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ABSTRACT. Accurate capture of animal behavior and posture requires the use of multiple cam-
eras to reconstruct three-dimensional (3D) representations. Typically, a paper
ChArUco (or checker) board works well for correcting distortion and calibrating for
3D reconstruction in stereo vision. However, measuring the error in two-dimensional
(2D) is also prone to bias related to the placement of the 2D board in 3D. We pro-
posed a procedure as a visual way of validating camera placement, and it also can
provide some guidance about the positioning of cameras and potential advantages
of using multiple cameras. We propose the use of a 3D printable test object for val-
idating multi-camera surround-view calibration in small animal video capture arenas.
The proposed 3D printed object has no bias to a particular dimension and is
designed to minimize occlusions. The use of the calibrated test object provided an
estimate of 3D reconstruction accuracy. The approach reveals that for complex
specimens such as mice, some view angles will be more important for accurate cap-
ture of keypoints. Our method ensures accurate 3D camera calibration for surround
image capture of laboratory mice and other specimens.
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1 Introduction
Accurate multi-camera motion capture can provide critical insights for a wide variety of biomedi-
cal inquiries, including behavior, zoology, kinesiology, and neuroscience research.1–7 More
specifically, the capture of motion data is essential for behavioral quantification and potential
linkages with neural activity.3,7,8 However, accurate capture of motion may be challenging due
to calibration errors and other factors. With animals, the challenges are even greater due to the
general lack of training data and ground truth body plan information.5 Another potential issue is
marker placement: most existing high-accuracy motion capture systems rely on the installation of
invasive markers, which may affect natural movements and behaviors.5 Furthermore, three-
dimensional (3D) accuracy and precision remain difficult to obtain in the context of keypoint
detection using arbitrary camera setups (non-defined angles). Despite these challenges, it is
imperative for biomedical motion capture systems to provide accurate, insightful data in the
absence of well-defined markers.9
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Errors in 3D markerless tracking based on a multi-camera tracking system generally can be
grouped into three categories: calibration error, matching error [two-dimensional (2D) keypoints
detection or pairing error], and reconstruction error.10 Most studies only focus on the aggregate
error often termed the reprojection error in 2D images. However, errors in 2D might be mislead-
ing, prone to bias and hard to use as guidelines when assessing an animal tracking arena. A caveat
is that this study was unable to encompass the entire categories of error. For example, occlusion is
a major contributor to error in motion capture and can cause inaccurate or failed 2D keypoint
detection. Occlusion errors will not only need to be specific to each species/body-plan examined
but also to each experiment (global versus local motion, type of activities). Given this complex-
ity, it is beyond the scope of this study to examine errors caused by occlusion (when less camera
views are available).

In order to measure the performance of biomedical motion capture systems, we introduce 3D
test specimens which can be used as a metric for the lower bound of the 3D-positioning error.
Such easy-to-use specimens provide a visual check on 3D tracking efficacy and guidance for the
number of cameras to use and their positioning. Here, we describe a method to evaluate the
accuracy of 3D markerless motion capture and reconstruction data for camera setups. Our pipe-
line is built on existing markerless motion capture algorithms and provides a robust method to
verify the accuracy and precision of any multi-camera tracking system.

2 Methods

2.1 3D Video Acquisition Arena
To reconstruct the animal behavior in 3D space and validate the performance of 3D tracking
systems, we built a 3D video acquisition arena and validated its performance using a 3D printed
test object and real mouse data. The 3D video acquisition arena for small animals is constructed
using custom 3D printed parts and an 89 mm diameter plexiglass cylinder. For image acquisition,
a Quadrascopic camera solution (Arducam; SKU: B0267) consisting of four cameras synchron-
ized at the hardware level was used. Each camera had its IR cut filter removed (by the vendor)
and uses a global shutter monochrome OV9281 sensor with 1280 × 800 active pixels and an
effective focal length of 2.4 mm. A similar 4 Raspberry Pi Picam camera rig was also used for
image acquisition with 1296 × 972 active pixels. Three cameras were placed at 120-deg angles at
a horizontal elevation around the subject. The fourth camera was placed below the subject with
imaging performed through a transparent plexiglass floor. The imaging setup is shown in Fig. 1
and is available as a 3D model (see OSF repository19). To match most behavioral assessments, an
additional larger arena was also constructed using a 320 mm diameter plexiglass plate with cam-
eras moved 340 mm from the center.

