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Introduction

Abstract. Near-infrared spectroscopy (NIRS) offers the potential to characterize resting-state functional con-
nectivity (RSFC) in populations that are not easily assessed otherwise, such as young infants. In addition to
the advantages of NIRS, one should also consider that the RS-NIRS signal requires specific data preprocessing
and analysis. In particular, the RS-NIRS signal shows a colored frequency spectrum, which can be observed
as temporal autocorrelation, thereby introducing spurious correlations. To address this issue, prewhitening of
the RS-NIRS signal has been recently proposed as a necessary step to remove the signal temporal auto-
correlation and therefore reduce false-discovery rates. However, the impact of this step on the analysis of
experimental RS-NIRS data has not been thoroughly assessed prior to the present study. Here, the results of
a standard preprocessing pipeline in a RS-NIRS dataset acquired in infants are compared with the results
after incorporating two different prewhitening algorithms. Our results with a standard preprocessing replicated
previous studies. Prewhitening altered RSFC patterns and disrupted the antiphase relationship between
oxyhemoglobin and deoxyhemoglobin. We conclude that a better understanding of the effect of prewhitening
on RS-NIRS data is still needed before directly considering its incorporation to the standard preprocessing
pipeline. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh.5.4.040401]
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Apart from fMRI and electrophysiological recordings,

One way to describe the functional organization of the human
brain is to measure resting-state functional connectivity (RSFC)
reflecting time synchronized fluctuations in cerebral hemo-
dynamics in the absence of task.'? Spatially distant brain
regions showing synchronized hemodynamic activity in these
slow spontaneous fluctuations constitute distinct functional
patterns of brain activity, also referred to as brain networks.>*
The relationship between spontaneous brain activity and task-
related function has been observed with paradigms involving
different neuroanatomical systems, demonstrating that areas
responsible for similar functions also show a correlated activity
at rest® and that the response in individual functional areas
is correspondingly modulated by the activity of functional
resting-state networks.® Moreover, similar patterns of RSFC
have been consistently observed across individuals, in both
adult’ and infant populations.®’

RSFC has been mostly investigated with functional magnetic
resonance imaging (fMRI) techniques, mainly based not only
on the blood oxygenation level dependent (BOLD) contrast
but also on measurements of cerebral blood flow with arterial
spin labeling,'®!! or cerebral blood volume with vascular
space occupancy imaging.'>!* The existence of functional brain
networks that coexist during RS has also been revealed in direct
measurements of neuronal activity with electro- and magneto-
electroencephalography (EEG and MEG),'*!> suggesting that
these signals cannot be attributed only to physiological proc-
esses or artifactual components observed in vascular-related
functional imaging techniques.

*Address all correspondence to: Borja Blanco, E-mail: b.blanco@bcbl.eu
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near-infrared spectroscopy (NIRS) also offers the potential to
examine RSFC by measuring concentration changes of oxy-
hemoglobin (HbO,) and deoxyhemoglobin (HbR) in the vascu-
lature of the cortical tissue below measurement channels.'®!
NIRS has been effectively employed to characterize RSFC
in adults'® and infants,'*' and to assess differences in RSFC
patterns between experimental groups.”?> The most common
NIRS RSFC analysis involves evaluating the temporal
relationship between time series of the preprocessed data per
channel, for example, through relatedness measures, such as
the Pearson’s correlation. Individual and/or group inferences
are made based on comparing the strengths, directions, and the
spatial configurations of the obtained correlation values between
groups.

In the current paper, we focus on the specific methodological
challenges that could arise during the analyses of RS-NIRS
data. The hemodynamic changes elicited by neuronal activity
recorded in the NIRS signal contains multiple non-neuronal
fluctuations, such as instrumental noise and trends, subject-
specific components (e.g., motion-related effects), and hemo-
dynamic fluctuations originated in the cerebral and extracerebral
compartments. These fluctuations are related to changes in
blood pressure (0.1 Hz), respiration (0.3 to 0.6 Hz), and cardiac
pulsation (1 to 2 Hz) and are consistently present at specific
frequencies and across measurement channels.”® The existence
of these non-neuronal components introduces spurious common
variance across time series, and therefore could falsely increase
FC between signals. Furthermore, changes in HbO, and HbR
signals are also affected by the filtering effect of the actual
hemodynamic response function (HRF) that acts as a low
pass filter with cutoff frequency approximately around 0.1 to
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0.2 Hz. Consequently, the NIRS signal has a colored spectrum
(i.e., it is not a white process with equal energy across all its
frequencies), and it exhibits nonzero temporal autocorrelation.
This fact is relevant when RSFC is examined based on pairwise
correlation measures. As first noted by Granger and Newbold,**
the correlation between two random signals will artificially
increase if these signals exhibit nonzero autocorrelation.
Therefore, the intrinsic autocorrelation in the NIRS data may
artificially inflate correlation values, increase the false-positive
rate under the null hypothesis of no correlation between chan-
nels, and potentially compromise the validity of data analyses
outcomes.”> %

