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Abstract. Removal of noise is an important step in the image restoration process, and it remains a challenging
problem in image processing. Denoising is a process used to remove the noise from the corrupted image, while
retaining the edges and other detailed features as much as possible. Recently, denoising in the fractional domain
is a hot research topic. The fractional-order anisotropic diffusion method can bring a less blocky effect and
preserve edges in image denoising, a method that has received much interest in the literature. Based on
this method, we propose a new method for image denoising, in which fractional-varying-order differential, rather
than constant-order differential, is used. The theoretical analysis and experimental results show that compared
with the state-of-the-art fractional-order anisotropic diffusion method, the proposed fractional-varying-order
differential denoising model can preserve structure and texture well, while quickly removing noise, and yields
good visual effects and better peak signal-to-noise ratio. © The Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI:
10.1117/1.OE.53.10.102102]
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1 Introduction
Digital images play an important role in many applications,
such as astronomy, computer tomography, machine vision,
and geographical information systems. In practice, an image
is mixed with a certain level of noise which decreases the
visual quality. Therefore, removal of the noise is a common
problem in image processing. An image gets corrupted with
noise during acquisition or transmission due to channel errors
or faulty hardware. Removing noise from noisy images is still
a challenging problem for researchers.

Denoising, as the word suggests, is the removal of noisy
components from the pixels of an image. Lots of research has
been concentrated on this area for a long time, and many
methodologies have been proposed by researchers for
achieving good performance,1–6 in which partial differential
equation (PDE)-based image processing techniques offer
great potential in developing image denoising applications
with good results. However, these conventional PDE-based
models might lose interesting fine structures during the
denoising process. As a consequence, many other PDE-
based denoising models have been proposed, and have
had much success in preserving structures, while removing
noise. Based on the work of Perona and Malik,7 which
replaces the isotropic diffusion by anisotropic diffusion,
many methods connecting adaptive smoothing with sys-
tems of nonlinear PDE8–13 have been proposed to preserve
important structures in images, while removing noise.
Anisotropic diffusion is associated with an energy-dissipating
process that seeks the minimum of the energy functional.
When the energy functional is the total variation (TV) norm

of the image, the well-known TV minimization model14 can
be obtained.

Although these techniques have been demonstrated to
achieve a good tradeoff between noise removal and edge
preservation, the recovered images by using these denoising
techniques are often piecewise constant. Thus, the finer
details in the original image may not be recovered satisfac-
torily and affine regions will look “blocky.”

To reduce the blocky effect, while preserving sharp jump
discontinuities (edges), many other nonlinear filters have
been suggested in the literature.15–20 During the last few
years, fourth-oder PDEs have been of a special interest.18–20

For example, You and Kaveh proposed a class of fourth-
order PDEs which are Euler–Lagrange equations of a cost
functional making an increasing function of the absolute
value of the Laplacian of the image intensity function.19

Piecewise planar images look more natural than the step
images that are stationary points of second-order PDEs.

The fractional-order PDE is an important branch of the
PDEs. Cuesta proposed fractional-order linear integral–
differential equations, which interpolated heat equations and
wave equations using the Riemann–Liouville(R–L) frac-
tional derivative.21 Mathieu et al. used fractional derivative
to detect the image edges.22 Pu et al. designed the fractional
derivative filter to detect the texture details of images.23

Zhang et al. introduced fractional-order image inpainting
into metal artifacts reduction in computed tomography
(CT) images.24 Bai and Feng derived the fractional-order
anisotropic diffusion model, and they found that the optimal
performance can be achieved when the order was 1.2 or
1.8.25 However, all above works use the same differential
order for a whole image. Then an interesting question has
arisen: can we use different differential orders for a whole
image at the same time? To the best of our knowledge,*Address all correspondence to: Ran Tao, E-mail: rantao@bit.edu.cn
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there are no such published papers which have considered
this issue. Therefore, it is interesting and worthwhile to
investigate this topic in detail.

