Optical Engineering

Hollow circular-truncated cone resonator and its hollow variable biconical laser beam

Jinglun Liu
Mei Chen
Qionghua Wang
Nianchun Sun

Hollow circular-truncated cone resonator and its hollow variable biconical laser beam

Jinglun Liu,* Mei Chen, Qionghua Wang,* and Nianchun Sun
Sichuan University, College of Electronics and Information Engineering, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China

Abstract

To obtain a hollow variable biconical laser beam (HVBLB), a CO_{2} laser having a hollow circular-truncated cone resonator (HCTCR) is presented. This HCTCR comprises a rotationally symmetric total-reflecting concave mirror at the bottom, a rotationally symmetric part-reflecting convex mirror at the top, and a hollow circular-truncated cone discharge tube at the middle. The cross section of this generated biconical laser beam changes from annulus to circular to annulus and the size of this cross section from big to small to large as the propagation distance increases. So, a kind of laser beam with variable center intensity from zero to peak value to zero is obtained and is known as HVBLB. Due to the inclusion of part of the hollow laser beam (HLB) and solid laser beam, this HVBLB requires no additional beam-shaping element and has broad applications such as optical trapping and commercial manufacturing. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.53.5.056113]

Keywords: hollow circular-truncated cone resonator; hollow variable biconical laser beam; CO_{2} laser; hollow laser beam.
Paper 140270 received Feb. 19, 2014; revised manuscript received May 1, 2014; accepted for publication May 2, 2014; published online May 21, 2014.

1 Introduction

Hollow laser beam (HLB) means there is a dark region of intensity in the central axis of a beam. Due to the specific characteristic of intensity distribution of this beam and its potential application prospects, methods for obtaining HLBs have been extensively reported such as in Refs. 110. Among these methods, an HLB obtained directly by a hollow cone-shaped resonator (HCR) CO_{2} laser has been proposed according to Ref. 7. As minimum spot of the output beam is located in its surface, the output mirror of this HCR should support higher power density. Also, the dark region of this HLB will become bigger as the transmission distance increases. So, this HLB must depend on a focusing system for various applications.

In this article, to improve power density of the output mirror and raise the distance between the smaller dark region and the output mirror, we present a new CO_{2} laser, whose resonator has a hollow circular-truncated cone, shown in Fig. 1. We will show that the hollow situation of output beam of this resonator changes as the propagation distance increases. Also, the output mirror of the hollow circular-truncated cone resonator (HCTCR) will face lower power density due to the minimum spot lying outside the output mirror.

2 HCTCR and Its Hollow Variable Biconical Output Beams

The HCTCR CO_{2} laser includes a rotationally symmetric concave total reflector at the bottom, a rotationally symmetric convex part reflector at the top, and a hollow circulartruncated cone discharge tube at the middle, as shown in Fig. 1. Also, laser beams emit from R_{2} in Fig. 1(a). Figure 1(d) is a section of the HCTCR along the axis of symmetry. In Fig. 1(d), R_{11} is concave total reflector, R_{21} is

[^0]convex part reflector, and both R_{11} and R_{21} form a con-cave-convex sub-branch cavity of the HCTCR. This subbranch cavity and another sub-branch cavity formed of R_{12} and R_{22} are symmetric about the z-axis. So, simply put, the HCTCR is formed by a $\mathrm{R}_{11}-\mathrm{R}_{21}$ concave-convex sub-branch cavity making a circuit of the z-axis. So, the output beams from the HCTCR are also formed by the output beams of $\mathrm{R}_{11}-\mathrm{R}_{21}$ cavity making a circuit of the z-axis. In Ref. 7, there was a similar theory.

The main difference between the HCTCR and the HCR is the concave-convex sub-branch cavity in this case instead of concave-plane-concave folded sub-branch cavity in Ref. 7. This reflects the fact that the location of minimum spot can be adjusted to locate outside this resonator. So, the output beams of the HCTCR can have a more abundant intensity distribution.

To obtain the suitable minimum spot size, the location of minimum spot, and the half-apex angle, we can regulate and control the values of $\mathrm{R}_{11}, \mathrm{R}_{21}$, the distance between R_{11} and R_{21}, and the angle between the optical axis of $\mathrm{R}_{11}-\mathrm{R}_{21}$ cavity and the z-axis, according to the resonator theory. As we are interested in the behavior of the output beams of the HCTCR here, this hypothesis is feasible.

