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Abstract. Directing attention to movement outcomes (external focus; EF), not body movements (internal focus;
IF), is a better cognitive strategy for motor performance. However, EF is not effective in some healthy individuals
or stroke patients. We aimed to identify the neurological basis reflecting the individual optimal attentional strategy
using functional near-infrared spectroscopy. Sixty-four participants (23 healthy young, 23 healthy elderly, and
18 acute stroke) performed a reaching movement task under IF and EF conditions. Of these, 13 healthy young
participants, 11 healthy elderly participants, and 6 stroke patients showed better motor performance under EF
conditions (EF-dominant), whereas the others showed IF-dominance. We then measured prefrontal activity dur-
ing rhythmic hand movements under both attentional conditions. IF-dominant participants showed significantly
higher left prefrontal activity than EF-dominant participants under IF condition. In addition, receiver operating
characteristic analysis supported that the higher activity in the left frontopolar and dorsolateral prefrontal cortices
could detect IF-dominance as an individual’s optimal attentional strategy for preventing motor performance
decline. Taken together, these results suggest that prefrontal activity during motor tasks reflects an individual’s
ability to process internal body information, thereby conferring IF-dominance. These findings could be applied for
the development of individually optimized rehabilitation programs. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.NPh.6.2.025012]
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1 Introduction
Focus of attention is one of the most influential factors facili-
tating motor performance.1 Previous studies have investigated
the effects of two distinct attentional strategies on motor perfor-
mance: internal focus (IF) and external focus (EF). In the IF
strategy, performers direct their attention toward body move-
ments, whereas, in the EF strategy, performers direct their atten-
tion toward movement outcomes. Most previous studies have
found that the EF strategy results in greater improvement in
motor performance than the IF strategy in both healthy and
clinical populations.2,3 The advantage of the EF strategy has
been explained by the constrained-action hypothesis,4 which
states that conscious motor control associated with IF interferes
with automatic control processes, whereas directing attention to
movement outcomes (EF) reduces such interference. In other
words, the EF strategy enhances implicit neural processes for
motor control, thereby leading to improved motor performance.

This hypothesis is supported by empirical studies on attentional-
capacity demands,4 high-frequency movement adjustments,5

and electromyography during motor tasks.6

Despite general evidence supporting the EF strategy, several
studies have reported that it is not the optimal strategy for all
individuals. For example, low-skill golfers showed better perfor-
mance under IF instructions than EF instructions,7 and children
who received IF instructions showed more accurate performance
in a dart throwing task than those who received EF instructions.8

Similarly, a lack of advantage of EF was reported in a leg-
stepping task among some stroke patients.9 Our recent studies
on healthy and stroke populations demonstrated that the advan-
tage of the EF strategy is dependent on individual modality
dominance (visual or kinesthetic) for motor imagery.10,11

Although participants with visual imagery dominance showed
better motor performance under the EF condition, those with
kinesthetic imagery dominance showed higher motor perfor-
mance under the IF condition. These findings suggest that
the optimal combination of attentional strategy and individual
motor imagery ability will most improve motor performance.

Although the behavioral evidence for the differential effects
of attentional focus strategies on motor performance has accu-
mulated over the past 20 years, the neural basis of this effect
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remains unclear. Indeed, few studies have applied neuroimaging
modalities such as functional magnetic resonance imaging dur-
ing motor tasks to investigate distinct patterns of neural activity
under different attentional strategy conditions. In one study that
did, a hitting-key task induced greater activity in the primary
somatosensory and motor cortices under an EF strategy in which
participants attended to keys that needed to be pressed rather
than an IF strategy in which participants attended only to finger
movement.12 Another study reported that neural activation in
the left lateral premotor cortex, left primary somatosensory
cortex, and intraparietal lobule was induced by the switching
of attentional focus during a finger movement task.13 Taken
together, previous neuroimaging studies strongly suggest that
neural activity related to attentional strategy is mainly observed
in motor-related areas. However, these studies only explored
differences in activity patterns between IF and EF strategies—
they did not consider individual differences in optimal atten-
tional strategy (i.e., differences between EF- and IF-dominant
individuals). To the best of our knowledge, there have been
no studies on the neural basis of individual differences in opti-
mal attentional strategy.

We hypothesized that the prefrontal cortex is associated
with individual differences during motor tasks. There are two
reasons for this expectation. First, a large interparticipants vari-
ance of motor performance was markedly observed under the IF
condition rather than the EF condition.11 This trend suggests that
the optimal attentional strategy depends mainly on an individ-
ual’s capacity to process internal body information under the IF
condition and not on individual differences in processing exter-
nal outcome information under the EF condition. From a func-
tional viewpoint, the prefrontal cortex is a well-known critical
area for processing internal body information, such as tactile
stimuli14 and haptic information.15 Second, the prefrontal cortex
is involved in efficient learning with a limited cognitive capacity,
as explained in cognitive load theory.16,17 Specifically, previous
studies have reported that the prefrontal cortex is related to
intrinsic load, which depends on individual skills or task diffi-
culty as well as germane load, which involves the construction
of schemas that contribute to learning enhancement.18–20

Furthermore, the cognitive ability based on limited capacity,
as described above, can change with age and educational back-
ground and is reflected as neural activity in the prefrontal
cortex.21,22 Thus, evaluating prefrontal activity is a reasonable
approach for characterizing individual differences in cognitive
neural processes. Of note, individual differences in optimal
attentional strategy during a motor task have been reported in
both healthy and clinical populations.10,11 Thus, we expect that
the prefrontal cortex is a common neural basis underlying an
individual’s optimal attentional strategy independent of age
or motor disability.

To test our hypotheses, this study examined whether neural
activity in the prefrontal area reflects individual optimal attentional
strategy for motor performance. If the constrained-action hypoth-
esis is true for all performers of any motor task, we predict that
prefrontal activity related to attentional control will not be modu-
lated by individual optimal attentional strategy. Alternatively, if
individual cognitive processing capacity mediated by the prefron-
tal cortex does determine the optimal attentional strategy, we
predict that prefrontal activity will be modulated by individual
attentional optimality. In this study, we first classified participants
into IF- and EF-dominant individuals by comparing motor perfor-
mance under the IF and EF conditions. Subsequently, based on

this classification, we assessed differences in neural activity in the
prefrontal area during a simple motor task between IF-dominant
and EF-dominant individuals. In addition, to support the common-
ality of the neural basis for individual optimal attentional strategy,
we evaluated the classification accuracy (IF-dominant versus
EF-dominant) of differential prefrontal activity in healthy individ-
uals and stroke patients based on receiver operating characteristic
(ROC) analysis.