The impact of autocorrelation in the validity of statistical
estimation has been widely discussed in the analysis of task-
related activity in fMRI data®>! but only recently in the
NIRS literature.?>?"3233 The most common way to account
for signal autocorrelations (also referred to as serial correlations)
is to prewhiten the signal so that the residuals of a linear
regression model, which describe the hypothesized task-related
activity, become uncorrelated (i.e., white).?>*-3? The use of
prewhitening in the analysis of RS data is less common and
only few studies have suggested prewhitening of the signal
itself, either in fMRI data,*** or NIRS data.’® By prewhitening
RS data, it is expected that the signals become white, exhibiting
less temporal autocorrelation, thus reducing false-positive rates.
Yet, this approach also presents some caveats. We might assume
that the colored frequency spectrum of the RS-NIRS signal is
partially originated by physiological noise or induced by the
blurring of the hemodynamics, which act as a low pass filter.
However, spontaneous neural oscillations as measured with
electrophysiological techniques also exhibit a colored frequency
profile, typically characterized as a 1/f spectrum.*®® In this
scenario, convolving a neural signal with 1/f frequency profile
with the HRF and adding physiological noise, as is the case in
RS-NIRS signals, would still leave a signal that has a 1/ f profile
in the limited band of the HRF. Therefore, it might not be
a reasonable null hypothesis to expect RS-NIRS signals to be
white, as this would imply that the information related to the
HRF has been partially or completely removed, which would
complicate the neurophysiological interpretation of the signal
that is left after applying prewhitening.

Because prewhitening has been only recently proposed as an
important step in the RS-NIRS preprocessing pipeline, a care-
ful examination of its effect on the physiological properties of
the RS-NIRS signal for FC analyses is necessary. Therefore,
the purpose of the current work is to evaluate the effect of
prewhitening during the analyses of real RS-NIRS data. For
this purpose, we replicated two previous NIRS studies that mea-
sured RS activity in infants, by following similar data acquis-
ition, data preprocessing, and analyses procedures.'*?! Also,
the results obtained following a standard preprocessing pipeline
(as done in the previous studies) are compared with the results
after incorporating two common prewhitening approaches in
the preprocessing pipeline. The two prewhitening approaches
include one based on a nonparametric approach, i.e., assuming
no model for the autocorrelation as it is used for fMRI data
analyses’! and one based on modeling the signal as a stochastic
autoregressive (AR) process.”® By comparing these two algo-
rithms, we also assess whether different prewhitening proce-
dures produce different results. The analyses described above
were performed on a data set collected from 4-month-old sleep-
ing infants, obtained in a similar testing procedure to those of
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Homae et al.'” and to the recent study by Watanabe et al.*!
All evaluations were performed for both HbO, and HbR.

2 Methods

2.1 Data Acquisition

Data from 24 healthy infants were included in this study (age:
124.6 £ 3.76 days, 12 female). Parents were informed about the
procedure and then signed a written informed consent before the
experiment. This study was approved by the local ethical com-
mittee. Spontaneous hemodynamic activity was recorded using
NIRS with a NIRScout system (NIRx Medical Technologies,
California) at wavelengths 760 and 850 nm. About 16 light
emitters and 24 detectors were positioned over frontal, temporal,
parietal, and occipital regions of both hemispheres according to
the international 10-20 system, using the nasion, inion, and pre-
auricular points as external head landmarks (Fig. 1). Every pair
of adjacent light emitters and detectors formed a single meas-
urement channel, which allowed for simultaneous recordings
of 52 channels for each hemoglobin oxygenation state at a
sampling frequency of 8.93 Hz. A diagram showing the distance
between adjacent source—detector pairs used as measurement
channels is presented in Fig. 1. The average distance between
adjacent source—detector pairs in this study was 2.5 cm.
Occipital channels were discarded for all participants for being
particularly prone to motion artifacts. Thus, only data from
the remaining 14 sources and 19 detectors (46 channels) was
considered in the analyses. During data acquisition, participants
were in natural sleep on their caregivers’ lap in a sound attenu-
ated room, without another source of illumination than the
screen of the recording computer. Parents were asked to remain
silent and to minimize movements over the duration of the
recordings in order to avoid involuntary cap or optode displace-
ment. Recordings lasted between 11 and 21 min.

2.2 Experimental Data Preprocessing and Analysis

All data preprocessing and analyses were implemented in
MATLAB (R2012b, Mathworks, Massachusetts) using in-house
scripts as well as functions available in the Homer2 NIRS
package.*’

2.3 Data Preprocessing

First, light intensity data (raw data) were converted into optical
density changes (hmrintensity20D in Homer2). Noisy segments
typically occurring at the beginning and at the end of each data-
set, corresponding to awake activity of the infants (before the
infant fell asleep and after the infant woke up), were visually
identified and discarded. Although most participants displayed
good data quality, some datasets contained motion induced
spikes and signal drifts that were corrected using the wave-
let-based despiking method described in Patel et al.,*> which
was adapted for the NIRS data. This method effectively reduces
motion artifacts in the data while keeping time periods free of
artifacts unaffected (see Fig. 2).

Subsequently, optical density data were converted into HbO,
and HbR concentration changes (hmrOD2Conc in Homer2),
considered as differential path length factors 5.3 (760 nm)
and 4.2 (850 nm).*' The signal was bandpass filtered between
0.005 and 1 Hz to remove the contribution of very slow
frequency fluctuations, as well as high frequency components
(e.g., cardiac pulsation).'"” After this step, all datasets were
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Fig. 1 Diagram of fNIRS optode (sources = red rhombus, detectors = gray circles) and channel
(numbers) localization in the cap employed in the current experiment. The right part of the figure
shows a diagram with the distances between sources and detectors.

