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ABSTRACT. Imaging neuronal architecture has been a recurrent challenge over the years, and
the localization of synaptic proteins is a frequent challenge in neuroscience. To
quantitatively detect and analyze the structure of synapses, we recently developed
free SODA software to detect the association of pre and postsynaptic proteins.
To fully take advantage of spatial distribution analysis in complex cells, such as
neurons, we also selected some new dyes for plasma membrane labeling. Using
Icy SODA plugin, we could detect and analyze synaptic association in both conven-
tional and single molecule localization microscopy, giving access to a molecular map
at the nanoscale level. To replace those molecular distributions within the neuronal
three-dimensional (3D) shape, we used MemBright probes and 3D STORM analysis
to decipher the entire 3D shape of various dendritic spine types at the single-
molecule resolution level. We report here the example of synaptic proteins within
neuronal mask, but these tools have a broader spectrum of interest since they can
be used whatever the proteins or the cellular type. Altogether with SODA plugin,
MemBright probes thus provide the perfect toolkit to decipher a nanometric molecular
map of proteins within a 3D cellular context.
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1 Introduction
Imaging neuronal architecture has been a recurrent challenge over the years. The use of Golgi
technique by Ramón y Cajal paved the way for the first characterization of neuronal architecture
using microscopy on fixed brains. Indeed, metallic impregnation with silver salts provided an
opportunity to see and reconstruct the dendritic architecture of various types of neurons in the
depth of the nervous tissue. Although Golgi staining is still used in widefield microscopy, its use
in confocal microscopy remains limited for 3D analysis. The use of fluorescent labeling in con-
junction with 3D microscopy led to the production of large amounts of published data that are on
the way to being classified and accessible through various infrastructures or free repositories
(eBrains, Zenodo, etc.). This huge amount of data and their accessibility raise the question
of potential new automated, unbiased statistical analysis.
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2 Colocalization and Coupling Analysis in Conventional and
Super-Resolution Microscopy

To analyze the structure of synapses quantitatively, we recently developed, in association with
statisticians, free software to detect the association of pre- and postsynaptic proteins. This soft-
ware, called SODA for standard object distance analysis, makes it possible to identify and
measure the spatial distribution of either clusters (conventional microscopy) or single molecules
(single molecule localization microscopy) and provides the distance of association when those
are statically found associated.1,2 SODA (available here; see Ref. 3) can be used in conventional
microscopy (confocal, widefield, and video microscopy) or in super-resolution microscopy, such
as SIM, STED, or even SMLM (PALM or STORM). From the mathematical point of view,
SODA will analyze the cellular shape and spot density (Fig. 1) to evaluate the expected spatial
distribution using Ripley’s function. If clusters are more frequently associated than the expected
random distribution, then they are identified as associated spots. As a proof of concept, we ana-
lyzed the distribution of three synaptic molecules named synapsin, homer, and PSD-95 using
SIM microscopy. Using only 15 pictures, we were able to analyze about 50,000 synapses and
identify that the distance between a synapsin and post-synaptic PSD95 cluster was 107� 73 nm

while the PSD-95-homer was 64� 48 nm. Beyond raw distances, this system allows to detect in
a quantitative manner any morphological variations that may occur in various mutants, physio-
logical conditions or in certain synaptopathies.

SODA can be used either with sparse labeling (>30 − 100 objects per image)4 or with high-
density labeling as in single-molecule localization microscopy1,2 where several thousands of
localizations can be retrieved. The only limitation of SODA is the need to get the cell boundary
to correctly evaluate the object’s density. In contrast to methods using Voronoï tesselation5 that

Fig. 1 Workflow of the Easy SODA protocol available in Icy Software. Colocalization or distant
association can be analyzed using the user-friendly Easy SODA protocol that is freely available
in Icy Software. This protocol is a graphical programming automatization routine that allows analy-
sis of synaptic proteins’ distribution within neuronal cell shape. Here, neurons are labeled with two
proteins (green and cyan channels) that are distributed in clusters. Clusters are segmented using
wavelet segmentation through “spot detector” plugin. Cell shape is extracted using a MAP2 stain,
and segmentation is done using the “Hierarchical KMeans” plugin. Cluster distribution within the
cellular mask is then analyzed through the “SODA” plugin using Ripley’s analysis. Statistical asso-
ciations are detected if any, and the proportion of associated clusters with their distance is provided
with a p-value indicating the statistical robustness of the association. If many pictures are analyzed
in batch mode, all results can be exported to Excel files. A molecular map is exported for each
picture with an association color code. For example, if we take a red-green spot analysis: isolated
green spots remain green, green spots associated with red are cyan, isolated red spots remain red,
and red spots associated with green are pink. Localization of significant associations is thus visible
at a glance over the cell mask (here in deep blue).
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are limited up to now two-dimensional analysis, SODA can be used in 3D, which is an added
value to analyze thick 3D volume STORM images. Because SODA does not rely on any overlap
methods, it is far less sensitive to high-density false positive colocalization artifacts.1,2