Both the 3D test object and freely moving mouse were recorded with the same 3D video
acquisition arena. These videos were analyzed using Anipose,11 which is an open-source, mar-
kerless 3D tracking system based on multi-camera recordings. It consists of modules for camera
calibration, 2D keypoints detection (using DeepLabCut),12 2D detection refinement, and 3D
reconstruction. The intrinsic and extrinsic parameters for cameras were determined using video
of a ChArUco (or checker) board and used for calibration.13,14 The board was positioned nearly
upright at the center of the capture volume, ensuring that it was visible to at least two cameras and
slowly rotated along the coronal axis (the bottom edge of the board) to face the bottom camera.
This procedure was repeated for every camera. Different DeepLabCut models were trained for
test object tracking and mouse tracking (Table 1). Then, the 3D reconstruction was performed
using Anipose.

To determine the performance of the 3D reconstruction, we then employed a 3D-printed test
object with known dimensions and unique features visible to multiple cameras [Fig. 1(e)]. The
test object was attached to a thin rod with Blu-Tack reusable adhesive to minimize occlusion and
presented and rotated in the capture volume. From the videos, the locations and trajectories of the
keypoints were reconstructed using Anipose.11 Inter-keypoint distances were assumed to be valid
proxies for the accuracy of the setup and reconstruction algorithm. Hence, the evaluation was
conducted on the aggregated statistics of the distances between processed keypoints on the
object. Results were then plotted as a deviation from a ground truth (Euclidean distance) and
boxplots of error were constructed (Fig. 2). In the case of errors derived for actual mouse
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Fig. 1 Specifications of the mouse imaging arena and 3D test object. (a) Render of the 3D small
animal capture arena. (b) Schematic top-view illustration of the image capture arena. (c) Top-view
schematic of 3D-printed test object annotated with distances and keypoint positions. (d) Side-view
schematic of 3D-printed test object annotated with distances and keypoint positions. (e) 3D
appearance of the test object. (f) Image of the 3D-printed test object.
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keypoints, four-camera Anipose coordinates were used as reference values in lieu of true ground
truth (Figs. 3 and 4).

2.2 3D Test Object
The test objects are comprised of the letters X, Y, and Z each attached to a rod, positioned along
the corresponding axis. The three rods converge at the origin such that all rods are perpendicular.

Fig. 2 Camera configuration and software filtering effects on 3D positioning error for known test
objects in small and large arenas. (a) Boxplot of error for various camera configurations in the
89 mm arena, in which the box edges represent Q1 (25th% quartiles) and Q3 (75th% quartiles),
and the whiskers represent minimum (Q0 = Q1 − 1.5 IQR) and maximum (Q4 = Q3 + 1.5 IQR)
where IQR refers to interquartile range Q3 to Q1. Outliers are not shown when error is greater than
Q4 or less than Q0. For each configuration, all symmetrical configurations were combined into one
category. No filtering was active in any configuration. (b) Boxplot of error comparing the use of a
Viterbi filter. Both trials used the same four-camera source videos in an 89mm arena. (c) Boxplot of
error for various camera configurations in the 320mm arena. (d) Boxplot of error comparing the use
of a Viterbi filter. Both trials used the same four-camera source videos in a 320 mm arena.

Table 1 Comprehensive assessment of DeepLabCut performance.

Model type
Training data

size (units: frame)
Training error
(units: pixel)

Test error
(units: pixel)

Test object 89 mm arena ResNet-101 120 2.04 13.32

320 mm arena ResNet-101 120 2.46 8.66

Mice 89 mm arena Side views ResNet-101 1120 6.43 20.54

Bottom view ResNet-101 1467 5.2 15.52

320 mm arena Side views ResNet-101 1350 8.82 10.51

Bottom view ResNet-101 400 2.93 5.5
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The objects were modeled using Blender and fabricated using a Makerbot Replicator 3D printer.
Diagrams of the test objects are included in Figs. 1(c)–1(f). The XYZ letters ensure enough
asymmetry to provide unique visual cues for keypoint detection while remaining visually
straightforward for intuitive use. This simple task gives rise to the high accuracy of 2D keypoint
detection (the accuracy of Scene Text Recognition has reached over 98%15) compared to com-
plex tasks such as body part detection.

2.3 Animal Behavior Data
As a proof of principle, behavioral data were acquired from surplus C57BL/6 mice of
mixed genotypes (males, 3 to 8 months of age; n ¼ 4 for the 89 mm arena; n ¼ 5 for the
320 mm arena). Equal numbers of frames were used from each subject and data were analyzed
in a concatenated manner. Potential errors in 2D keypoint detection were controlled by
implementing the Viterbi filter in Anipose.11 While the Viterbi filter may help with animal pose
determination, it may also introduce potential drifting artifacts across multiple frames when key-
points are placed on filtered feature locations. All procedures were conducted with approval from
the University of British Columbia Animal Care Committee and in accordance with guidelines
set forth by the Canadian Council for Animal Care. For this work images obtained from an
Arducam quad camera system and 4 Picams were combined with little apparent difference
in accuracy.