In this article, we propose a new image-denoising
method (named fractional-varying-order differential model).
In this model, differential orders can vary with the gradient
of an image so that the multiple differential can be used in
a whole image at the same time. Thus, the blocky effect
can be suppressed and the texture will not be smoothed
out just as another high frequency noise, while removing
noise.

The outline of this article is as follows. In Sec. 2, we will
propose the concept of fractional-varying-order differential.
In Sec. 3, the denoising model based on fractional-varying-
order differential will be established. In Sec. 4, we will show
some simulation results. And the conclusion will be made
in Sec. 5.

2 Methodology

2.1 Traditional Constant-Order Differential

Definition 2.1. Supposing ~dðtÞ¼½d1ðtÞ;d2ðtÞ; ···;dnðtÞ�T is
a n × 1 function vector, uðx; yÞ ¼ ½uijðx; yÞ�n×m is a n ×m
function matrix. Dα is αth (α ∈ Rþ) fractional derivative
operator, then we have the following results:

~fðαÞðtÞ :¼ ½fðαÞ1 ðtÞ; fðαÞ2 ðtÞ; · · · ; fðαÞn ðtÞ�T; (1)

Dαuðx; yÞ

:¼

0
BBB@

Dαu11ðx; yÞ Dαu12ðx; yÞ · · · Dαu1 mðx; yÞ
Dαu21ðx; yÞ Dαu22ðx; yÞ · · · Dαu2 mðx; yÞ

..

. ..
. . .

. ..
.

Dαun1ðx; yÞ Dαun2ðx; yÞ · · · Dαunmðx; yÞ

1
CCCA:

(2)

The previous image processing methods based on diffe-
rential use a constant-order differential, which is the same
differential order for a whole image. According to the
theory of fractional-order differential in the application of
digital image processing, using different differential orders
to process an image will produce different effects. Thus,
we put forward the concept of varying-order differential,
namely, when an image is processed by differential, the
differential orders of different parts of the image can be
variable.

2.2 Proposed Fractional-Varying-Order Differential

Definition 2.2. Supposing ~dðtÞ¼½d1ðtÞ;d2ðtÞ; ···;dnðtÞ�T is
a n × 1 vector, ~fðtÞ :¼ ½f1ðtÞ; f2ðtÞ; · · · ; fnðtÞ�T is a n × 1
function vector, A ¼ ðaijÞn×m is a n ×m matrix and
uðx; yÞ ¼ ½uijðx; yÞ�n×m is a n ×m function matrix. Dα
is αth (α ∈ Rþ) fractional derivative operator, then we
define:

~dA :¼

0
BBBBB@

da111 da121 · · · da1 m
1

da212 da222 · · · da2 m
2

..

. ..
. . .

. ..
.

dan1n dan2n · · · danmn

1
CCCCCA
;

~fðAÞðtÞ :¼

0
BBBBBB@

fða11Þ1 ðtÞ fða12Þ1 ðtÞ · · · fða1 mÞ
1 ðtÞ

fða21Þ2 ðtÞ fða22Þ2 ðtÞ · · · fða2 mÞ
2 ðtÞ

..

. ..
. . .

. ..
.

fðan1Þn ðtÞ fðan2Þn ðtÞ · · · fðanmÞn ðtÞ

1
CCCCCCA
;

DA :¼

0
BBBBB@

Da11 Da12 · · · Da1 m

Da21 Da22 · · · Da2 m

..

. ..
. . .

. ..
.

Dan1 Dan2 · · · Danm

1
CCCCCA
;

DAuðx; yÞ

:¼

0
BBBBB@

Da11u11ðx; yÞ Da12u12ðx; yÞ · · · Da1 m
u1 mðx; yÞ

Da21u21ðx; yÞ Da22u22ðx; yÞ · · · Da2 m
u2 mðx; yÞ

..

. ..
. . .

. ..
.

Dan1un1ðx; yÞ Dan2un2ðx; yÞ · · · Danmunmðx; yÞ

1
CCCCCA
;

(3)

we call DA as fractional-varying-order differential operator.

