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Abstract. High-precision aspherical polynomial fitting is essential to image quality evaluation in optical
design and optimization. However, conventional fitting methods cannot reach optimal fitting precision
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a projection from polynomial equations to vector space was here proposed such that polynomial solutions
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1 Introduction
With the rapid development of optical design and manufac-
turing technology, aspherical profiles have seen extensive
use because of their lower rate of aberrations relative to
spherical profiles.1–4 Improving the precision of fitting proj-
ects would facilitate the evaluation of image quality in opti-
cal design and optimization significantly. This is commonly
done by increasing the number of samples or using high-
order polynomials. Currently, there are a number of articles
that discuss improving the precision of polynomial fitting.
Because increasing the number of samples beyond a certain
point will not markedly improve fitting precision,5 high-
order polynomials have seen widespread use. The least
square method will usually produce ill-conditioned Gram
matrixes and so introduce large errors in solution. To
solve the problem, the Gram–Schmidt process was used
to generate mutually orthogonal polynomials in the unit
circle.6,7 The Gauss–Newton algorithm was used to solve
nonlinear least squares problems through iterations to reduce
fitting errors. This method was reported to be able to further
improve fitting precision.8,9

However, when fitting rotational symmetric surfaces
using the nonorthogonal polynomials and least square
method, the peak polynomial coefficient increases with
increasing polynomial order such that massive coefficients
may be derived in some cases.10 These coefficients are usu-
ally randomly oriented and several orders of magnitude
higher than rise of arch, which might result in a much
smaller number from the subtraction of two large numbers
when calculating the rise of arch. In this way, the limited
accuracy of numerical storage in computers leads to losses

of effective numbers during computation. Specifically, it
compromises the accuracy of the calculation of the surface
slope, thereby rendering ray tracing inaccurate. In optical
optimization processes, the loss of effective numbers causes
numeric instability of the optimization algorithm, which is
unacceptable in practical applications.11 Although the
methods listed above could improve fitting precision, it
is not possible to prevent the loss of effective numbers
because of large coefficients. In this way, a projection
from polynomial equations to vector space was proposed
in this study, thereby introducing a new fitting method,
achieving the optimal quadric fitting surface with better fit-
ting errors as well as minimizing the magnitude of the
aspheric coefficient.

In order to improve fitting precision effectively and solve
the problem of excessive coefficients, it is necessary to ana-
lyze the sources of fitting errors and their relationship with
the coefficients of polynomials. The coefficient of each
order of polynomials is not directly correlated to fitting
errors, so direct analysis is not efficient. Based on the char-
acteristics of homogeneity and additivity of polynomials
and vectors and on the similar definition of inner products
and the simple linear relationship between components and
modulus length of each vector and error in least square cal-
culation, the problem can be solved by projecting polyno-
mials into vectors. It is inevitable to calculate the inner
products of polynomials while conducting profile fitting
with either the linear or the nonlinear least square method.
Because the definition of fitting error is directly related to
inner products, the projection from polynomials to vector
space can be built based on its relationship with inner prod-
ucts such that the polynomials are analyzed using vector
analysis methods, thereby transforming the polynomial
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2 Methods

2.1 Projection of Polynomials into Vector Space

The polynomial equations consisting of n polynomials were
here projected into n-dimension vector space, with each pol-
ynomial projected into the n-dimension vector. The polyno-
mials are written as φ1;φ2; · · · ;φn, and the corresponding
vectors as v1; v2; · · · ; vn. In order to facilitate future calcu-
lations, the following projection principles were here
adopted:
EQ-TARGET;temp:intralink-;e001;63;640ð1Þðϕi;ϕiÞ ¼ ðvi; viÞ; i ¼ 1;2; · · · ; n

ð2Þðϕi;ϕjÞ ¼ ðvi; vjÞ; i; j ¼ 1;2; · · · ; n; i ≠ j

ð3Þvi ¼ ðmi1; mi2; · · · ; mii; 0; · · · ; 0ÞT: (1)

The vectors are integrated as matrix M

EQ-TARGET;temp:intralink-;e002;63;562M ¼ ½v1; v2; · · · ; vn�: (2)

One algorithm is to obtain matrixM that satisfies the pro-
jection principles through “Cholesky” decomposition of the
“Gram” matrix in Eq. (3). From the Cholesky decomposi-
tion, a lower triangular matrix and an upper triangular
matrix, which are mutual symmetric, could be obtained,
where M is the upper triangular matrix. The polynomials
coefficient matrix derived from fitting is recorded as A,
and the projected vector is v. The coefficient matrix and
the corresponding vector have the relationships as

EQ-TARGET;temp:intralink-;e003;63;432v ¼ MA (3)

EQ-TARGET;temp:intralink-;e004;63;402A ¼ M−1v; (4)

where A ¼ ðA1; A2; : : : ; AnÞT .