Original data
0.5 T

Optical density

Adjacency matrix after conversion to
HbO, and HbR and bandpass filtering
- B g —

‘vi ‘ "

e}
Q0
€T
~o 100 200 300 400 500 600
Z
@ o
| =
3 z
8
Ll
S s s s s
20 100 200 300 400 500 600 b6 o
Clean data 2
05 , ,
Z
w
=
[
o
E |
“a "
S . ; ‘ ; LA_ _ l i
08q 100 200 300 400 500 600 0 1 2 3 4 5

Time (s)

Frequency (Hz)

Fig. 2 Time-series of a representative example before and after wavelet despike, and removed noise
at this step. This wavelet-based method* is designed to detect and remove transient events caused
by outliers in the signal and low-frequency trends. In the top part of the right column of figure, the
adjacency matrix of the clean data after conversion to HbO, and HbR and bandpass filtering is
shown. The plot in the bottom part of the right column shows the power spectrum of the clean
data time-series. This figure was created for every participant as part of the data quality assessment

routine during preprocessing.

limited to ~571 s (i.e., 5100 samples) to ensure a homogenous
contribution across participants to the statistical analyses. This
step was performed by visually inspecting the data in order to
select the segment displaying the best data quality. The first 150
samples and the last 5 samples were also removed to avoid
the beginning and end effects originated by the prewhitening
methods. Thus, the final duration of the time series was ~554 s
(i.e., 4945 samples).
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2.4 Prewhitening Methods to Remove Temporal
Autocorrelation

Let us consider that the time series y of a specific channel
follows a normal distribution with zero mean and covariance
6%V (ie., y~N(0,6%V)), where V is the covariance matrix
of y describing the temporal correlation between all the time
points. The aim of prewhitening is to find a matrix S that filters
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y such that Sy ~ N(0,6%SVS”) and enforces that SVST = I.
In this work, two prewhitening procedures were implemented:
a nonparametric approach based on the estimates of the auto-
correlation coefficients of the data and a parametric approach
based on an AR model of the data. The two prewhitening meth-
ods described below were applied at each individual channel,
for HbO, and HbR (46 channels X 2 hemoglobin parameters)
and for every infant.

2.41 Nonparametric approach

In the nonparametric prewhitening approach, the matrix S is
defined based on the raw autocorrelation coefficients of the
signal y. First, the raw autocorrelation coefficients of y are
estimated (xcorr function in MATLAB) and used to define the
sample covariance matrix V, which is a symmetric Toeplitz
matrix. Then, the Cholesky decomposition of V is computed
such that V = KKT. By defining § = K~!, it can be shown that
the prewhitened signal y ,,, = Sy follows y,,,, ~ N(0, 6>SVST) =
N[0,6?K'KKT(K~")T] = N(0,6°I).

2.4.2 AR fitting approach

Instead of defining the prewhitening in terms of the raw auto-
correlation coefficients of the signal, we can alternatively
attempt to model the correlation in terms of an AR process.
This model assumes that the data at a specific time point,
i.e., ¥;, can be modeled based on the data from previous sample
points and a white random component &; ~ N(0, 6°I), which is
usually referred to as the innovation term of the signal.
Mathematically, an AR model of order p of the signal y can
be defined as y; —a;y,_1 — ay;o— -++ —a,y;_, = &, where
the coefficients a;,i =1,...,p, are the AR coefficients of
the model. In this work, the AR coefficients were estimated fol-
lowing the forward—backward least-squares approach described
in Barker et al.,?> which is available in Homer2. AR coefficients
are calculated for several model orders to find the order that min-
imizes a previously defined information criterion [e.g., Bayesian
information criterion (BIC)]. In our study, we computed the
AR coefficients up to an order of 150 coefficients and chose
the model order p that minimizes the BIC in this range. We
observed that the optimal model order varied across channels
and datasets with a range between 60 and 110. Subsequently,
the channel time series is filtered with the linear filter defined
with the AR coefficients of the selected model order, which
results in the corresponding estimate of the innovation signal
g; that is used for subsequent analyses.

2.5 Functional Connectivity Analysis

FC analysis methods described in the following section were
equivalently applied to data that were preprocessed without pre-
whitening, as well as to data prewhitened with the AR procedure
or the nonparametric procedure, and for both HbO, and HbR.
As a measure of the FC between channels, pairwise Pearson’s
correlation coefficients were computed between the time
courses of the HbO,, as well as HbR signals, of each channel
pair for each subject. These correlation coefficients can be rep-
resented as a FC matrix, where the i, j element of the matrix
reflects the Pearson’s correlation coefficient between channels
i and j. Individual FC matrices were converted from r values
to z values by Fisher’s r-to-z transform and averaged across sub-
jects (n = 24) to obtain group HbO,-FC and HbR-FC matrices.
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Average FC matrices were converted back to r values for figure
presentation.

A hierarchical clustering approach was also performed at the
group level.” First, HbO, and HbR time series of each partici-
pant were standardized and concatenated in time resulting in two
datasets with 46 channels X (4945 samples X 24 participants).
Next, agglomerative hierarchical clustering was carried out
(linkage function in MATLAB) using the correlation distance
and the Ward method to group channels and clusters based
on their degree of similarity. The dendrogram plot of the hier-
archical cluster tree was generated for two thresholds represent-
ing different levels of similarity. In order to display the same
number of clusters (i.e., three or six clusters), different thresh-
olds were considered across methods and conditions.