According to Ref. 7, assuming the output beam from the $\mathrm{R}_{11}-\mathrm{R}_{21}$ sub-branch cavity is a fundamental Gaussian beam and linearly polarized along the x_{1}-axis. The field distribution $E\left(x_{1}, 0, x z_{1}\right)$ in coordinates $\left(x_{1}, 0, z_{1}\right)$ can be defined by

$$
\begin{align*}
E\left(x_{1}, 0, z_{1}\right) \propto & C_{0} \frac{\omega_{0 x_{1}}}{\omega_{x_{1}}\left(z_{1}\right)} \exp \left\{-i\left[k z_{1}-\arctan \left(\frac{\lambda z_{1}}{\pi \omega_{0 x_{1}}^{2} n}\right)\right]\right\} \\
& \times \exp \left\{-x_{1}^{2}\left[\frac{1}{\omega_{x_{1}}^{2}\left(z_{1}\right)}+\frac{i k}{2 R_{x_{1}}\left(z_{1}\right)}\right]\right\} \tag{1}
\end{align*}
$$

where C_{0} is a constant, $\omega_{0 x 1}$ is minimum spot size in plane $\left(x_{1}, 0, z_{1}\right), \omega_{x 1}\left(z_{1}\right)$ is spot size in the z_{1} place of plane $\left(x_{1}, 0, z_{1}\right)$ and is equal to $\omega_{0 \times 1}\left[1+\left(\lambda z_{1} / \pi \omega_{0 \times 1}^{2} n\right)^{2}\right]^{1 / 2}$,

Fig. 1 (a) Skeleton map of hollow circular-truncated cone resonator (HCTCR). (b) Elevation view of annular total reflector. (c) Elevation view of annular partial reflector. (d) Section of HCTCR. HCTCDT is hollow circular-truncated cone discharge tube. R_{1} is annular total reflector. R_{2} is annular partial reflector. R_{11} and R_{12} are sections of annular total reflector. R_{21} and R_{22} are sections of annular partial reflector. $R_{11}-R_{21}$ cavity and $R_{12}-R_{22}$ cavity are the sub-branch cavity of the HCTCR, and they are symmetric about the z-axis. The HCTCR is formed by $R_{11}-R_{21}$ cavity (or $R_{12}-R_{22}$ cavity) making a circuit of the z-axis. Also, the output beams from the HCTCR are formed by the output beams of $R_{11}-R_{21}$ cavity (or $R_{12}-R_{22}$ cavity) making a circuit of the z-axis.
$R_{x 1}\left(z_{1}\right)$ is the radius of curvature and equal to $z_{1}\left[1+\left(\pi \omega_{0 \times 1}^{2} n / \lambda z_{1}\right)^{2}\right]^{1 / 2}, k=2 \pi n / \lambda$ is the wave number, and n is the index of refraction.

The relationship between $\left(x_{1}, 0, z_{1}\right)$ coordinates and $(x, 0, z)$ coordinates can be expressed by
$\left\{\begin{array}{l}x_{1}=x \cos \theta+z \sin \theta \\ z_{1}=z \cos \theta-x \sin \theta+d\end{array}\right.$,
where d is the distance between the point o_{1} and o. Sign of d is positive if the point o_{1} is located in between R_{21} and the point o, d is negative if the point o is located in between R_{21} and the point o_{1}, and d is equal to zero if the point o and o_{1} have the same position. Also, θ is the half-apex angle of the HCTCR.

Substituting Eq. (2) in Eq. (1), we can obtain the field distribution $E(x, 0, z)$ from the $\mathrm{R}_{11}-\mathrm{R}_{21}$ sub-branch cavity in coordinates $(x, 0, z)$. Using the $E(x, 0, z)$ to rotate a circle around the z-axis, the field distribution $E(x, y, z)$ of the output beams from the HCTCR can be obtained. Also, the intensity distribution of the output beams of the HCTCR can be described by $I \propto E(x, y, z) E^{*}(x, y, z)$. Here, we can imagine that the output beam from this HCTCR will change from hollow center to solid center to hollow center as the propagation distance increases. Therefore, this output beam is named hollow variable biconical laser beam (HVBLB).

3 Simulation and Discussion

The parameters used in the calculation are wavelength $\lambda=$ $10.6 \mu \mathrm{~m}$, the refractive index n in free space is 1 , and the constant C_{0} is 1 . As for other parameters, some factors need to be considered. First, the radius of every mirror in the sub-branch is based on the spot size on this mirror. By the definition of spot size, it is best to have the former size above $\sqrt{2}$ times the latter case. Second, from the inner edge of every mirror to the z-axis, the distance must be enough for the electrode and the holder. Third, the distance between the point o_{1} and o will be selected according to actual requirement.