Fig. 3 Multiview 89 mm mouse arena and 3D deviation from four-camera reference, reconstruc-
tion using single mouse subjects. (a)–(d) The frame of the source video captured from four different
camera views. Keypoints are highlighted with white points. The 5 cm scale bar was estimated
based on the diameter of the cylinder. It is varied for each camera view. (e) Boxplot of error relative
to the reference positions; in this case, the four-camera predictions were taken to be the reference.
The data used for these error estimates consist of video recording for a total of four different mice.
Each video recording contained 1914 frames (64 s).
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3 Results
The objective of our image acquisition and analysis pipeline is to provide a robust method of
verifying 3D reconstruction sampling and accuracy for animal imaging arenas [Figs. 1(a) and
1(b)]. To accomplish this, it is assumed that the preservation of 3D-printed object inter-keypoint
distance is a metric for reconstruction accuracy [Figs. 1(c) and 1(d)]. We also provide details on
the construction of a standardized animal 3D pose capture arena and a software pipeline to evalu-
ate the camera setup (see Sec. 2) for both small arena (89 mm diameter) and large arena (320 mm
diameter). We have tested quad-camera configurations of monochrome synchronized Arducams
or Raspberry Pi camera systems. In our experiments, the frame rate was set to 30 frames per
second and four cameras were placed around the test objects or mice (Fig. 1).

Initial calibration of the arena was performed using ChArUco board (7 × 7, checker size:
10 mm, marker size: 8 mm, dictionary: AruCo DICT_4x4) as employed previously.11 3D printed
test objects were then utilized to check the quality of 3D reconstruction [Figs. 1(c) and 1(d)]. The
objects have defined characteristics such as known distances between keypoints and asymmetries
which provide unique object views on multiple cameras. We emphasize that the 3D printed test
object is used to confirm accuracy but is not actively involved in calibration itself.

To assess the differences between 3D representations of the test object and its actual dimen-
sions, Anipose11 was used to reconstruct the test object (from video images, without 2D filter)
in 3D to calculate observed inter-keypoint distances (Euclidean distance). During the analysis,
two types of systematic errors were observed for the test object: (1) bias that likely reflects
the difference between the expected value and the true value (typically 1 to 2 mm for inter-key-
point distances) and (2) variance that refers to noise around repeated measures of the same
keypoints.

The test object was also used to investigate the effect of camera number and camera position
configuration and filter usage on the final prediction (Fig. 2). Given the presence of outliers,
mean errors do not accurately reflect the broader distribution. Particularly within the larger arena

Fig. 4 Multiview 320 mm mouse arena and 3D deviation from four-camera reference.
Reconstruction using single mouse subjects. (a)–(d) The frame of the source video captured from
four different camera views. Keypoints are highlighted with white points. (e) Boxplot of error relative
to the reference positions; in this case, the four-camera predictions were taken to be the reference.
The data used for these error estimates consist of video recording for a total of five different mice.
Each video recording contained 9000 frames (300 s).
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(320 mm), the mean value could consistently surpass the maximum distance delineated by the
boxplot [Figs. 2(a) and 2(c)]. Therefore, we suggest that readers focus on the distribution and the
median. In general, the test object confirmed relatively accurate 3D sampling as the median error
for small arena test object points was 1.21 mm for four camera configurations. In the larger arena,
median error for test object points was significantly greater than the small arena [Figs. 2(a) and
2(c)], but the error still was small enough to report mouse body part locations (3.89 mm). Except
for a few outliers, the error showed a relatively flat relationship with distance from the camera
center (Spearman r ¼ 0.303, p value < 0.01; based on four camera views), indicating consistent
sampling across most of the field. However, the values outside of the arena border >486 pixels

should be avoided for best performance (Fig. S1 in the Supplemental Material). In both arenas,
the two-camera configurations exhibited higher median error and higher variance than three-
camera configurations [Figs. 2(a) and 2(c)]. Specifically, the median errors in the smaller arena
using the two- and three-camera configurations were 3.49 and 1.27 mm, respectively. Similarly,
the median errors in the larger arena using the two- and three-camera configurations were 4.56
and 4.24 mm, respectively. This finding confirms that increasing the number of camera views can
improve the accuracy and robustness of 3D reconstruction systems.16 Interestingly, the use of
filters was observed to have no significant effect on either the bias and variance of the aggregate
error for test 3D printed objects [Figs. 2(b) and 2(d)]. We caution that the lack of a filter effect
may be related to the relatively slow smooth movement of the test object. It results in the camera
frame rate significantly exceeding the motion frequency. Furthermore, due to the uncomplicated
structure of the test object, DeepLabCut is capable of maintaining a remarkably high level of
accuracy when the video quality reaches a sufficient level of quality. In this context, the appli-
cation of a median filter typically exerts minimal influence on the data.