2.6 Phase Difference Analysis

For each subject dataset, the average phase difference between
HbO, and HbR signals was calculated on each individual
channel to obtain the hemoglobin phase of oxygenation and
deoxygenation (hPod).?! Briefly, Hilbert transformation was
applied to HbO, and HbR signals to calculate their correspond-
ing instantaneous phase signals. These signals were then sub-
tracted to obtain a phase difference signal between HbO, and
HbR. Next, the temporal average of the phase difference signal
was computed for each HbO, and HbR channel pair, resulting in
a phase difference value (hPod) per channel. Standard and polar
histograms were computed for each subject as well as for the
entire group, where each subject contributed 46 values (i.e.,
number of channels). Statistical differences in average hPod
values between the methods were investigated by using a
Watson—Williams test.*> The same test was also employed in
the posthoc pairwise comparisons.

2.7 Simulations

Two sets of simulations were performed to further investigate
the effect of prewhitening in signals exhibiting temporal auto-
correlation and to facilitate the interpretation of the results with
real RS-NIRS data.

2.71 False-positive rate in randomly generated time
series

To investigate the effect of prewhitening on the Pearson corre-
lation coefficients, two sets of randomly generated time-series of
length of 5000 sample points were simulated following a similar
procedure, as described in Santosa et al.?° One set of simulated
time-series was generated by filtering two random normally
distributed signals with a 1/f shape filter, in order to make
these signals match the frequency spectrum of spontaneous
neural oscillations. The second set of simulations was generated
with a white frequency spectrum. In addition, two different con-
ditions of correlation were assessed for each set: with no corre-
lation (i.e., the distribution of the correlation coefficients is
expected to be centered in zero) and with an induced correlation
of r = 0.5, which was generated by multiplying the time-series
with an upper triangular matrix obtained by the Cholesky
decomposition of the desired correlation matrix (i.e., [1 0.5;
0.5 1D).

The following processing steps were independently applied
in each of the four simulated datasets. First, signals were
convolved with an HRF generated using a gamma function
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Fig. 3 Example of a simulated signal and its power spectrum at each processing step, and power
spectrum of HbO, for a representative example of our experimental data.

I'(t;n, A) with parameters n = 4 and 1 = 2. Then, each signal
was added terms simulating physiological noise (i.e., cardiac
pulse and respiration) that were generated as narrow-band
filtered noise (0.25 to 0.35 Hz for respiration, 1.95 to 2.05 Hz
and 3.95 to 4.05 Hz for cardiac pulse), as well as a white noise
component that simulated hardware-related random noise. The
amplitude of these components relative to the HRF signals was
1/2 for the cardiac pulse, 1/20 for the respiration, and 1/10,000
for the hardware-related random noise, which yielded signals
with similar power spectra to our experimental data (see
Fig. 3). Following the same preprocessing pipeline as for the
experimental data, signals were bandpass filtered between
0.005 and 1 Hz. Finally, prewhitening was applied independ-
ently to each signal by the two procedures described above
(i.e., nonparametric approach and AR fitting approach). In
each repetition (n = 3000), Pearson’s correlation for each pair
of simulated signals was computed after every preprocessing
step to evaluate the effect of each of these steps in the distribu-
tion of correlation coefficients.

2.7.2 Effect of prewhitening on simulated RSFC patterns

To further investigate the effect of prewhitening on the analysis
of RSFC, 20 datasets with “RSFC patterns” similar to those
observed in real experimental data were simulated following
the same procedure described above. Each dataset included
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40 time-series of 5000 sample points, thus each of these datasets
simulated RS data of a participant acquired in a similar testing
procedure as our experimental data. The original time-series
were random uncorrelated signals with a 1/f frequency
spectrum, which could be regarded as signals reflecting sponta-
neous neural processes. Different levels of correlation between
these simulated “channels” were induced, producing adjacency
matrices showing specific and known correlation patterns. The
same correlation structure was imposed in the 20 simulated
“participants.” The correlation structure was induced to approx-
imately match the shape of the adjacency matrices observed in
our experimental RS-NIRS data. A correlation of r =0.8
was induced between neighboring channels, whereas a correla-
tion of r = 0.6 was induced between homotopic channels.
Correlations of r =0.1 or r =0.2 were simulated between
the remaining pairs of channels. Similarly, these signals were
convolved with the HRF, corrupted with physiological noise
to create simulated NIRS datasets and then bandpass filtered.
The two prewhitening procedures were then applied to these
datasets. Changes in the spatial patterns of correlation were
investigated by looking at the group level adjacency matrices
of the simulated NIRS data, after bandpass filtering and after
prewhitening. The same hierarchical clustering approach as
described above was also performed, to investigate whether
the induced spatial clustering structure was preserved after
the different processing steps.
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3 Results autocorrelation value even after 300 time lags (~30 s), whereas
the autocorrelation coefficients of the HbO, signal become
3.1 Functional Connectivity Analyses approximately zero after ~200 time lags (~20 s). After band-

pass filtering (0.005 to 1 Hz), the HbO, and HbR signals
show similar autocorrelation that decreases to zero after
~200 time lags. As shown in the bottom plots of Fig. 4,
both nonparametric and AR prewhitening procedures reduce
the autocorrelation of the data, even though the autocorrelation

Figure 4 illustrates the effect of the different preprocessing
steps and prewhitening methods on the HbO, and HbR signals
[Fig. 4(a)] and the corresponding initial 300 autocorrelation
coefficients [Fig. 4(b)] for a single channel of an exemplar sub-
ject. Without bandpass filtering, the HbR signal shows a high
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Fig. 4 (a) The times-series of a single channel for HbO, (red) and HbR (blue) at different steps of
the preprocessing. (b) The first 300 autocorrelation coefficients.
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Fig. 5 FC matrices for an individual subject (first row) and at the group level (second row) for the three
types of preprocessing. In each plot, the FC matrix for HbO, and HbR is shown in the top-left part and
bottom-right part, respectively (RH: channels in right hemisphere, LH: channels in left hemisphere).
The FC matrix representing the correlation between HbO, and HbR is shown in the top-right. Note that
the plots are symmetric with respect to the main diagonal.
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coefficients shrink to values closer to zero at shorter lags using
the AR approach than the nonparametric approach.