2 Methods

2.1 Participants

Both clinical and healthy participants were recruited for this
study. For the stroke patients, we excluded those with upper
limb movement deficits unrelated to stroke as well as those
with aphasia, dysarthria, visual field loss, or hemispatial neglect.
Because the current task required participants to move their
hand while holding a pen, we excluded stroke patients with
severe paralysis. Additional exclusion criteria were sensory loss
of the upper limb or a minimental state examination (MMSE)23

score less than 24. This MMSE cut-off value was also used as an
exclusion criterion among the elderly participants. All healthy
participants were right-handed, as assessed by the Edinburgh
Inventory.24

In total, 64 individuals participated in this study: 23 healthy
young students recruited from Jichi Medical University (young
group), 23 healthy elderly participants with no neurological or
skeletomotor dysfunction recruited from the Silver Human
Resources Center of Shimotsuke City (elderly group), and 18
patients with acute stroke recruited from the Department of
Neurosurgery and Division of Neurology, Department of
Medicine, Jichi Medical University (stroke group). We used the
Fugl-Meyer Assessment of Motor Recovery (FMA) to assess
motor recovery after stroke.25 Detailed participant characteris-
tics and the lesion site of each stroke patient are shown in
Tables 1 and 2.

This study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board
at Jichi Medical University. All participants provided written
informed consent prior to participation and performed the fol-
lowing two tasks. Each participant completed the two tasks on
the same day.

2.2 Task 1: Individual Optimal Attentional Strategy
Classification

The first task aimed to classify participants as IF-dominant or
EF-dominant by evaluating their optimal attentional strategy
during a reaching task.

2.2.1 Experimental setup

Each participant was seated on a chair facing an LCD monitor.
The distance between the participant’s eyes and the monitor
was ∼70 cm. All visual stimuli presented on the monitor were
programmed in MATLAB (MathWorks, Natick, Massachusetts)
using Cogent Toolbox software (University College London,
London, United Kingdom26). Healthy participants performed
the reaching movements using their right hand (task hand).
In the stroke group, the unaffected hand was used as the task
hand for two patients with moderate hemiplegia (P07 and
P10: individual FMA scores are shown in Table 2). Other stroke
patients performed the reaching movements with their affected
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hand. Participants were asked to hold a digitizing pen on a draw-
ing tablet (Intuos4 PTK-1240/K0, Wacom, Japan) with their
task hand. A vibration motor attached to the index fingertip
of the task hand was used to present tactile stimuli. As shown
in Fig. 1(a), the hand position was digitized using the drawing
tablet and the monitor displayed a hand cursor (filled circle) as
real-time visual feedback of hand movement. The hand cursor
position was recorded using the Cogent Toolbox with sampling
at 60 Hz. The monitor also displayed two markers indicating the
start and target positions for the reaching movements (open
circles). The distance between the start and target markers was
12 cm on the monitor. The ratio of the actual hand movement
distance to the hand cursor movement distance was defined as
the visual cursor gain (VG). In this classification task, the hand
cursor moved 1.2 cm on the monitor for a 1.0-cm hand move-
ment (VG ¼ 1.2); thus, the desired amplitude of the reaching
movements on the drawing tablet was 10 cm.

2.2.2 Procedure

Figure 1(b) shows the time sequence of a trial. Before starting
each trial, the monitor displayed written instructions to remind
participants of the attentional strategy to use during the reaching
movements. First, participants moved the hand cursor to the start
marker when it appeared on the monitor. After a random delay
period (1 to 2 s), a start cue was presented that was either a tac-
tile stimulus delivered by the vibration motor or a brief color
change of the hand cursor. The stimulus duration was 0.2 s.
Participants were instructed to start the reaching movement
as quickly as possible in response to the start cue. Participants

were also instructed to control the hand cursor in as straight a
line as possible from the start marker to the target marker. The
trial ended 1 s after reaching the target marker.

We then introduced the two experimental conditions, namely
IF and EF. Under the IF condition, because participants were
instructed to covertly direct attention to their hand movements,
trials with a tactile start cue and those with a visual start cue were
defined as consistent-trials and inconsistent-trials, respectively.
By contrast, under the EF condition, participants were instructed
to direct their attention only to the hand cursor on the monitor.
Therefore, trials beginning with the visual start cue were defined
as consistent-trials and those with the tactile start cue were
defined as inconsistent-trials.

The classification task comprised two sessions. The IF and
EF conditions were randomly assigned for the first and second
sessions for each participant. Each session had three phases:
baseline, learning, and relearning.

- Baseline phase.

The hand cursor moved contingently according to the partic-
ipant’s hand movement (visuomotor rotation angle ¼ 0 deg).
All participants performed nine consistent-trials.

- Learning phase.

Clockwise (CW) or counterclockwise (CCW) visuomotor
rotation was applied to the hand cursor movements. In

Table 2 Individual FMA scores and lesion sites.

Patient number FMA score Localization

P01 63 L pons

P02 50 R corona radiata

P03 57 R corona radiata

P04 63 L pons

P05 63 L corona radiata

P06 66 L corona radiata

P07 37 L putamen

P08 66 L corona radiata

P09 57 L putamen

P10 30 L thalamus

P11 63 R corona radiata

P12 63 L precentral gyrus

P13 61 L corona radiata

P14 64 R thalamus

P15 61 L thalamus

P16 64 R precentral gyrus

P17 66 R precentral gyrus

P18 62 L thalamus

Table 1 Participant information.