We evaluated videos of actual mice within the arena using the four-camera configuration
[Figs. 3(a)–3(d), Figs. 4(a)–4(d)]. In this case, it was not possible to have a predefined
ground-truth measurement for body part dimensions and position (as we had with the test object).
Therefore, we employed results from the four-camera setup as a standard and calculated the
deviation from this standard for the nine other camera configurations that used three or fewer
cameras [Euclidean distance, Figs. 3(e) and 4(e)]. A two-way ANOVAwas performed to analyze
the effect of camera number/position configuration on the deviation from the prediction of four-
camera standard. The significance of interaction between the effects of camera position configu-
ration and camera number varied across arena size (F ¼ 0.08, p ¼ 0.78; 7656 frames pooled
across mice in the smaller arena; F ¼ 723, p < 0.001; 45,000 frames pooled across mice in the
larger arena). In both arenas, Tukey post hoc comparisons showed that as expected lower camera
number did significantly increase deviation from the four camera prediction [small arena:
p ¼ 0.001, large arena: p ¼ 0.001, Figs. 5(b) and 5(d)]. Furthermore, camera position configu-
ration also had a significant effect on error [small arena: p ¼ 0.001, large arena: p ¼ 0.001,
Figs. 5(a) and 5(c)]. Errors for the mouse data were also relatively small (small arena:
3.83 mm, large arena: 5.74 mm) when the bottom camera and at least one side camera was present,
but errors were quite large (small arena: 51.93 mm, large arena: 74.56 mm) when we removed the
bottom sampling camera [Figs. 3(e) and 4(e)]. In general, we found that three-camera setups result
in much smaller bias and deviations compared to two-camera setups (small arena: mean difference
= 16.95 mm, p ¼ 0.001; large arena: mean difference = 23.36 mm, p ¼ 0.001; when all configu-
rations were examined).

4 Discussion
For most scenarios where cameras are used in wild environment settings, it is impossible to
ensure that arbitrarily placed cameras are calibrated. Here, we focus on the special conditions
of laboratory animals in predefined arenas where cameras can be reproducibly placed and cali-
brated. 3D test specimens provide a means for 3D accuracy evaluation through the use of custom-
izable and shareable 3D printed objects. 3D test objects work best within small animal motion
capture studios with fixed number of camera and viewing angles allowing for confirmation of 3D
relationships when recording. Such an approach has a potential advantage over existing 3D ani-
mal methods that determine accuracy and precision by projecting the results back into 2D to use
measurements on a 2D plane as a proxy for 3D accuracy and precision.11 Small animal image
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capture approaches can constrain acquisition to compact-footprint camera studios where subjects
can be viewed simultaneously from multiple perspectives. Although this approach requires the
calibration of multiple cameras and verification of 3D reconstruction algorithms using test
objects, this method can both reflect the challenges associated with 3D animal capture and serve
as ground truth data.

By validating the performance on 3D test objects, the ability of a 3D tracking system to satisfy
the constraints for rigid motion can be assessed. Skeletal driven animal movements can be treated
as the combined motion from rigid body parts.17 To describe rigid body motion, two constraints
must be satisfied: the preservation of length between arbitrary pairs of points within the rigid body
parts during movement and the cross product between arbitrary pairs of vectors within the rigid
body part.18 Therefore, 3D tracking systems must estimate both the length of bones in the skeleton

Fig. 5 Multiview mouse arena and 3D deviation from four-camera reference reconstruction for
mouse data accuracy and dependence on camera configuration and number. (a)–(d) Illustration
of the effects of including the bottom camera and the number of cameras under different
arena layouts (89 mm arena and 320 mm arena), respectively, on the boxplot of errors
relative to the reference positions. The reference values and data are identical to those used
in Fig. 3(e).
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and the relative angles of connecting joints (cross product) to accurately capture rigid body motion.
For example, both jumping and walking are depicted by the rotation of bones rather than their
elongation. In the 3D plane, both rotation and elongation may be visually similar in the 2D plane.
The utility of the proposed 3D object method includes guiding hardware design, arena layout, error
analysis, and benchmarking different reconstruction algorithms.