Figure 5 shows the FC matrices for the three preprocessing
approaches for an individual subject (first row) and at the group
level (second row). It is generally assumed that HbO, and HbR
signals in NIRS data should exhibit negative correlation.?'**
This assumption is fulfilled both at the individual and at
the group level when data has only been preprocessed with
band-pass filtering. Moreover, homologous regions of both
hemispheres show high correlation values in HbO, and HbR,
forming clusters and a clear spatial distribution around the
main diagonals. In contrast, incorporating any of the two pre-
whitening procedures as part of the preprocessing makes the
negative correlation between HbO, and HbR disappear, and
the correlation between homologous regions is only evident
in HbO,, with a different spatial distribution in each of the
methods.

We further investigated changes in correlation values due to
the effect of prewhitening across HbO,, HbR, and between
HbO, and HbR (Fig. 6). For that, correlation coefficients
were transformed to z scores by Fischer’s z transformation.
For each condition (i.e., HbO,, HbR, and HbO,-HbR), the indi-
vidual z scores were evaluated as random effects and ANOVA
was performed with preprocessing method as a factor (3 groups
of 24 infants in total). Posthoc pairwise multiple comparison
tests were performed following the Tukey’s honestly significant
difference criterion (Table 1). For HbO,, we observed a signifi-
cant difference between the three methods (Fpp¢9 = 8.62,
p = 0.0004). Multiple comparison test showed that correlation
values in HbO, for the AR method were larger than those of the
nonparametric approach (p = 0.0002). For HbR, we also found
a significant difference between the methods (Fp g9 = 146.13,
p < 0.00001). Posthoc tests revealed that z scores were larger

Table 1 Mean z score differences between preprocessing methods
and 95% confidence interval.

Mean 95% Confidence
Method difference z interval
HbO,
Bandpass filter—nonparametric 0.0662 —0.0073 to 0.1397

Bandpass filter—AR -0.0612 —0.1347 to 0.0123
Nonparametric—AR -0.1274  -0.2009 to —0.0539
HbR

Bandpass filter—nonparametric 0.2904 0.2403 to 0.3405
Bandpass filter—AR 0.3254 0.2754 to 0.3755
Nonparametric—AR 0.0350 —0.0150 to 0.0851
HbO,-HbR

Bandpass filter—nonparametric = -0.2464  —0.2927 to —0.2000
Bandpass filter—AR —-0.2015  —0.2479 to —0.1552
Nonparametric—AR 0.0448 —0.0015 to 0.0912

for the bandpass filter method than those of the nonparametric
approach (p < 0.00001) and the AR approach (p < 0.00001).
For the HbO,-HbR condition, a significant difference between
the methods was also observed (Fpp g9 =91.9, p <0.0001).
Pairwise posthoc tests demonstrated that z scores in the
bandpass filter condition were smaller (i.e., larger negative

Non-parametric AR
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Fig. 6 Histograms of the group level correlation r values for the different preprocessing methods.
Each column shows the comparison between preprocessing methods for the different conditions
(i.e., HbO,, HbR, and HbO, — HbR). Each infant contributed with 46 x 45/2 = 1035 correlation r values
(upper triangular connectivity matrix) to each histogram.
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correlation values) than those of the nonparametric approach
(p <0.00001) and those of the AR approach (p < 0.00001).

3.2 Hierarchical Clustering Analysis

The results of the hierarchical clustering analysis of the standard
preprocessing were consistent with the results previously
reported in Homae et al.'” A large degree of reproducibility
is observed despite differences in data acquisition between stud-
ies (46 channels as opposed to 94 channels) and recording dura-
tion for each infant (9 min instead of 3 min). Also, we assessed
4-month-old infants, which correspond to an intermediate age

Bandpass filter

3 Clusters

6 Clusters

between the infants at 3 and 6 months of age tested in the
previous study.'

As it can be seen in Fig. 7 for HbO,, if only band-pass filter-
ing is applied, clusters are formed between homologous regions
of both hemispheres, which split into individual frontal, tempo-
ral, and parietal regions on each hemisphere at a lower threshold
(i.e., larger degree of similarity). With the nonparametric and
AR prewhitening, the clustering between homologous regions
is preserved, but each method shows a different spatial pattern.
With the nonparametric approach, the most posterior parietal
channels in both hemispheres are clustered along with the
most frontal channels. The AR prewhitening approach shows

Non-parametric AR

Fig. 7 Hierarchical clustering analysis for HbO, and HbR data. Top two rows show results for the higher
threshold corresponding to three clusters. The two rows at the bottom of the figure show results for
the lower threshold corresponding to six clusters.
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a similar distribution to the nonparametric approach, except the
anterior—posterior cluster is formed between channels located
in the frontotemporal region and the posterior parietal region.
For the lower threshold, AR prewhitening results into a larger
number of interhemispheric clusters than the nonparametric
approach, being the clustering in the later condition more similar
to that obtained with band-pass filtering.