Variable (values are
mean� SD)

Young
group

Elderly
group

Stroke
group

N 23 23 18

Age (years) 21.4� 2.3 72.1� 5.0 65.1� 13.9

Gender 13F/10M 7F/16M 3F/15M

Handedness 23R/0L 23R/0L 18R/0L

Edinburgh handedness
inventory

96.4� 6.9 94.8� 11.6 N/A

MMSE (/30) N/A 29.3� 1.3 28.8� 1.4

Time since stroke (days) N/A N/A 10.7� 8.8

Affected side 12R/6L

Stroke lesion

Cortex 3

Subcortex 15

Stroke type

Hemorrhagic 4

Ischemic 14

Fugl–Meyer score (/66) 58.7� 10.0
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visuomotor rotation trials, hand cursor movement was rotated by
45 deg from the origin (start marker) in either the CW or CCW
direction relative to the participant’s actual hand movement.
Participants were required to correctly modify their hand move-
ments to control the hand cursor in a straight trajectory. The CW
and CCW settings were randomly assigned to the IF and EF
conditions. Half of participants performed the reaching move-
ments under the IF condition with the CW rotation and the
EF condition with the CCW rotation, whereas the other partic-
ipants performed the reaching movements under the IF condi-
tion with the CCW rotation and the EF condition with the CW
rotation.

The young and elderly groups performed 40 trials (35 con-
sistent-trials and 5 inconsistent-trials) while the stroke group
performed 30 trials to avoid fatigue (27 consistent-trials and
3 inconsistent-trials). The inconsistent-trials were randomly
inserted among the consistent-trials. The baseline and learning
phase trials were run without interruption and participants were
not informed when CW or CCW rotation started.

- Relearning phase.

There was a 10-min break after the learning phase. All par-
ticipants then performed nine consistent-trials again as the
relearning phase. The visual feedback settings on the monitor,
including the rotation angle, were identical to those in the learn-
ing phase.

2.2.3 Analysis

Reaction time. To confirm whether participants correctly
directed their attention according to the experimental instruc-
tions, we applied the same method as used in our previous
study.10 In the learning phase, we analyzed the reaction time
(RT) of each trial, defined as the delay from the presentation
of a start cue (tactile or visual) to the instant where tangential
hand velocity exceeds 50 mm∕s. For further analysis, we
excluded RTs faster than 150 ms or slower than 1500 ms.27,28

Participants were considered to correctly direct their attention
when the mean RT satisfied one of the following two equations:

EQ-TARGET;temp:intralink-;e001;63;111ðRTT
IF < RTT

EFÞ ∩ ðRTV
EF < RTV

IFÞ; (1)

EQ-TARGET;temp:intralink-;e002;63;68ðRTT
IF < RTV

IFÞ ∩ ðRTV
EF < RTT

EFÞ: (2)

Here, the superscripts T and V denote the modality of the start
cue (tactile: T, visual: V), and the subscripts IF and EF denote the
attentional condition. Equations (1) and (2) both represent the
situation where RT is faster in consistent-trials than in inconsis-
tent-trials.

Motor performance. In each trial, we quantified movement
error as the area enclosed by the hand trajectory and a straight
line connecting the start and target markers (in cm2). Once
motor skills are acquired, they can be retained over extended
periods.29 Therefore, to classify participants into IF-dominant
and EF-dominant individuals, we calculated the degree of motor
performance decline after a short break between the learning and
relearning phases. Namely, we subtracted the mean movement
error of the last three trials in the learning phase from that of the
first three trials in the relearning phase in each attentional con-
dition (DIF and DEF). Next, we individually subtracted the
degree of motor performance decline under the IF condition
from that under the EF condition (ΔD ¼ DEF −DIF). We
defined the IF-dominant subgroup as participants who showed
a smaller motor performance decline under the IF condition than
the EF condition (ΔD > 0), and the EF-dominant subgroup as
participants who showed a smaller motor performance decline
under the EF condition than the IF condition (ΔD < 0).

2.2.4 Statistical analysis

Differences in RTwere assessed by three-way repeated measures
analysis of variance (ANOVA) with group (young, elderly, or
stroke) as a between-subjects factor and condition (IF condition
or EF condition) and modality of the start cue (tactile or visual
stimuli) as within-subject factors. To evaluate the degree of
motor performance decline, a three-way ANOVA was also
applied to the motor performance decline with group (young,
elderly, or stroke) and individual dominance (IF-dominant or
EF-dominant) as between-subjects factors and condition (IF
condition or EF condition) as a within-subject factor. We used
a significance threshold of p < 0.05 (two-tailed) for all tests.

2.3 Task 2: Recording Prefrontal Activity Using
fNIRS

The second task aimed to identify the common neural basis
underlying individual differences in optimal attentional strategy

Digitizing pen

Drawing tablet

Vibration
motor

Hand
cursor

Start
marker

Target
marker

(a) (b)

Please direct
your attention
to ...

Instruction

Move the hand cursor
to the start marker

Start cue

FinishRandom delay
(1-2 [s])

Time

Fig. 1 Experimental design. (a) Experimental setup. During performing the classification tasks, the par-
ticipant’s task hand was occluded by a small rack. Thus, the participant could not see their hand while
they performed the experimental tasks. The positions of the start and target markers were the same in all
trials. (b) Time sequence of one trial. This case indicates the EF condition with visual start cue.
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among healthy and clinical populations. For this purpose, we
compared prefrontal activity between IF-dominant and EF-
dominant individuals based on the results of the first classifica-
tion task.

2.3.1 Experimental setup

For behavioral data acquisition, we used the same experimental
setup as in the first classification task (i.e., we recorded task
hand movements using a drawing tablet with a monitor display-
ing a hand cursor as real-time visual feedback). To record
prefrontal activity, we used a multichannel fNIRS system
(ETG-7100, Hitachi Medical Corporation, Kashiwa, Japan) with
sampling at 10 Hz. The fNIRS probes were arranged to cover the
prefrontal area [Fig. 2(a)]. We used a 3 × 5 multichannel probe
holder consisting of eight laser sources emitting at 695 and
830 nm [emitters; red squares in Fig. 2(a)] and seven detecting
probes [detectors; blue squares in Fig. 2(a)] arranged alternately
at an interprobe distance of 3 cm. The midpoint of an emitter/
detector pair was defined as a recording channel location [circles
in Fig. 2(a)]. The probe holder was placed on the scalp with its
lowest-row center emitter at the participant’s Fpz position,
according to the standard international 10–20 system.

fNIRS signals reflect hemoglobin changes originating in
cortical tissue due to brain activation and skin blood flow. To
eliminate the influence of skin blood flow on fNIRS signals,
we set eight additional short detecting probes at an interprobe
distance of 1.5 cm [light blue squares in Fig. 2(a)] and applied
multidistance independent component analysis (ICA).30 ICA is a
signal discrimination method in which independent components
are extracted from mixed signals. It has been successfully used
for fNIRS analysis.31–34 Because signals from recording chan-
nels with a 1.5-cm interprobe distance primarily include skin
blood flow signals in shallow tissues, based on these signals,
we could discriminate between the effects of cortical tissue and
skin blood flow on fNIRS signals. As it was possible to apply
multidistance ICA only to the recording channels around the
short detecting probes, the number of available recording chan-
nels was reduced to 15 [numbered circles in Fig. 2(a)]. For the
spatial registration of fNIRS maps onto Montreal Neurological

Institute (MNI) coordinate space, we measured scalp land-
marks and all fNIRS recording channel positions using a three-
dimensional magnetic space digitizer (FASTRAK, Polhemus).
We then used an estimation tool without MRI.35 Details on the
spatial profiling of recording channels are provided in Fig. 2(b)
and Table 3.