Thus, we define the fractional-varying-order derivative in the
frequency domain as

D~αfðtÞ ↔ ðj~ωÞ~αf̂ð~ωÞ; (4)

where ~α is an appropriate vector. It is obvious that the
semigroup property of fractional-varying-order derivative
operators holds, namely

ðD~αÞðD~βÞf ¼ ðD~βÞðD~αÞf ¼ ðD~αþ~βÞf; (5)

where vectors ~α; ~β have the same dimension.
For any gðx; yÞ ∈ L2ðR2Þ, the corresponding two-

dimensional (2-D) Fourier transform is

ĝðω1;ω2Þ ¼
Z
R
gðx; yÞ exp½−jðω1xþ ω2yÞ�dxdy: (6)

Thus, the corresponding fractional-varying-order partial
derivatives are

DAxg ¼ F−1½ðjω1ÞAĝðω1;ω2Þ� (7)

and

DAyg ¼ F−1½ðjω2ÞAĝðω1;ω2Þ�; (8)

where A is a n ×m matrix, F−1 is an inverse 2-D Fourier
transform operator.
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3 Proposed Approach

3.1 Fractional-Varying-Order Differential
Denoising Model

Smoothing by local-weighted averaging is an effective image
regularization method that has been used for denoising,
restoration, and enhancement. A drawback is that smoothing
can damage image features, such as edges, lines, and tex-
tures. To avoid the damage, the smoothing has to be adap-
tively controled by the amount or the direction of smoothing.
A classic example of adaptive smoothing is the anisotropic
diffusion scheme of Perona and Malik,7 in which the smooth-
ing process is formulated by a PDE. Let t denotes the time
and cð·Þ be the diffusion coefficient, the anisotropic diffusion
as formulated in Ref. 7 can be presented as

∂u
∂t

¼ div½cðj∇uj2Þ∇u�: (9)

This equation is associated with the following energy
functional:

EðuÞ ¼
Z
Ω
fðj∇ujÞdΩ; (10)

where Ω is the image support, and fð·Þ ≥ 0 is an increasing
function associated with the diffusion coefficient

cðsÞ ¼ f 0ð ffiffiffi
s

p Þffiffiffi
s

p : (11)

Anisotropic diffusion is then shown to be an energy-
dissipating process that seeks the minimum of the energy
functional. We consider the following functional defined
in the space of continuous images over a support of Ω.
This equation is associated with the following energy
functional:

EðuÞ ¼
Z
Ω
fðjDAujÞdΩ; (12)

where A ¼ αðj∇ujÞ and αð·Þ is an increasing function and
meets the condition

αðxÞ →
�
1; x → 0

2; x → ∞ .

DA denotes the fractional-varying-order differential
operator defined by DAu ¼ ðDAxu; DAyuÞ and jDAuj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
Ax þD2

Ay

q
. We can formally compute the Euler–

Lagrange equation for this minimization problem as follows.
Take any test function η ∈ C∞ðΩÞ and assume

ΦðaÞ ¼
Z
Ω
fðjDAuþ aDAηjÞdxdy: (13)

We obtain

Φ 0ð0Þ ¼ d
da

Z
Ω
fðjDAuþ aDAηjÞdxdyja¼0

¼
Z
Ω

�
f 0ðjDAujÞ

DAxu
jDAuj

DAxηþ f 0ðjDAujÞ
DAyu

jDAuj
DAyη

�
dxdy

¼
Z
Ω
ðD�

Ax½cðjDAuj2ÞDAxu� þD�
Ay½cðjDAuj2ÞDAyuÞ�ηdxdy

for all η ∈ C∞ðΩÞ, where D�
Ax is the adjoint of DAx and D�

Ay
is the adjoint ofDAy, respectively. Thus, the Euler–Lagrange
equation is

D�
Ax½cðjDAuj2ÞDAxu� þD�

Ay½cðjDAuj2ÞDAyu� ¼ 0: (14)

The Euler–Lagrange equation may be solved through the
following gradient descent procedure:

∂u
∂t

¼ −D�
Ax½cðjDAuj2ÞDAxu� −D�

Ay½cðjDAuj2ÞDAyu� (15)

with the observed image as the initial condition. The solution
is arrived when t → ∞, but the time evolution may be
stopped earlier to achieve an optimal tradeoff between
noise removal and edge preservation.