As for HbR data, the spatial distribution of clusters with only
band-pass filtering at the higher clustering threshold (i.e., few
clusters) is comparable to that obtained in HbO, and to results
presented in a similar study by Homae et al.** The results at the
lower clustering threshold (i.e., more clusters) and with the two
prewhitening procedures show a less bilateral spatial distribu-
tion, which is restricted to a few channels. A frontal cluster
involving both hemispheres is formed in the three approaches,
regardless of the thresholds, but the main temporal/parietal
clusters appear separated across hemispheres.

3.3 Phase Difference Analysis

Figure 8 shows the effect of prewhitening in hPod values across
channels for a representative subject [Fig. 8(a)] as well as at the
group level [Figs. 8(b) and 8(c)]. After band-pass filtering, we
observed a pattern of hPod values that follows previous obser-
vations for a group of participants with a similar age range as our
data.?! In both plots of the standard and polar histograms with

(a) Bandpass filter
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Table2 Group average hPod values and standard deviation for each
preprocessing method.

Method hPod Standard deviation
Bandpass filter —2.8668 0.36
Nonparametric —1.8342 0.91
AR —2.2697 0.88

only band-pass filtering, it can be seen that most hPod values are
close to z rad (i.e., 180 deg), which corresponds to an antiphasic
pattern between both HbO, and HbR signals. However, prewhit-
ening disrupts this pattern. The overall distribution of hPod
values after prewhitening becomes more widespread, although
the distribution for prewhitening with the AR approach shows
a mode closer to z (i.e., antiphase) than the nonparametric
approach. By using a Watson—Williams test, we observed a sta-
tistically significant difference in average hPod values between
the methods (F5 60) = 63.4342, p < 0.0001). Posthoc pairwise
comparison tests between the methods revealed that mean
hPod values in the bandpass filter method were larger than
those of the nonparametric approach (p <0.0001) and the
AR approach (p < 0.0001). Significant differences were also

/2

/2 -n/2
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Fig. 8 Polar histogram showing phase difference (hPod) values (a) for an individual subject and (b and c¢)
at the group level for the three types of preprocessing. Histograms in the panel (c) show absolute hPod

values.
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Table 3 Pairwise comparisons on mean hPod difference values
between preprocessing methods.

Method F1,46) P value
Bandpass filter—nonparametric 144.840 <0.0001
Bandpass filter—AR 64.6894 <0.0001
Nonparametric—AR 14.1282 0.0004

observed between the two prewhitening methods, the AR
approach showing larger hPod values than the nonparametric
approach (p = 0.0004; Tables 2 and 3). Note that values range
between O and %7, so higher values correspond to values that
are closer to £x.

3.4 Simulations

Figure 9 depicts the histograms of Pearson correlation coef-
ficients after each processing step for each simulated dataset,
where the signals with 1/f spectrum and white spectrum are
shown on the top and the bottom, respectively. For the two
sets of simulated data without correlation (r = 0), the distri-
bution of r coefficients becomes wider after convolution with
the HRF and bandpass filtering, suggesting that both steps
artificially increased correlation values and consequently
increased false-positive rates. After prewhitening, correlation
coefficients become centered in zero again, following a sim-
ilar distribution as the original signal with the nonparametric
approach, whereas the distribution is narrower with the AR
approach. For induced correlation r = 0.5, the distribution
of correlation coefficients is wider for the signals with
a 1/f power spectrum than for the white signals due to
their autocorrelation. Similar to the scenarios with r = 0,
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convolving with the HRF widens the distribution of correla-
tions, and bandpass filtering reduces the confounding effects
due to physiological noise. Decisively, both prewhitening
approaches substantially reduced the correlation between
the time-series towards zero. The nonparametric prewhitening
resulted in distributions centered in zero for datasets with 1/f
spectrum in the two correlation conditions. Similar results
were obtained for the dataset with white spectrum and
r = 0. The dataset with a white spectrum and r = 0.5 showed
a distribution slightly shifted toward positive correlation
values. The AR approach showed a similar distribution, with
a narrow shape and centered above zero, across datasets and
conditions.

Figure 10 shows the group level adjacency matrices for
the four conditions assessed in the second set of simulations.
Adjacency matrices for the simulated neural data and for the
NIRS data show the expected induced correlation patterns.
By contrast, the two prewhitening procedures reduce the corre-
lation between channels toward values close to zero, in agree-
ment with the results shown in Fig. 9. Prewhitening also alters
the spatial configuration of the adjacency matrices, although
part of the induced correlation structure is preserved (note
differences on the scale of the plots). Figure 11 illustrates
that the hierarchical clustering analysis for the simulated neural
data and for the NIRS data shows the expected spatial clustering
configuration with the “anterior” and “posterior” channels clus-
tering together and splitting by “hemisphere” when the thresh-
old is set to display larger degrees of similarity (i.e., dark and
light for blue and red colors). After prewhitening, the “anterior”
and “posterior” clusters are preserved at the higher threshold,
but the clustering configuration is disrupted when clusters
between more similar channels are displayed. With nonparamet-
ric prewhitening, the spatial configuration changes and clusters
that do not belong to the original structure are formed. The AR
prewhitening approach also results in diffferent clusters from
those of the original configuration.
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Fig. 9 Distribution of the measured Pearson correlation coefficients for two sets of simulated time-series
under different levels of correlation. The distribution of correlation coefficients is plotted for each process-
ing step. (a) Uncorrelated signals with 1/f power spectrum. (b) Signals with 1/f power spectrum and
an induced correlation of r = 0.5. (c) Uncorrelated signals with a white power spectrum. (d) Signals
with a white power spectrum and an induced correlation of r = 0.5.
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Fig. 10 Group level adjacency matrices from simulated data showing specific RSFC patterns resembling
real data. (a and b) The results for the simulated neural and the simulated NIRS data. (c and d) The
adjacency matrices for the two prewhitening procedures. Note that the scale in each row is different.