12

12
15

Recording channel

(a)

(b)

Emitter

Detector
12

3456

7891011

12131415

Fpz

3 cm

3 
cm

1.5 cm
Right Left

Fig. 2 Probe configuration for near-infrared spectroscopy. (a) Probes
were placed over the prefrontal area. (b) Spatial registration of
fNIRS maps onto MNI coordinate space. Each recording channel is
numbered from the lower left to upper right position.

Table 3 Spatial profiling of each recording channel.

ch. Localization Brodmann area Probability

1 Left FPC 10 1

2 Right FPC 10 1

3 Left FPC 10 1

4 Left FPC 10 1

5 Right FPC 10 1

6 Right FPC 10 0.97

Right DLPFC 46 0.03

7 Left DLPFC 46 0.72

Left FPC 10 0.21

Left DLPFC 9 0.07

8 Left FPC 10 0.57

Left DLPFC 9 0.43

9 Right FPC 10 0.66

Right DLPFC 9 0.34

10 Right FPC 10 0.55

Right DLPFC 9 0.45

11 Right DLPFC 46 0.86

Right FPC 10 0.12

Right DLPFC 9 0.02

12 Left DLPFC 9 0.71

Left includes FEF 8 0.27

Left DLPFC 46 0.02

13 Left DLPFC 9 0.64

Left includes FEF 8 0.36

14 Right DLPFC 9 0.61

Right includes FEF 8 0.39

15 Right DLPFC 9 0.73

Right includes FEF 8 0.22

Right DLPFC 46 0.05

Note: FPC, frontopolar cortex; DLPFC, dorsolateral prefrontal cortex;
FEF, frontal eye fields.
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2.3.2 Procedure

The fNIRS task consisted of two sessions each comprising six
block sets containing alternating rest (20 s) and motor (15 s)
blocks. A rest block was inserted at the end of each session.
To avoid fatigue in stroke patients during successive hand move-
ments, we applied a block design with relatively longer rest
blocks than motor blocks. As in the first classification task,
we introduced two attentional conditions and assigned the IF
and EF conditions randomly to first and second sessions for each
participant.

- Rest block.

The monitor displayed the rest marker and hand cursor
during all rest blocks. Regardless of the attentional condition,
participants were required to match the hand cursor to the rest
marker at the center of the monitor [Fig. 3(a)].

- Motor block.

To isolate the habituation effect of the longitudinal direction
movements applied in the first classification task, we required
the participants to perform cyclic movements in a lateral direc-
tion in the second fNIRS task. When each motor block started,
the rest marker disappeared and participants were asked to
move their hand cyclically on the drawing tablet from side to
side at a comfortable speed. The hand cursor on the monitor
moved horizontally according to the rightward or leftward hand
movements.

Under the IF condition, participants were instructed to cov-
ertly direct their attention to their hand movements. To correctly
guide participants’ attention during the motor blocks, we

prepared additional stimuli for cueing the turning point (direc-
tion change) of cyclic movements. If a participant’s hand posi-
tion exceeded�10 cm in the x-axial direction from the center of
the drawing tablet, tactile stimuli were provided on the index
fingertip by the vibration motor. Participants were requested
to keep their hand movement amplitude constant throughout
the motor block based on presentation of tactile stimuli (i.e., the
desired hand movement amplitude was maintained at 20 cm on
the drawing tablet). Furthermore, to confirm participants’ atten-
tional strategies, VG was gradually decreased to from 1 to 0.6.
If a participant correctly maintained the desired hand move-
ment amplitude, the hand cursor movement amplitude on the
monitor gradually decreased from 20 to 12 cm [Fig. 3(b)].

By contrast, under the EF condition, participants were
instructed to direct their attention only to the hand cursor on the
monitor. To indicate the turning point, the color of the hand cur-
sor changed when the hand cursor position exceeded�10 cm in
the x-axial direction from the monitor center. Participants were
also requested to keep the hand cursor movement amplitude
constant throughout the motor block based on presentation of
the visual stimuli (i.e., the desired hand cursor amplitude was
20 cm on the monitor). VG gradually increased from 1 to 1.5,
so the amplitude of hand movement on the drawing tablet was
expected to gradually decrease from 20 to 12 cm [Fig. 3(c)].

2.3.3 Analysis

Movement amplitude. The movement amplitudes of the hand
and hand cursor in each cycle were calculated from the differ-
ence between the positional peaks along the x-axis. The profiles
in Figs. 3(b) and 3(c) show typical behavioral results of one par-
ticipant. By subtracting the amplitude of the first cycle from that

20cm

time=0s (VG=1)

Color
change
areas

Vibration
areas

Hand
Hand cursor

0 7.5 15
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n 
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(c)

Drawing
tablet

Monitor(a)

Rest marker

Hand
cursor

X axis

20cm

20cm

time=15s (VG=0.6)

12cm

20cm

time=0s (VG=1)

20cm

12cm

time=15s (VG=1.5)

20cm

Fig. 3 Task configurations in the fNIRS task. (a) Visual settings in the rest block. (b) VG setting under the
IF condition. In the motor block, VG gradually decreased over time. If the participant correctly directed
attention to their hand according to the task instructions, the decreasing amplitude was anticipated only in
hand cursor movement, as shown by the movement profiles in the right column. The amplitudes of the
first and last cycles were defined by the difference between adjacent positional peaks. Blue and green
arrows indicate hand and hand cursor amplitudes, respectively. The differential value between the first
and last amplitudes was then calculated. (c) VG setting under the EF condition. VG gradually increased
over time. If the participant correctly directed their attention to the hand cursor according to the task
instructions, the decreasing amplitude was anticipated only in hand movement.
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of the last cycle in each motor block, we calculated the absolute
amplitude changes of hand movement (ΔAmpH) and hand
cursor movement (ΔAmpC). When a participant successfully
kept the hand amplitude constant under the IF condition (i.e.,
ΔAmpH ≪ ΔAmpC) or kept the amplitude of the hand cursor
constant under the EF condition (i.e., ΔAmpC ≪ ΔAmpH),
we considered that participant to have correctly directed their
attention according to the experimental instructions.