3.2 Analysis of the New Model

For any function fðtÞ ∈ L2ðRÞ, the Fourier transform is

f̂ðωÞ ¼
Z
R
fðtÞ expð−jωtÞdt: (16)

The equivalent form of the kth-order (k ∈ Zþ) derivative
in the frequency domain is

ðDkf̂ÞðωÞ ¼ ðjωÞkf̂ðωÞ ¼ d̂kðωÞf̂ðωÞ: (17)

Similarly, the equivalent form of the αth-order (α ∈ Rþ)
derivative in the frequency domain is

ðDαfÞðωÞ ¼ ðjωÞαf̂ðωÞ ¼ d̂αðωÞf̂ðωÞ; (18)

where d̂αðωÞ ¼ ðjωÞα is called as α’th-order differential
multiplier-function. Its complex exponential form and time
domain form are

�
d̂αðωÞ ¼ âαðωÞ exp½jθαðωÞ�
âαðωÞ ¼ jωjα; θαðωÞ ¼ απ

2
sgnðωÞ : (19)

From Eq. (19), we can obtain the amplitude–frequency
curves of fractional-order differential, as shown in Fig. 1,
from which we find that the fractional-order differential
can improve the high-frequency components of a signal in
meantime nonlinearly preserve the low-frequency compo-
nents of the signal.

Considering the feature of the fractional-order differential
for the signal, the fractional-varying-order differential model
is proposed. In the past, the differential orders used to
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process different parts of an image are the same. However, in
our model, the differential orders are different and are deter-
mined by the value of gradient modulus of the image. For
example, when the pixel is located in smooth image area,
the image gradient is very small and it cause the differential
order α to be close to 1. This phenomenon is beneficial
for denoising and suppressing the “staircasing” effect.
Conversely, when the pixel is located in image edges, the
image gradient is large, and the differential order α should
be a little larger value. This will preserve important texture.

Note that in the proposed Euler–Lagrange equation, when
A ¼ 1E (a matrix of ones where every element is equal to
one), Eq. (15) is equivalent to the Perona–Malik equation
shown in Eq. (9); when A ¼ 2 · 1E, Eq. (15) is equivalent
to the fourth-order anisotropic diffusion equation in Ref. 19.

4 Numerical Implementation and Simulation
Results

In this section, we will verify our proposed image-denoising
model considered in the previous section. To analyze the
performance of our model, we compare our model with
fractional-order anisotropic diffusion model. The restoration
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Fig. 1 The amplitude–frequency curve of fractional-order differential.

Fig. 2 Comparison of denoising results with different α in the case of additive Gaussian white noise
(σ ¼ 25). (a) α ¼ 0.4, PSNR ¼ 22.8606; (b) α ¼ 0.6, PSNR ¼ 25.8644; (c) α ¼ 0.8, PSNR ¼ 26.4067;
(d) α ¼ 1, PSNR ¼ 26.4877; (e) α ¼ 1.2, PSNR ¼ 26.4880; (f) α ¼ 1.4, PSNR ¼ 26.3514; (g) α ¼ 1.6,
PSNR ¼ 26.2974; (h) α ¼ 1.8, PSNR ¼ 26.1748; (i) α ¼ 2, PSNR ¼ 26.1688.
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quality is measured by the peak signal-to-noise ratio (PSNR),
which is defined as

PSNR ¼ 10 × log10

�
2552

MSE

�
;

where MSE ¼ ku − u0k22∕ðM × NÞ is the mean-squared
error, u0 is the original image, u denotes the recovered
image, and the unit of PSNR is decibel. The larger the
value of PSNR is, the better the performance is. The test
256 × 256 grayscale images include Lena and Peppers.