According to the above-mentioned first and second principles, for the position of the mirrors, $\left|d-z_{1}\right| \sin (\theta)>$ $5 \omega_{x 1}\left(z_{1}\right)$ may be the appropriate choice. Figures 2 and 3 take the relations among $\omega_{0 \times 1}, z_{1}, \theta$, and $\left|d-z_{1}\right| \sin (\theta)-$ $5 \omega_{x 1}\left(z_{1}\right)$. Here, z_{1} is abscissa of mirrors in coordinates

Fig. 2 If $\left|d-z_{1}\right| \sin (\theta)-5 \omega_{x 1}\left(z_{1}\right)>0$, (a) is the relationship among $\omega_{0 \times 1}, z_{1}$, and $\theta,(\mathrm{b})$ is the relationship between z_{1} and θ, (c) is the relationship between $\omega_{0 \times 1}$ and θ, and (d) is the relationship between $\omega_{0 \times 1}$ and z_{1}. When d is equal to zero, z_{1} is the place of the output mirror, $\omega_{x 1}\left(z_{1}\right)$ is the spot size of the place $z_{1}, \omega_{0 \times 1}$ is the minimum spot size of the sub-branch cavity, and θ is the angle between the z_{1} and z axis.

Fig. 3 Variation of $-z_{1} \sin (\theta)-5 \omega_{x 1}\left(z_{1}\right)$ according to $\omega_{0 \times 1}$ while $z_{1}=-100 \mathrm{~mm},-250 \mathrm{~mm}$, respectively, and $\theta=0.05,0.06$, and 0.10 rad, respectively. Here, $d=0$ and $\left|d-z_{1}\right| \sin (\theta)-5 \omega_{x 1}(z 1)=$ $-z_{1} \sin (\theta)-5 \omega_{x 1}\left(z_{1}\right)$, because z_{1} is negative.
$\left(x_{1}, 0, z_{1}\right)$, the sign of z_{1} here is negative due to two mirrors on the left of the point o_{1}.

From Fig. 2, if $\left|d-z_{1}\right| \sin (\theta)-5 \omega_{x 1}\left(z_{1}\right)>0$, the relationship among the $\omega_{0 \times 1}, z_{1}$, and θ are shown in part (a), between z_{1} and θ in part (b), between θ and $\omega_{0 \times 1}$ in part (c), and $\omega_{0 \times 1}$ and θ in part (d). Based on the data of Fig. 2, Fig. 3 shows some specific examples for ease of choice of parameters. For simplification, d is equal to zero in these two figures. The various values about d will be considered carefully in the following discussions.

According to the above-mentioned theory, the HVBLBs from the HCTCR at the $\theta=0.06 \mathrm{rad}$ have been simulated in Fig. 4. In Figs. 4(a) and 4(b), the minimum spot size $\omega_{0 \times 1}$ is equal to 0.4 and 1.5 mm , respectively. Three rows in every part of Fig. 4 show $d=50,0$, and -50 mm , respectively. The six pictures in every row of every part are the spot image at $z=-20,-10,0,10$, and 20 mm and the longitudinal section of transmission beams from $z=-20$ to 20 mm , respectively.

Fig. 4 The hollow variable biconical laser beam (HVBLB) while the minimum spot size $\omega_{0 \times 1}=0.4 \mathrm{~mm}$ in part (a) and $\omega_{0 \times 1}=1.5 \mathrm{~mm}$ in part (b). Both part (a) and part (b) have 3 rows (i.e., $i=1,2,3$) and 6 columns (i.e., $j=1,2,3,4,5,6$) although $i=1,2,3, d=50,0$, and -50 mm , respectively. Although $j=1,2,3,4,5, z=-20,-10,0,10$, and 20 mm , respectively, $j=6$ is the longitudinal profile map of propagation of HVBLB along z-axis. $a_{i j, j \neq 6}$ and $b_{i j, j \neq 6}$ are spot image at difference position in z axis. For example, a_{23} is the spot image and is located in the second row and third column of part (a), while $\omega_{0 \times 1}=0.4 \mathrm{~mm}, d=0 \mathrm{~mm}$, and $z=0 \mathrm{~mm}$, and b_{36} is the longitudinal profile map of propagation of HVBLB along z-axis and is located in the third row and sixth column of part (b), while $\omega_{0 \times 1}=1.5 \mathrm{~mm}$ and $d=-50 \mathrm{~mm}$. Here, the wavelength is $10.6 \mu \mathrm{~m}$ and θ is 0.06 rad .