Preprocessing for fNIRS data. To estimate local neural
activity, we measured oxygenated hemoglobin (oxy-Hb) and
deoxygenated hemoglobin (deoxy-Hb) signals. To remove
baseline drift, individual time course data for the oxy-Hb and
deoxy-Hb signals of each channel were high-pass filtered using
a cut-off frequency of 0.0167 Hz. Next, to remove blocks with
motion-related artifacts, we applied an artifact detection algo-
rithm based on the HOMER2 software for the oxy-Hb and
deoxy-Hb signals (MGH-Martinos Center for Biomedical
Imaging36). As no blocks with artifacts were detected, we ana-
lyzed all time course data of the oxy-Hb and deoxy-Hb signals.

General linear model (GLM) analysis37,38 for prefrontal
activity. Previous studies have reported that GLM is capable
of detecting task-related hemodynamic changes in the cortex in
fNIRS data.39,40 In this study, to identify prefrontal regions
related to individual differences in optimal attentional strategy,
we used GLM analysis with least-squares estimation of the
oxy-Hb and deoxy-Hb signals. For the preprocessed oxy-Hb
and deoxy-Hb signals, a Gaussian function with a peak time
of 6 s and full-width half-maximum of 5.4 s were used as a
hemodynamic response function to better mimic brain signals.
The resulting beta values at each recording channel estimated
by the GLM analysis were then used in the group analysis to
determine the experimental task effect.

Prefrontal activity-based classification. We tried to clas-
sify the optimal attentional strategy using the estimated beta
values reflecting individual prefrontal activity and to evaluate
the classification accuracy using leave-one-out cross-validation.
To select the channels reflecting the optimal attentional strategy,
we focused on the significance of the inter-subgroup difference
between IF- and EF-dominant individuals. Next, to calculate
classification accuracy, a classification index (CI) from a
weighted linear summation model was calculated for each
participant using

EQ-TARGET;temp:intralink-;e003;63;256CI ¼
X

ch

ðkch × βchÞ; (3)

where the subscript ch denotes the selected channel number
and k is a weighted coefficient of the selected channel. Based
on CI excluding one participant, we searched for the best cut-off
value to distinguish IF-dominant from EF-dominant individuals.
For this purpose, an ROC analysis was performed. The sensi-
tivity (i.e., true-positive rate) was plotted against the 1 − speci-
ficity (i.e., false-positive rate) and accuracy was measured as the
area under the curve (AUC). To determine the best weighted
coefficients for this prefrontal activity-based classification, these
steps were repeated while changing k from 0 to 1 in 0.01 incre-
ments to identify the value yielding the highest AUC. It should
be noted that when the number of channels with a significant
inter-subgroup difference is 1, CI is identical to the beta value

in each participant (i.e., k ¼ 1). For the excluded participant,
we determined whether an IF- or EF-dominant individual was
above or below a given cut-off value for CI. Next, to quantify the
classification accuracy, we replaced the excluded participant,
recalculated the cut-off value, and classified the excluded
participant’s optimal attentional strategy (repeated 64 times in
total).

2.3.4 Statistical analysis

Movement amplitudes were analyzed by three-way repeated
measures ANOVA with group (young, elderly, or stroke) as a
between-subjects factor and condition (IF or EF) and attentional
target (hand or hand cursor) as within-subject factors. To explore
intersubgroup differences in the prefrontal activity, we com-
pared the beta values of oxy-Hb and deoxy-Hb signals between
the IF- and EF-dominant subgroups in each recording channel
using t-test. To adjust for multiple testing, we applied false dis-
covery rate (FDR) correction41,42 with the significance threshold
set at p < 0.05 (FDR-corrected). Regarding the AUC, because
the sample size is insufficient for classification analysis, to alter-
natively assess the original highest AUC, we repeatedly calcu-
lated AUCs on the basis of a randomized group of participants
(i.e., we randomly classified the participants into IF- and EF-
dominant subgroups and calculated AUC 3000 times). Then,
we compared the original highest AUC and the randomized
data-based AUCs.

3 Results

3.1 Task 1: Individual Optimal Attentional Strategy
Classification

3.1.1 Reaction time

We excluded trials in which RT did not meet our criterion (<150
or >1500 ms). In total, 3.0% of tactile-cued and 2.1% of visual-
cued responses were excluded under the IF condition, whereas
4.3% of tactile-cued and 1.9% of visual-cued responses were
excluded under the EF condition.

Comparison of RTs revealed a significant two-way
interaction of condition ×modality [Fð1; 61Þ ¼ 226.73, p <
0.000001, η2p ¼ 0.79] and main effects of group [Fð2;61Þ ¼
12.44, p ¼ 000029, η2p ¼ 0.29], condition [Fð1; 61Þ ¼ 11.05,
p ¼ 0.0015, η2p ¼ 0.15], and modality [Fð1; 61Þ ¼ 9.04,
p ¼ 0.0038, η2p ¼ 0.13]. Post-hoc analysis with Bonferroni cor-
rection for the condition ×modality interaction revealed that
RTs for consistent-trials [tactile in the IF condition: 519.8�
16.5 (SEM) ms, visual in the EF condition: 517.2� 15.2
(SEM) ms] were significantly faster than those for inconsis-
tent-trials [tactile in the EF condition: 617.9� 18.1 (SEM) ms,
visual in the IF condition: 678.2� 20.8 (SEM) ms, p < 1.1 ×
10−10], which is consistent with the requirements of Eq. (1)
or Eq. (2) and suggests that participants correctly directed their
attention according to condition (to their hand in IF trials or the
hand cursor in EF trials).