SODA can also be used for all other associations (either direct or distant) in neurosciences6–10

and even outside this field like, for example, in cell biology,11–18 virology,12 in bacteria19 or
plants.20 Its use has been highlighted in several reviews.20–22

3 Imaging Plasma Membrane in Live or Fixed Cells

3.1 Optimizing Live Plasma Membrane Imaging with MemBright Probes
In order to be able to place the molecules within the cell shape, and in collaboration with chem-
ists, we have selected new membrane probes capable of revealing the cell shape and imaging fine
structures, such as dendritic spines.23

These membrane probes, named MemBright, upon insertion in the membrane, emit fluo-
rescence with narrow emission peaks, allowing correlation with other conventional fluorescence
for multi-color labeling. A family of seven members is now available and can be used all over the
fluorescence spectrum (from 480 and 750 nm). Upon incubation with living cells, these probes
insert directly into the membrane through a lipid anchor and thus reveal the cell shapes without
the use of any transfection or viral vectors (Fig. 2). This strategy thus makes it possible to reveal
all neurons and/or glial cells in a few minutes without any toxicity.

The big advantage of MemBright probes is also its fluorogenic property. Indeed, MemBright
probes are non-fluorescent within media and become fluorescent when reaching the plasma
membrane. It means that the probe can be let within the cell culture media without having a
fluorescence background under the microscope. Letting the probe in the cell chamber during
live acquisition allows the perpetual replacement of the probes if bleaching occurs, thus leading
to persistent bright labeling of the membrane.

MemBright probes are more efficient when incubated on cells in the absence of serum to
avoid any titration of the probes by serum fat. In neurons and glial cells, we usually incubate
MemBright probes in Krebs Ringer solution at a concentration of 200 nM at 37 deg under the
microscope. The absence of serum optimizes the labeling, and the absence of phenol red lowers
the fluorescence background. Fluorescence on the plasma membrane appears very fast within a
few minutes. To avoid saturation of the plasma membrane with a huge amount of lipids, it is
crucial not to use a high concentration of probes. MemBright probes are sufficiently bright to be
used at the nanomolar range, whereas other commercial probes have to be used at the micromolar
range. Moreover, it should be stressed that illumination of any fluorescent probes may induce the
production of reactive oxygen species that can imbalance the intracellular redox state and be

Fig. 2 Confocal image (20×) of hippocampal neurons after 2 months in a culture labeled with
Cy3.5-MemBright probe reveals dendritic and axonal branch complexity. Scale bar: 100 μm.
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deleterious to the cell.24 Thus, it is also a good practice to minimize illumination time and fre-
quency, to the minimal amount needed to the right sampling of a biological event. Previously, we
could follow neuronal growth over time during 13 h, imaging every 2 min with low laser power
(0.2% of an 561 laser line of an Elira PS1), without any detrimental effects.23 At last, we have
shown that MemBright probes are resistant to permeabilization when fixed properly with a mix-
ture of 4% paraformaldehyde-0.2%glutaraldehyde, and can thus be combined with conventional
immunolabeling with primary and secondary antibodies.23 MemBright staining can be correlated
either to live antibody staining or with immunochemistry on fixed samples. We could show
double labeling of the plasma membrane and live L1-CAM endocytosed antibodies. We also
showed that intracellular vesicular transporter VGLUT could be revealed by immunochemistry
within 3D neuronal cell shape reconstructed using MemBright. This property thus allows
identifying surface or internal protein locations using MemBright counterstaining to visualize
cell shape. We have selected MemBright probes for their stability at the plasma membrane and
their slow endocytosis. However, on long-term incubation, they will be finally endocytosed and
can thus be used to label endocytic pathways [Fig. 3(c)].25

3.2 Imaging Plasma Membrane of Various Cell Types
We originally showed that MemBright probes could be used in various cell types, such as epi-
thelial cells in culture (HeLa cells or KB cells),23,26–28 and dissociated hippocampal neurons,23

hippocampal astrocytes.23 We could also use MemBright probes to label live brain (hippocam-
pus, cortex, and cerebellum) or liver slices, allowing the labeling in depth and imaging using
confocal or two photons microscopy.23 Since our first paper in 2019, MemBright probes have
been used by several other labs and cited in more than 60 articles and 39 reviews.29–57 It has
been used in B lymphocytes,58 in A431 cells,59 and reused in neuronal cells to label growth
cone and initial segments of hippocampal neurons,60 presynaptic terminals,29 and post-synaptic
compartments.53 It has also been used to label apoptotic bodies (AB), microvesicles (MV), and
small EV (sEV) isolated from MIN6 pancreatic beta cells exposed to inflammatory, hypoxic, or
genotoxic stressors.61 Since we were asked several times if MemBright could be used on bacteria,
we did recently E. coli live labeling with MemBright – CY3.5. As shown in Fig. 3(a), the bacteria
3D shape can be efficiently labeled in live.