First, a main advantage of the proposed method over current tools is that 3D test objects can
provide guidance on setups for multi-camera acquisition. Using a large number of cameras within
an array is not only expensive but also can be challenging as solutions for multiple camera syn-
chronization are often not readily available. Although an increase in camera count will yield
better results (as reported in Sec. 3), a wise balance between cost and performance can and should
be evaluated. Surprisingly, the increase in camera count in this study did not significantly
improve the error measurements such as bias and variance in some cases. One possible explan-
ation is that keypoints might already be accurately predicted when they can be robustly detected
from two distinct camera views, rendering additional camera views superfluous. In these cases,
keypoint error may be due to other factors than poor camera coverage. At the very minimum, we
suggest that these multi-camera test objects can be used to assess a reasonable level of camera
coverage for a particular acquisition arena when assessing mouse behavior. Second, the proposed
method of 3D test objects helps analyze errors and parameters (or settings) for refinement.
Excluding error related to camera placement, a residual amount of error was also observed and
maybe associated with other factors such as neural network-based software for 2D pose estima-
tion and the refinement based on temporal information from video recording. For example, we
have also made the same error measurements on laboratory animals using four camera data as a
reference point. By comparing the performance of the 3D tracking system, other settings can
potentially be fine-tuned by taking advantage of test objects, such as frame rate, shutter speed,
and type of filters. Hence, we suggest that users examine whether apparent levels of error are low
enough to allow the use of a camera setup for hypothesis testing and thus minimizing the cost of
the acquisition rig and fine-tuning the parameters based on the result from test objects. Third, 3D
printed test objects can also provide an opportunity to benchmark different means of 3D pose
estimation approaches. Prior studies often trained the neural network and refined their algorithm
using different datasets. To assess the generalization of different algorithms, an unseen feature in
testing data is required. Standard test objects could give rise to reliable benchmarks for different
3D pose estimation approaches. As none of the existing algorithms are trained with similar
objects, we suggest it can serve as a reasonable method to evaluate the ability of different algo-
rithms to generalize to new data. Video of the movement of ChArUco Checkerboards are typ-
ically used for 3D-calibration. However, the movement of these 2D boards needs to be done with
care to ensure viewing by multiple cameras and that a 3D volume is sampled. We suggest that the
3D calibration objects we employ can be used as a means of confirming a proper 2D checker-
board calibration. The test object could also potentially be used as a means of calibration itself in
a similar manner to the ChArUco board. Prior studies already implemented an L-frame to do the
extrinsic camera calibration instead of Checker/ChArUco board.5

However, several questions remain unanswered at present. One could question how well the
XYZ test object can be applied to a specimen, such as a mouse, and whether it has a similar
complexity as a 3D printed structure. Ideally, one would desire objects to be captured by multiple
cameras without occlusion. Because the test object represents such a near-optimal case, the test
object can only provide the lower bound of 3D reconstruction error from multiple cameras. Any
occlusion might result in the deterioration of 3D tracking system performance. Thus, a bit of
redundancy (overlapping camera coverage) in the 3D recording system is suggested. In the case
of the mouse data, frequent occurrences of occlusion from the side perspective significantly com-
promised accuracy. However, when employing the test object, the advantages of the bottom view
over the side view were not distinctly apparent. This result may be explained by the fact that
semantic keypoints (paws, limbs, etc.) of mice tend to have more details visible from the bottom
view than the sides. Therefore, while the use of test objects can provide the lower bounds of
expected errors, one should always optimize views based on keypoints of importance within
the object that is being tracked.
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5 Conclusion
Overall, our study suggests that the 3D printable test objects and standardized studios help con-
strain acquisition parameters offering neuroscientists the ability to focus on developing unique
behavioral paradigms.

6 Appendix: Supplementary Material
Four videos and a figure are included as supplemental material:

Video 1. Video of 3D test object 3D keypoint predictions in 89 mm arena (MP4, 11.0 MB
[URL: https://doi.org/10.1117/1.NPh.10.4.046602.s1]).
Video 2. Video of animals’ 3D keypoint predictions in 89 mm arena (MP4, 11.7 MB
[URL: https://doi.org/10.1117/1.NPh.10.4.046602.s2]).
Video 3. Video of 3D test object 3D keypoint predictions in 320 mm arena (MP4, 11.5 MB
[URL: https://doi.org/10.1117/1.NPh.10.4.046602.s3]).
Video 4. Video of animals’ 3D keypoint predictions in 320 mm arena (MP4, 20.9 MB
[URL: https://doi.org/10.1117/1.NPh.10.4.046602.s4]).

(Fig. S1 in the Supplemental Material). Illustration of the effects of distance to image center
on inter-keypoint error. (320 mm arena).
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