3.1.2 Motor performance and individual optimal
attentional strategy

Figures 4(a)–4(c) show the changes in movement errors as the
consistent-trials progressed [young, Fig. 4(a); elderly, Fig. 4(b);
stroke, Fig. 4(c)]. All groups showed the same trend. In the base-
line phase without visuomotor rotation, the hand cursor did not
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deviate from the required straight trajectory. When the hand
cursor movement was rotated relative to the actual movement
during the learning phase (starting after the 10th trial), move-
ment error markedly increased and then gradually decreased.
Toward the end of the learning phase, the error reached a pla-
teau, indicating that participants had adapted to the visuomotor
rotation. After the 10 min break, regardless of the same visuo-
motor rotation disturbing hand movement in the relearning
phase, participants quickly readapted.

By comparing the degree of motor performance decline
between the IF and EF conditions as shown in Fig. 4(d), we
classified participants into an IF-dominant subgroup (ΔD > 0,
young: n ¼ 10, elderly: n ¼ 12, stroke: n ¼ 12) and EF-
dominant subgroup (ΔD < 0, young: n ¼ 13, elderly: n ¼ 11,
stroke: n ¼ 6). Analysis of motor performance decline revealed
a significant main effect of group [Fð2;58Þ ¼ 4.96, p ¼ 0.010,
η2p ¼ 0.15] and a significant two-way interaction of condition ×
individual dominance [Fð1;58Þ ¼ 70.04, p ¼ 1.48 × 10−11,
η2p ¼ 0.55]. The other factors did not reach the level of statistical
significance (Fs < 2.73, ps > 0.074). Post-hoc analysis with
Bonferroni correction found that motor performance decline
in the elderly group was significantly larger than that in young
group (p ¼ 0.011). Furthermore, Bonferroni correction revealed
that motor performance declines under the IF condition were
significantly smaller than those under the EF condition in the
IF-dominant subgroup (p ¼ 1.20 × 10−8). Conversely, the
declines under the EF condition were significantly smaller than
those under the IF condition in the EF-dominant subgroup
(p ¼ 5.46 × 10−5). The intersubgroup differences under the
same attentional condition also reached significance in both
conditions (IF condition: p ¼ 8.14 × 10−6, EF condition:
p ¼ 6.76 × 10−6).

3.2 Task 2: Recording Prefrontal Activity
Using fNIRS

3.2.1 Movement amplitude

Analysis of amplitude change revealed a significant three-way
interaction of group × condition × attentional target [Fð2;61Þ ¼
3.57, p ¼ 0.034, η2p ¼ 0.10]. Further, we confirmed two impor-
tant aspects of this three-way interaction by multiple comparison
using Bonferroni correction. First, the amplitude changes of
attentional target {ΔAmpH under the IF condition [8.89�
1.57 (SEM) cm] and ΔAmpC under the EF condition [7.91�
1.32 (SEM) cm]} were significantly smaller than those of the
nonattentional target {ΔAmpC under the IF condition [26.4�
3.01 (SEM) cm] and ΔAmpH under the EF condition [31.2�
3.79 (SEM) cm]}, respectively (all ps < 0.0088). Therefore,
we can assume that participants correctly directed their attention
to their hand in the IF condition or the hand cursor in the EF
condition according to the experimental instructions. Second,
the amplitude changes of the hand and hand cursor did not
show any significant differences among the young, elderly, and
stroke groups (all ps ¼ 0.99). These results indicate that pre-
frontal activity was not affected by individual motor perfor-
mance itself.

3.2.2 Prefrontal activity

Based on the individual optimal attentional strategy evaluated in
the first classification task, we compared the prefrontal activities
between the IF-dominant subgroup (n ¼ 34) and EF-dominant
subgroup (n ¼ 30).

Figures 5(a) and 5(b) present the temporal mean profiles of
oxy-Hb signals (upper rows) and deoxy-Hb signals (lower rows)
across the motor blocks of the same attentional condition in the
(a) IF-dominant and (b) EF-dominant subgroups, respectively.
The profiles in Fig. 5 show oxy-/deoxy-Hb signals that mainly
reflect the effect of the cortical tissue (i.e., the signals after
removing the component of the skin blood flow using multidis-
tance ICA). Several channels in both subgroups showed similar
trends. First, oxy-Hb signals increased whereas deoxy-Hb sig-
nals decreased in several areas. Second, changes in oxy-Hb
signals were stronger than those in deoxy-Hb signals. These
characteristics are typical hemoglobin dynamics reflecting neu-
ral activity. Notably, for oxy-Hb signal under the IF condition,
we observed a marked intersubgroup difference in the boundary
area including the left DLPFC and left frontopolar cortex (FPC
[ch.8: squares in Figs. 5(a) and 5(b)]. More specifically, IF-dom-
inant individuals showed a gradual increase in oxy-Hb signal
during performing the cyclic motor task, whereas EF-dominant
individuals did not show oxy-Hb signal changes [Fig. 5(c)]. As
shown in Fig. 5(d), compared with EF-dominant individuals,
IF-dominant individuals showed stronger oxy-Hb signal, espe-
cially after the latter half of the motor block.

Figure 6(a) shows the spatial profiles of the t-values of the
t-test between the IF- and EF-dominant subgroups for each
recording channel’s beta value. Only oxy-Hb signal in the boun-
dary area including the left DLPFC and left FPC (8ch) showed
a significant intersubgroup difference under the IF condition
[Fig. 6(a)]. In this channel, the IF-dominant subgroup showed
higher beta values of oxy-Hb signal than the EF-dominant
subgroup [Fig. 6(b) (p ¼ 0.0016, FDR-corrected)]. Incidentally,
weak intersubgroup differences of oxy-Hb signals were ob-
served in the left FPC [ch.4 under the IF condition (p ¼ 0.012,
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Fig. 4 Learning curve in each group. (a)–(c) Movement errors in the
(a) young, (b) elderly, and (c) stroke groups. Blue solid and green
dotted lines indicate mean movement errors under the IF and EF con-
ditions, respectively. In all groups, performance improved as trials
progressed in the learning phase. After the 10-min break, the error
increased and participants readapted to the same visuomotor rotation
environment. (d) The degree of motor performance decline under IF
and EF conditions. Labels “Y,” “E,” and “S” indicate the young, elderly,
and stroke groups, respectively. Error bars denote the standard
deviation. ***p < 0.001.
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uncorrected)], in the boundary area including the left DFLPC
and left FPC [ch.8 under the EF condition (p ¼ 0.0063, uncor-
rected)], and in the left DLPFC [ch.12 under the IF condition
(p ¼ 0.020, uncorrected) and EF condition (p ¼ 0.024, uncor-
rected)]. Regarding deoxy-Hb signals, we observed weak inter-
subgroup difference only in the boundary area including the
right DFLPC and right FPC [ch.10 under the EF condition
(p ¼ 0.039, uncorrected)] and the left DLPFC [ch.13 under the
IF condition (p ¼ 0.037, uncorrected)].