3.3 Imaging Extracellular Vesicles
MemBright has been widely adopted by the extracellular vesicles community51 to track extrac-
ellular vesicles both in vitro or in vivo61–81 in hippocampal63 or cortical neurons,79 zebra-
fish,62,67,72 breast cancer cells or tumours,66,71,80 myotubes,82 and red blood cells.74,76

Fig. 3 Confocal images (93×) of various cell types labeled with Cy3.5-MemBright probe. (a) 3D
rendering of E.coli bacteria incubated overnight with MemBright probes. (b) 3D rendering of HeLa
cells incubated 30 min with MemBright. (c) Confocal section of hippocampal neurons incubated
several hours with MemBright, revealing intracellular vesicles.
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Particle size distribution and zeta potential analysis of EVs derived from A375 cells using nano-
particle tracking analysis (NTA) showed that EVs labeled before and after labeling by MemBright
have almost no change in size and only a slight shift of zeta potential.75 Due to its ease of use and
brightness, MemBright has thus been widely used to label exosomes. However, it should be stressed
that MemBright is not specific to extracellular vesicle labeling. MemBright will be able to label any
membrane in contact with the probe. That means that membrane debris trails left behind bymigrating
cells will be labeled, whatever the nature of the membrane (EVs or not). Anymembranous organelles
(tubules, endosomes, lysosomes, synaptosomes, etc.) that would have been retrieved by ultracen-
trifugation can be labeled when incubated with MemBright. Some controls are thus needed before
labeling to ensure that the fraction is homogeneous and not contaminated by different organelles.

Hyenne et al.62 show that MemBright can be used in pulse-chase experiments and that some
CD63-GFP EVs can be labeled with MemBright, while others are not.62 Sung et al. concluded
that MemBright can label exosomes as well as plasma membrane-derived EVs, but that
MemBright does not label all exosomes.47 Using a pulse-chase experiment, it is expected that
not all endosomal compartments will be labeled. Indeed, only those deriving from the plasma
membrane exposed to the MemBright at a time t will be visible. It is likely that a proportion of
EVs that were generated before or after incubation with MemBright and that are then stored in
the cell will not be labeled by the MemBright wave. It is therefore essential to properly calibrate
the labeling time incubation and the chase time to observe the desired events.

4 Imaging Plasma Membrane with Single Molecule Localization
Microscopy

MemBright probes can be used in conventional and super-resolution microscopy (Fig. 4 and
Video 1) and thus make it possible to observe the molecular distribution of synaptic proteins in

Fig. 4 STORM imaging of hippocampal neurons labeled with Cy3.5-MemBright probe and imaged
in conventional widefield microscopy [fire LUT in (a)] and in STORM microscopy (blue spheres in
rectangle). (b) Magnification of the plasma membrane 3D STORM image shows the single mol-
ecule organization of MemBright all over the plasma membrane. Light blue localizations are closer
and deep blue are deeper. (c)–(e) Example of stubby and mushroom dendritic spines in 3D
STORM. All the localizations found in (c) (published previously in a different form in Ref. 3) can
be used to reconstruct the 3D shape of the spine in a wireframe. This 3D shape can then be used
for volumetric estimation or fine measurements of the spine neck.
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correlation with the structural morphology at the nanoscale using STORM. Altogether with the
SODA plugin, MemBright probes thus provide the perfect tools to access a nanometric molecular
map of various proteins within the 3D cellular context. These high-resolution techniques were set up
on fixed samples, but it is expected that the need for super-resolution imaging with small molecular
probes to allow imaging of living samples will be growing and will stimulate the development of
new molecular probes. Indeed, chemical development will be required in the next years, since
molecular probes are still up to now far beyond the recent development in instrumentation that
can reach a resolution of 3 to 4 nm.83 One interesting track will be probably the development of
self-blinking dyes84–86 or the development of new convertible fluorophores28 for live SMLM.We are
now working on a photoswitchable version of the MemBright that would be able to be photo-
switched without any reducing buffer, to be used in live single molecule localization microscopy.87

Moreover since MemBright has been used a lot in the extracellular vesicle community, it indicates
that membrane dyes are of great interest for people working on vesicular trafficking. One other
challenge, in the next years, would be to develop new MemBright probes devoted to fast internali-
zation, to be able to decipher different vesicular pathways with various colors.

5 Appendix: Supplementary Information
Video 1 Conventional and STORM imaging of hippocampal neurons labeled with Cy3.5-
MemBright to label dendritic spines in 3D at the nanoscale level (MP4, 60.9 MB [URL:
https://doi.org/10.1117/1.NPh.11.1.014414.s1]).

Disclosures
The authors have no competing interests to declare and are not financially interested or remuner-
ated for MemBright probe sales.

Code and Data Availability
Tutorial and download concerning SODA plugin and user-friendly “Easy SODA protocol,” can be
found on Icy Software website here: https://icy.bioimageanalysis.org/protocol/easy-soda-2-colors-
1-image/

Sample image is also available here on Zenodo: https://zenodo.org/record/4323312-.Y_3tqx1CdHQ

A French Tutorial on Ripley’s function and Icy SODA plugin can be found on YouTube: https://www
.youtube.com/watch?v=7yVp73s-4TA
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