2.2 Principles of Aspheric Polynomial Surface Fitting

In aspheric polynomial surface fitting, the profile expression
conforming to ISO 10110 standard is adopted12

EQ-TARGET;temp:intralink-;e005;63;317z ¼ cr2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ kÞc2r2

p þ
X
j¼0

Ajr2jþ4: (5)

Here, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the perpendicular distance from sur-

face points to the optic axis; z is the rise of the arch, i.e., the
perpendicular distance between surface points to the xy
plane; c is the curvature of surface apex; k is the conical con-
stant; and Aj is the polynomial coefficient.

Using optimal spherical surface methods, traditional
fitting methods, based on surface features, first employed
apex curvature and edge rise of arch to calculate quadric
surface parameters c and k.13,14 dðrÞ: dðrÞ ¼ zðrÞ −

cr2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð1þkÞc2r2

p is the difference between fitting surface

zðrÞ and optimal fitting quadric surface.
The least square method is also generally used to fit

residuals. The polynomials are represented as φ0ðrÞ,
φ1ðrÞ; : : : ;φn−1ðrÞ in rectangular coordinate systems; the fit-
ted residual function is fðrÞ, and WðrÞ is a weight function.
The least square calculation is used to derive
A0; A2; : : : ; An−1, which makes

P ðd −
P

Ajr2jþ2Þ2 mini-
mal. The solution equations are as follows:9,10

EQ-TARGET;temp:intralink-;e006;326;752GA ¼ b: (6)

The coefficients of every polynomial A1; A2; · · · ; An, are
obtained by solving Eq. (6), where G is the Gram matrix
and its elements are given by Eq. (7), and b is the calculation
matrix and defined by b ¼ ½P d · r4; · · · ;

P
d · r2nþ2�T.

And A is the vector of coefficients defined by A ¼
½A1; · · · ; An�T .

EQ-TARGET;temp:intralink-;e007;326;663Gij ¼
X

r2iþ4r2jþ4: (7)

2.3 Optimal Quadric Fitting Surface

As stated in Sec. 2.2, during the fitting process, the optimal
quadric fitting surface is determined first, and then the least
square method is used to fit the residuals. Using polynomials
with more terms involves more dimensions of the corre-
sponding vector space. The data to be fitted can be said
to correspond to an infinite dimensional vector. The optimal
quadric fitting surface is also represented by an infinite
dimensional vector, as shown in Eq. (8), where vf is the cor-
responding vector of the surface to be fitted, and vs is the
vector of the optimal quadric fitting surface.
EQ-TARGET;temp:intralink-;e008;326;494

vf ¼ limi→∞½α0; α1; · · · ; αn−1; αn; · · · ; αi�T
vs ¼ limi→∞½β0ðc; kÞ; β1ðc; kÞ; · · · ; βn−1ðc; kÞ;

βnðc; kÞ; · · · ; βiðc; kÞ�T; (8)

where αi and βi are the values of vector components, and βi
represents the component values of the vector of the optimal
quadric fitting surface, which could be represented as the
function of c and k. The vector vd corresponding to residuals
is shown

EQ-TARGET;temp:intralink-;e009;326;372vd ¼ limi→∞ðα0 − β0; α1 − β1; · · · ; αi − βiÞT: (9)

During the fitting process, the use of one additional poly-
nomial produces an additional vector component, and the fit-
ting error ve is proportional to the component modulus value
in the undescribed dimension

EQ-TARGET;temp:intralink-;e010;326;297ve ¼ limi→∞ð0; · · · ; αn − βn; αnþ1 − βnþ1; · · · ; αi − βiÞT:
(10)

When the components of vector ve that exceeds n dimen-
sions have minimal modulus value, the modulus length of ve
is minimal, and the fitting precision is maximal. In this way,
it can be deduced that there is an optimal quadric fitting sur-
face that can yield the minimal modulus value of undescribed
components