3.2.3 Prefrontal activity-based classification

Using the estimated beta values of oxy-Hb signal in ch.8 under
the IF condition, we then attempted to predict an individual’s
optimal attentional strategy. Because the number of channels

with a significant intersubgroup difference was 1, we applied
the individual’s beta value as the CI. In the repeated ROC analy-
sis based on leave-one-out cross-validation, the highest AUC
was 0.74 (Fig. 7) and the mean AUC was 0.74� 0.00027 SD.
At the optimal cut-off value, IF- and EF-dominant individuals
were distinguished with a sensitivity of 0.71 and specificity of
0.73 (open circle in Fig. 7). In addition, we confirmed that the
original highest AUC was relatively higher than the randomized
data-based AUCs (AUC range: 0.729 to 0.500; ratio of 0.7 or
more: 0.37%). Furthermore, the classification accuracy using
the optimal cut-off value was 71.9% (46 of 64 for all partici-
pants). The classification accuracies in each group were 73.9%
[young group: 17 of 23 (females, 9 of 13; males, 8 of 10)], 69.6%
[elderly group: 16 of 23 (females, 6 of 7; males, 10 of 16)], and
72.2% [stroke group: 13 of 18 (females, 3 of 3; males, 10 of 15)].
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Fig. 5 Temporal characteristics of oxy-Hb and deoxy-Hb signals. Zero on the horizontal axis indicates
the start timing of the motor block. (a, b) Upper row: Under the IF condition, oxy-Hb signal in ch.8 showed
a marked difference between the IF- and EF-dominant subgroups. Lower row: Deoxy-Hb signals showed
neither strong temporal change nor intersubgroup difference. (c) Temporal profiles of oxy-Hb and deoxy-
Hb signals in ch.8 under the IF condition. Red solid and blue dotted lines represent the time courses of
oxy-Hb and deoxy-Hb signals, respectively. The lighter colored regions around the time course data
indicate the standard deviation. Note that the profiles of oxy-Hb and deoxy-Hb signals show only upper
red and lower blue standard deviation regions, respectively. (d) The differential mean profiles between
the IF- and EF-dominant subgroups (EF-dominant subgroup minus IF-dominant subgroup). Positive val-
ues on the longitudinal axis indicate a stronger oxy-/deoxy-Hb signal in the EF-dominant subgroup than in
the IF-dominant subgroup, whereas negative values indicate the opposite magnitude relation.
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4 Discussion
Consistent with our previous studies,10,11 we found individual
differences in the optimal attentional strategy for improving
motor performance in healthy and clinical populations. In con-
trast to previous studies concluding that EF is generally superior,
we replicated our previous finding that the EF strategy does not
lead to better motor performance in a substantial subset of par-
ticipants. Furthermore, in this study, we revealed the common
neural basis of individual optimal attentional strategy. Contrary
to previous neuroimaging studies demonstrating that motor-
related areas are involved in the effect of focus of atten-
tion,12,13,43 we found that the oxy-Hb signal change in the left
FPC and left dorsolateral prefrontal cortex (DLPFC) during the
IF strategy reflected individual motor performance. This finding

supports our hypothesis that the prefrontal area is an important
region encoding individual optimal attentional strategy. Based
on this finding, we further developed a classification method for
IF-dominant and EF-dominant individuals based on task-related
neural activity in the left FPC and DLPFC. We propose that cog-
nitive processing of internal body information in the left FPC
and DLPFC is a critical determinant of individual optimal atten-
tional strategy for motor tasks.

We presume that the left FPC and DLPFC are both important
areas underlying individual optimal attentional strategy in
healthy and clinical populations during motor tasks. The pre-
frontal cortex contributes to multiple cognitive functions such
as attentional control and working memory44 as well as process-
ing attention to action through connectivity with the premotor
cortex.45 This functional link between the prefrontal cortex and
motor-related areas is consistent with current findings that indi-
vidual activity in the FPC and DLPFC is linked to motor per-
formance. Notably, we found individual differences in left FPC
and DLPFC activity patterns only under the IF condition.
Specifically, individuals with IF-dominance showed stronger
task-related activation in these areas than those with EF-
dominance. These findings indicate that the individual ability
of the FPC and DLPFC to process internal sensorimotor infor-
mation—not information from the external environment (such
as visual stimuli)—determines the optimal attentional strategy
during motor tasks. In fact, several previous neuroimaging stud-
ies support that the left prefrontal cortex is relevant to sensory
processing of internal body information. For example, during a
tactile discrimination task, left DLPFC activity increased as a
function of the relative frequency difference in correct decision
trials.14 The authors concluded that the left DLPFC encodes sti-
mulus representations that underlie veridical tactile decisions.14

Another study found a significant difference in left DLPFC
activity among different somatosensory memory loads,46 and
Kaas et al. reported that left FPC activity was associated with
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working memory required to maintain representations of haptic
information and integrate spatial and motor components.15

These previous reports regarding prefrontal areas in cognitive
processing relevant to internal body state support our suggestion
that the left prefrontal region is a critical regulator of individual
optimality of IF. Alternatively, the prefrontal activity patterns
observed in this study could reflect individual sensitivity to
sensory inputs of internal body information. In other words, we
cannot fully reject the possibility that individual characteristics
of sensory processing, rather than individual cognitive ability,
affected prefrontal activity. Nevertheless, it is certain that the
individual ability for processing internal body information based
on the prefrontal cortex can characterize the optimal attentional
strategy during motor tasks.

Cognitive load theory offers an additional interpretation of
the relationship between FPC and DLPFC activity and motor
performance.18–20 If FPC and DLPFC strongly reflect the
intrinsic load in the current task, we could expect that relatively
higher activity in these regions is observed under a nonoptimal
attentional condition. However, contrary to this expectation,
individuals who were good at directing their attention to body
movements (i.e., the IF-dominant subgroup) showed higher
activity under the IF condition. Alternatively, the current find-
ings suggest that relatively higher activity in the FPC and
DLPFC under the IF condition reflects germane load, contrib-
uting to improved motor performance.19 In other words, encour-
aging the assignment of a cognitive resource to the germane
load might be a fundamental benefit of an individual’s optimal
attentional strategy during motor tasks.

