor and understand the process of cognitive decline in SCD.
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