Figure 4 shows that the output beams from the HCTCR have changed from hollow beams to center-bright beams and hollow beams with the increase in transmission distance. Also, the first hollow beams are named the left hollow beams, and the second hollow beams are named the right one. By comparing parts (a) and (b) of Fig. 4, it is clear that the length and width of the center-bright beams are influenced by the minimum spot size $\omega_{0 \times 1}$ and the half-apex angle θ. The smaller the minimum spot size and the greater the half-apex angle, the smaller the length and width of the center-bright beams. From three row pictures of every part, the hollow situation depends on the relative position and distance between the point o_{1} and o. If the point o_{1} is located to the right of the point o, the right hollow beams have the clearer bright ring and relatively thinner wall than the left one. So, if it is needed to use the right hollow beam, the point o_{1} would be set to the right of the point o.

According to the theory of cavity algebra of lasers, the radii of curvature R_{11} and R_{21} can be calculated by $\omega_{0 \times 1}$, z_{1}, and length of sub-branch cavity.

From Fig. 4, the HCBLB would be influenced by the values of $\omega_{0 \times 1}, d$, and θ. In optical trapping, for smaller dark center of beam, the values of $\omega_{0 \times 1}$ and θ should be as small as possible and the value of d can be equal to zero. For large distances and high-power laser, bigger $\omega_{0 \times 1}$ and smaller θ should be chosen. If making a hole in short distance, proper $\omega_{0 \times 1}, d$, and θ need to be designed according to the size of the hole and the material of the object.

4 Conclusions

Based on the design in this article, the position of the highest power density of the output beams is located outside of the HCTCR. The benefits have two advantages: First, the output mirror can be protected because of the smaller power density. This merit is especially useful for a high-power situation. Second, a variation beam from hollow to solid to hollow along the increase of the propagation distance can be obtained directly with this laser resonator. So, this output beam is
named as HVBLB. Both the hollow part and center-bright part of this HVBLB can be used directly without shaping and therefore do not waste extra energy. The output beams will be used for not only small-power application areas but also high-power cases and have extensive prospects.

Acknowledgments

We gratefully thank the Sichuan Province S\&T Support Program of China (No. 2012FZ0046) and the National Natural Science Foundation of China (Nos. 61225022 and 61320106015).

References

1. G. N. Bokor and N. Davidson, "Generation of a hollow dark spherical spot by 4pi focusing of a radially polarized Laguerre-Gaussian beam," Opt. Lett. 31(2), 149-151 (2006).
2. Z. Liu et al., "Generation of hollow Gaussian beam by phase-only filtering," Opt. Express 16(24), 19926-19933 (2008).
3. Z. Liu et al., "Generation of hollow Gaussian beams by spatial filtering," Opt. Lett. 32(15), 2076-2078 (2007).
4. F. K. Fatemi and M. Bashkansky, "Generation of hollow beams by using a binary spatial light modulator," Opt. Lett. 31(7), 864-866 (2006).
5. Y. Zheng et al., "Generation of dark hollow beam via coherent combination based on adaptive optics," Opt. Express 18(26), 26946-26958 (2010).
6. F. Zhang, G. Pedrini, and W. Osten, "Phase retrieval of arbitrary com-plex-valued fields through aperture-plane modulation," Phys. Rev. A 75, 043805 (2007).
7. J. Liu et al., "Proposal to obtain a hollow laser beam from a hollow cone-shaped resonator," Opt. Eng. 46(10), 108001 (2007).
8. X. Chen et al., "Generation and evolution of quadratic dark spatial solitons using the wavefront modulation method," Opt. Express 13(22), 8699-8707 (2005).
9. Z. Liu and S. Liu, "Double image encryption based on iterative fractional Fourier transform," Opt. Commun. 275(2), 324-329 (2007).
10. G. Schweiger et al., "Generation of hollow beams by spiral rays in multimode light guides," Opt. Express 18(5), 4510-4517 (2010).

Jinglun Liu is an associate professor at the Sichuan University. She received her MS and PhD degrees in optics from the Sichuan University in 2004 and 2007, respectively. She is the author of more than 10 journal papers and has written 7 patents. Her current research interests include laser physics and technology and holography.

Biographies of the other authors are not available.

[^0]: *Address all correspondence to: Jinglun Liu, E-mail: irisliujinglun@sohu.com; Qionghua Wang, E-mail: qhwang@scu.edu.cn