(a) Raw data (b) NIRS data

Fig. 11 Results of the hierarchical clustering analysis corresponding
to simulated “participants.” (a and b) The results for the simulated neu-
ral and NIRS data. (c and d) The results after applying each prewhit-
ening procedure. Each color represents channels that are grouped
together forming clusters based on similarity. For the blue and red
clusters, dark and light colors indicate that these channels belong to
the same cluster if a higher threshold is considered, but split into
two clusters at lower thresholds (i.e., larger degree of similarity).

4 Discussion

It has been previously described that the validity of the standard
NIRS RSFC data analysis approach is compromised by the
presence of physiological and artifactual fluctuations that
increase the level of autocorrelation in the data as well as
introduce shared variance across different channels, leading to
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uncontrolled false-positive rates.”® One of the main causes of
this issue is the presence of autocorrelation in the RS-NIRS
data due to the slow nature of hemodynamic fluctuations in
the extracerebral and cerebral compartments.”” To overcome
this problem, it has been proposed that autocorrelation should
be removed from the data before performing RSFC analyses
via prewhitening procedures.?®343

Here, using real RS-NIRS data obtained from infants, we
assessed the effects of different prewhitening methods, in
comparison to a standard analysis method (e.g., one excluding
prewhitening). The rationale presented in Santosa et al.*® to
recommend the use of prewhitening in RS-NIRS data, which
has also been proposed for RS-fMRI studies, 2*** is based on
the fact that temporal autocorrelation inflates relatedness
measures, such as Pearson’s correlation. In their work, Santosa
et al.?® convolved two random uncorrelated signals with a
canonical HRF and added physiological noise (i.e., cardiac
pulse and respiration) to make these signals show the properties
of real RS-NIRS signals. They demonstrated that this step make
signals self-correlated, increasing the correlation between them
and producing false-positive rates around 80%. In their work,
prewhitening indeed removed temporal autocorrelations, and
false-positive rates returned to the expected true value of 5%.
Nevertheless, it is also true that real hemodynamic signals
are not expected to show a white frequency spectrum. Therefore,
prewhitening the NIRS signal and consequently altering the
expected power law behavior of RS-NIRS data in the frequency
band of the HRF may compromise the interpretation of RSFC
results (and its link with previous literature assessing RSFC),
as the prewhitened signals will no longer hold the specific prop-
erties of spontaneous hemodynamic fluctuations as measured
with fMRI and fNIRS (i.e., BOLD or HbO, and HbR).

In the current work, we specifically evaluated the effect of
the following three preprocessing methods in experimental
RS-NIRS data obtained from 4-month-old infants: (1) the “stan-
dard” band-pass filtering approach, (2) prewhitening based on
a nonparametric algorithm, and (3) prewhitening based on an
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AR fitting approach 2. We also compared our results to previous
studies assessing RS activity in infants using NIRS.'**! We note
that our two prewhitening procedures succeeded in reducing
the autocorrelation of the signal. AR prewhitening was imple-
mented following Barker et al.*> and Santosa et al.?® The range
of the optimal AR model in our study, which varied from
P =60 up to P=110 at a sampling rate of 8.93 Hz (i.e,
a range from 6.7 to 12.3 s) is similar to those observed in
Santosa et al.,”® which reported model orders up to P = 40
at a sampling rate of 4 Hz (i.e., also ~10 s). Apart from the sam-
pling rate, the order of the optimal AR model also depends on
signal quality and varies across measurement channels.

Our study yielded three relevant findings. First, we were
able to replicate the results of two previous infant RS-NIRS
studies '>?! when using the traditional preprocessing pipeline
including band-pass filtering but not prewhitening. Second,
results after data prewhitening were different from those pre-
sented in the original studies. Third, the two different prewhit-
ening methods produced different results. Considering the
hierarchical clustering analysis of the HbO, signal for both pre-
whitening methods (Fig. 7), a cluster comprising channels
located in frontal and posterior parietal regions emerged that
is neither observed in the results without prewhitening nor in
the original results.'” Most networks/clusters reported in the
infant RS literature®!%*¢ are formed between bilateral regions
(i.e., frontal, temporal, or visual), but there are also reports of
a developing frontoparietal network,*’” which has been consis-
tently reported in studies with adults. This frontoparietal
network disappears when the threshold is defined to reveal
clusters showing larger similarity (i.e., a larger number of
clusters). Spatial clustering for HbR occurs between channels
proximate to each other and less interhemispheric clustering
is observed, with similar results across the two prewhitening
methods. Our results differ from the results shown in Homae
et al.* for HbR, which were characterized by interhemispheric
clustering with almost identical distribution as HbO,. To our
knowledge, Homae et al.** is the only study that reported
HbR with RS-NIRS infant data to date.