The prefrontal cortex is also reportedly associated with the
processing of external information. For example, the prefrontal
cortex encodes spatial object configuration for visuospatial
memory47 and evaluates specific visual memory character-
istics.48 Based on these previous reports, we would expect dis-
tinct neural activation patterns between EF- and IF-dominant
individuals under not only the IF condition but also the EF con-
dition. However, in this study, we observed the distinct neural
activation only under the IF condition. This discrepancy could
be explained by task difficulty: when a motor task is too easy,
the effects of EF strategy are not expected.11,49,50 Hence, the
simple motor task in the current fNIRS study, which required
that participants make simple cyclical hand movements, may
not have been difficult enough to engage substantial attentional
resources under the EF condition. Thus, the stronger effects on
motor task under the IF condition imply that IF would be more
helpful for assessing individual optimal attentional strategies.

Left prefrontal activity during the simple motor task has the
potential to be an accurate objective biomarker to predict indi-
vidual optimal attentional strategies that lead to better motor per-
formance. Specifically, an individual showing more intense
activity in the left prefrontal cortex could better prevent motor
performance decline by applying the IF strategy in a novel envi-
ronment. Given that the left prefrontal cortex is one of the criti-
cal regions for processing somatosensory information,14 it is
reasonable to expect that activity in this area will distinguish
the individual optimal attentional strategy during motor tasks.
Although the sample size in this study was insufficient to
investigate classification analysis, the optimal cut-off value cal-
culated using ROC analysis successfully classified individual
differences in all participant groups, which supports that the left
prefrontal area is the common neural basis reflecting the optimal
attentional strategy in both healthy and clinical populations.

Of note, symptomatic states such as lesion site, lesion side,
severity, and FMA score were heterogeneous in our clinical
population. A previous study reported neuroplastic changes in
network connectivity among prefrontal and motor-related areas
following stroke.51 Nevertheless, the stroke group showed
equivalent classification accuracy as the young and elderly
groups. This result suggests that the prefrontal activity-based
classification has sufficient robustness that we do not need to
consider a patient’s lesion side or handedness. Although we
previously tried to classify the optimal attentional strategy using
self-report questionnaires on motor imagery,10,11 assessment
using questionnaires is simple but highly subjective. The current
fNIRS approach is useful to overcome such subjectivity.

The individual differences in optimal attentional strategy
during motor tasks require a framework alternative to the con-
strained-action hypothesis.4 The traditional hypothesis is that
applying the EF strategy leads to greater motor automaticity and
enhances motor improvement. However, the current findings
suggest that attentional focus on an individual familiar sensory
modality (i.e., internal body information such as tactile/somato-
sensory or external environment information such as visual
stimuli) can also contribute to better motor performance. The
major difference between our new framework and the con-
strained-action hypothesis is that the positive effect of atten-
tional focus on motor control can be acquired not only under
the EF strategy but also under the IF strategy. Notably, we might
benefit from an individual optimal attentional strategy based
on familiar sensory modalities in a specific aspect of motor
learning. The motor learning process is modeled with a two-time
scale function combined with a transient change (i.e., fast time
scale) and a persistent change (i.e., slow time scale).52 In our
current study, participants exhibited a relatively small motor per-
formance decline from the initial trials to the relearning phase
under the individual optimal attentional condition, suggesting
that the optimal strategy enhances the slow time scale process
links to consistently better motor performance.

Finally, we need to consider that fNIRS signals are affected
not only by the cerebral blood flow associated with local neural
activity but also by the extracerebral physiological factors
such as blood pressure or blood CO2 concentration.53 In addi-
tion, motor tasks can elicit a global component in the oxy-Hb
signals.54,55 These factors to be excluded can yield a higher
false-positive rate or false-negative rate in the analysis for
fNIRS studies.56 Even in the current study, all extracerebral
physiological factors pointed out in the previous studies might
be not removed. However, to detect the cerebral blood flow
originated from neural activity, we applied multidistance ICA30

and estimated neural activity-based on GLM analysis.37,38

Furthermore, we succeeded in confirming the typical oxy/deoxy
hemodynamic patterns. In particular, the asymmetric responses
between the oxy-Hb signals and the deoxy-Hb signals observed
in the current fNIRS task (larger activities in the oxy-Hb signals
compared with the deoxy-Hb signals) agree with a previous
report that the oxy-Hb signals have greater sensitivity to change
in cerebral blood flow and higher signal-to-noise ratio than the
deoxy-Hb signals.57 Thus, we can assume that the current results
based on the beta values from GLM analysis were correctly
detected as task-related neural activities. Of note, a previous
study reported that the amplitude of the deoxy-Hb signal is
approximately half of the amplitude of the oxy-Hb signal;58

however, the deoxy-Hb signal in this study was relatively small
compared with those in the previous study. The small responses
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in the deoxy-Hb signal may be caused by the multidistance ICA
to remove the global component.

A major limitation of this study is that the motor task used
was rather short-term and simple compared with tasks used in
clinical rehabilitation or sports training. Although our findings
imply that left FPC and DLPFC activities are associated with an
individual’s attentional control ability, it is necessary to verify
whether this holds true for long-term or complex motor
tasks that are more reflective of daily activities. We have not
directly investigated this point; however, both the current study
and our previous work10,11 show individual differences in opti-
mal attentional strategy. The consistency in the individual
differences among different visuomotor tasks implies that
individual differences in optimal attentional strategy are not
restricted to one simple task and suggests that such differences
are broadly applicable to rehabilitation and training applica-
tions. Second, the clinical population comprised only stroke
patients with mild or moderate paralysis. Further research is
needed to clarify the relationship between individual optimal
attentional strategy and degree of severity. In addition, we need
further exploration of whether other individual factors such as
gender in each group affect the prefrontal activity depending on
the optimal attentional strategy.

In conclusion, directing attention to body movements was
found to differentially modulate prefrontal cortex activities,
especially left FPC and DFLPC activities. These regions may
be critical for determining an individual’s optimal attentional
strategy for improving motor performance. Optimal attentional
strategy classification based on differential prefrontal activity
could contribute to the development of personalized rehabilita-
tion and sports training programs.
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