To summarize, our noise removal approach is realized by
the following steps:

(1) Let the input image be u and set n ¼ 1;
un ¼ u; k;Δt; t ¼ kΔt, compute the 2-D DFT ûn
of un.

(2) Compute j∇unj;A ¼ 2 · ðj∇unj þ 1Þ∕ðj∇unj þ 2Þ.
(3) Compute A-order partial differences ~DAxun and

~DAyun by the formula:

D̃Axun ¼ F−1f½1 − expð−j2πω1∕mÞ�A exp

× ðjπAω1∕mÞFðunÞg

and

D̃Ayun ¼ F−1f½1 − expð−j2πω2∕mÞ�A exp

× ðjπAω2∕mÞFðunÞg;

compute K�
1 ¼ diagðconjf½1 − expð−j2πω1∕mÞ�

A expðjπAω1∕mÞgÞ, and K�
2 ¼ diagðconjf½1−

expð−j2πω2∕mÞ�A expðjπAω2∕mÞgÞ.
(4) Compute hxn ¼ cðjD̃Aunj2ÞD̃Axun and hyn ¼

cðjD̃Aunj2ÞD̃Ayun, then compute ĝn ¼ K�
1 � FðhxnÞþ

K�
2 � FðhynÞ.

(5) Compute ûnþ1 ¼ ûn − ĝn · Δt and set n ¼ nþ 1; if
n ¼ k, compute the 2-D IDFT of ûn, stop; else go
to (2).

In our experiments, we take Δt ¼ 0.05 and k ¼ 55, and
use the following function26

cðsÞ ¼ 1

1þ ðs∕bÞ2

with b ¼ 10 in our experiment results.
In Figs. 2 and 3, we separately list denoised Lena and

Peppers images using fractional-order anisotropic diffusion

Fig. 3 Comparison of denoising results with different α in the case of additive Gaussian white noise
(σ ¼ 25). (a) α ¼ 0.4, PSNR ¼ 22.3164; (b) α ¼ 0.6, PSNR ¼ 25.5216; (c) α ¼ 0.8, PSNR ¼ 26.3960;
(d) α ¼ 1, PSNR ¼ 26.5783; (e) α ¼ 1.2, PSNR ¼ 26.5872; (f) α ¼ 1.4, PSNR ¼ 26.5234; (g) α ¼ 1.6,
PSNR ¼ 26.3542; (h) α ¼ 1.8, PSNR ¼ 26.3499; (i) α ¼ 2, PSNR ¼ 26.2076.
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model with different fractional orders α. It can be observed
that the PSNR reaches a maximum at α ¼ 1.2. Figures. 4
and 5 show the results of noise removal on Lena and
Peppers using our proposed model and the original frac-
tional-order anisotropic diffusion model. Figures 4(a) and
5(a) are the original images of the Lena and Peppers;
Figs. 4(b) and 5(b) are damaged images of the Lena and
Peppers with σ ¼ 25 Gaussian noise, and the corresponding
PSNRs are 20.1500 and 20.1379, respectively. Figures 4(c)
and 5(c) are the results of using fractional-order anisotropic
diffusion model with α ¼ 1.2, and the PSNRs are 26.4880
and 26.5872, respectively. Although using our model, the
PSNRs reach 27.4676 and 28.0319, respectively [see
Figs. 4(d) and 5(d)]. From Figs. 2 to 5, we can find that
our proposed model is better than the original fractional-
order anisotropic diffusion model with respect to visual
effect and the PSNR.

5 Conclusion
In this article, we have proposed a fractional-varying-order
differential model for image denoising. The model can adap-
tively select the differential order according to the value of
noise visibility of each pixel, which can effectively avoid
staircase effect and the difficulties in parameter selection. In
addition, this method is very easy to perform. It is a new idea
of adaptive image processing. The experiment results show
that this method is able to achieve a good effect in the respect
of noise removal and edge preservation during the process of
image smoothing. Future works involve extending the pro-
posed method to other PDEs and variational models.
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