Perhaps, one of the most relevant observations of our analy-
ses is that the negative correlation and antiphase state between
HbO, and HbR signals was no longer visible after prewhitening
(Figs. 5, 6, and 8), although there is a slight tendency toward an
antiphase relationship with the AR approach. These results con-
tradict previous observations of the intrinsic physiological rela-
tionship between HbO, and HbR in the NIRS signal, 0214348
which we believe is an important discussion point. The signal
autocorrelation originates from all its sources, including not
only artifactual and non-neurobiological physiological con-
founds but also “brain-related” hemodynamic activity, as the
HREF acts as a low-pass filter.”® Therefore, removing autocorre-
lation might imply that the HRF of interest is also partially or
completely removed, and this might cause the expected negative
correlation between HbO, and HbR signals to disappear. This
opens a question on the neurobiological significance of the
remaining signal (i.e., the link between neural processes and
the prewhitened signal) and raises concerns about the effects
of using prewhitening in RS-NIRS studies. We could assume
that signals after prewhitening (i.e., innovations) do not re-
present HbO, and HbR fluctuations, but they reflect the activ-
ity-inducing signals underlying them. From that perspective,
prewhitening could be understood as a hemodynamic deconvo-
lution procedure, as it has been proposed for fMRI data
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analysis.**->! However, this is not the primary goal of prewhit-
ening as it is understood in this work (i.e., removing the signal
autocorrelation). In our opinion, and on the light of these results,
further investigation on the neurobiological relevance of the
prewhitened signal in RS-NIRS data is still required before
directly adopting this procedure.

For both prewhitening approaches, we observed a significant
reduction in the correlation values obtained in the adjacency
matrices of HbR signals but not in those of HbO, signals
(Figs. 5 and 6). We note that motion induced artifacts, although
sparse, might still be present in our experimental RS-NIRS data,
and potentially modulate the correlation between channels.
However, we visually inspected prewhitened data and observed
that time-points presumably showing motion related artifacts co-
occurred across HbO, and HbR. Therefore, the differences on
distribution of correlation values after prewhitening observed
across HbO, and HbR cannot be attributed to data showing dif-
ferent motion-related effects across components. Alternatively,
we infer that these results could be explained by the fact that
HbO, is more sensitive to physiological fluctuations than
HbR, and thus be more prone to nonstationary low-frequency
physiological fluctuations related to modulations in cardiac
rate,’ breathing,>® and systemic blood pressure.*>> These proc-
esses are difficult to be explained by means of stationary models
of correlations but could modulate time—frequency dynamics of
hemodynamic fluctuations during resting-state, and account for
a substantial part of the correlation between the channels in our
experimental HbO, data after prewhitening.

Finally, our simulations demonstrated that convolving two
uncorrelated time series with the HRF artificially increases
the correlation between them, resulting in larger false-positive
rates. These results were already noted by Santosa et al.?® in
similar simulations, and they are also in line with those reported
in Bright et al.”® for simulations with fMRI-like data. Figure 2 in
Bright et al.?® illustrated that the false-positive rate increases due
to the effect of bandpass filtering, specifically that narrower
bandpass filters and faster sampling rates show the highest
false-positive rates. Thus, the effect of bandpass filtering the
data can be considered equivalent to convolution with the
HREF. In all the conditions (i.e., r = 0 and r = 0.5), AR prewhit-
ening removed correlation between the signals and centered
the distribution of the measured correlation r values in zero.
Nonparametric prewhitening also removed the correlation and
centered the correlation r values in zero, except for the signals
with a white spectrum and r = (0.5, where the distribution of
correlation coefficients was slightly shifted toward positive
values.

In the second set of simulations, where changes in spatial
correlation patterns resembling RSFC were investigated, we
observed similar correlation patterns between the “original
data” (i.e., simulated neural activity where the correlation struc-
ture was induced) and the simulated “NIRS data.” After prewhit-
ening, and with the two approaches, correlation between
channels was reduced to levels close to zero, and the shape
of the adjacency matrices disrupted, although part of the original
correlation structure is still preserved. It is important to note that
in our simulations, all the “participants” showed the same origi-
nal correlation structure, which we consider a very unlikely sce-
nario in the case of real RS-NIRS data. We expect that, when
experimental data are considered, RSFC results of the measured
RS-NIRS data will considerably differ from results after apply-
ing prewhitening.
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5 Conclusion

This work investigated the implications of including prewhiten-
ing as part of the RS-NIRS data preprocessing pipeline. More
specifically, the effect of prewhitening was assessed by replicat-
ing the results of two previous RS-NIRS studies and comparing
the outcome of the standard preprocessing pipeline with the out-
come after incorporating prewhitening. Results from previous
studies were replicated with the standard preprocessing pipeline
but not with ones that included prewhitening. Importantly,
the expected anticorrelation and antiphase state between HbO,
and HbR disappeared after prewhitening. Also, different pre-
whitening procedures yielded different results, both compared
to the standard RS-NIRS preprocessing method and across
prewhitening procedures.

These results open a discussion about which method would
be more appropriate for those NIRS users who are interested
in adding prewhitening to their preprocessing pipeline.
Undoubtedly, the statistical challenges that have been recently
described for both functional task based and connectivity NIRS
data should be taken into consideration when analyzing NIRS
data.”®?” However, based on our results, we conclude that a bet-
ter understanding of the effect of prewhitening in RS-NIRS data,
and of the neurophysiological significance of the prewhitened
signal, is still required to determine if prewhitening should
be applied and, if so, which prewhitening procedure is more
appropriate. Other relevant preprocessing methods might also
be incorporated in the analysis of RS-NIRS data, such as global
signal regression to attenuate the contribution of physiological
confounds'®?3% or robust regression analysis to account for the
presence of outliers due to motion artifacts in the data.?>*” A full
evaluation of the combined effect of these methods was beyond
the scope of this paper, but we acknowledge the importance of
including all these different methods in a potential discussion on
standardized data preprocessing procedures for future RS-NIRS
studies.
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