The determination of optimal quadric fitting surface is a
nonlinear least square problem, which is commonly solved
using the Gauss–Newton algorithm. The principle is to per-
form the first-order Taylor expansion on the base function to
linearize it. Then the linear least square method is used in
fitting, and the final results can be obtained upon iteration
convergence. However, this method has several drawbacks.
For example, it uses local quadratic convergence for the zero
residual fitting problem, the convergence speed is low for
small residual fitting problems, and there is no convergence
for large residual fitting problems. Here, the residual refers to
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the discarded high-order terms in Taylor expansion. For this
reason, the Newton–Raphson method was used in this study
to perform the second-order Taylor expansion based on the
definition formula of fitting residual. Because one more
order of Taylor expansion was performed than in the
Gauss–Newton method, more information from the function
was preserved, so the method showed good convergence.
The procedure is as follows:

The square sum s of fitting residual d is defined as fol-
lows: d ¼ z − cr2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð1þkÞc2r2

p −
P

i¼0Ajr2jþ4, s ¼ P
d2.

The target of the algorithm is to find c and k that conform
to ∂s

∂c ¼ ∂s
∂k ¼ 0. First, the initial values of c and k are obtained

based on conventional methods. Then, Eq. (11) was used in
iteration so as to obtain new values of c and k.

EQ-TARGET;temp:intralink-;e011;63;589

�
cnþ1

knþ1

�
¼

�
cn
kn

�
−

"
∂2s
∂c2

∂2s
∂c∂k

∂2s
∂c∂k

∂2s
∂k2

#−1� ∂s
∂c
∂s
∂k

�
: (11)

Because in the fitting process, Aj is determined once c
and k are determined, Aj is correlated to c and k.
EQ-TARGET;temp:intralink-;e012;63;516

∂s
∂c

¼
X

2d

�
∂d
∂c

−
∂ai
∂c

r2iþ4

�
;

2
6664

∂a0
∂c

..

.

∂an−1
∂c

3
7775¼

2
6664

ðϕ0;ϕ0Þ ::: ðϕ0;ϕn−1Þ
..
. . .

. ..
.

ðϕn−1;ϕ0Þ ··· ðϕn−1;ϕn−1Þ

3
7775
−1
2
66664

�
∂d
∂c;r

4
�

..

.�
∂d
∂c;r

2nþ2
�

3
77775.

(12)

The partial derivative of k is obtained with similar
method. The second-order partial derivative matrix was
obtained based on the calculation of the first-order partial

derivative. New values of c and k are continuously obtained
according to the iteration formula until the iteration termina-
tion standard is achieved.

2.4 Methods to Decrease Polynomial Coefficients

Once the optimal quadric fitting surface is determined, the
least square method is used to find the polynomial coeffi-
cients. If the polynomials have a large number of terms or
the surface space frequency is high, there might be too
many coefficients in the fitting results, and these can be sev-
eral orders of magnitude higher than rise of arch. This is
unfavorable in practical applications, so it is necessary to
decrease the polynomials coefficients without affecting the
fitting precision. The solving principle of the least square
method involves determining the minimal root-mean-square
(RMS) error, so the obtained small fitting coefficients can
cause increased RMS (the least square method assures min-
imal RMS, but the coefficients can be large, and none of the
operations on the coefficients assure minimal RMS). As
shown, the high fitting precision and small coefficients can-
not be obtained simultaneously. In this way, small coeffi-
cients could be obtained when a low fitting precision is
acceptable. Proper coefficients could be obtained by limiting
RMS and the range of polynomial coefficients. However,
solving the multivariable quadratic inequality is difficult
and time consuming. The size of the coefficients could be
reduced by controlling the variation in polynomial coeffi-
cients and error-associated variables.

As stated above, additive error can be introduced while
reducing polynomial coefficients. The ΔA change in the pol-
ynomial coefficients matrix introduces error E:

EQ-TARGET;temp:intralink-;e013;326;406E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
X

ΔAifik
2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
X

ΔAivik
2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kMΔAk2

p
:

(13)

Table 1 Fitting result using aspheric polynomials for Descartes oval.

No. of terms

Traditional method
Improvement for

departure
Improvement for optimal
spherical fitting surface

Five Seven Eight Eight Eight

c (mm−1) −0.5 −0.5 −0.5 −0.5 −0.5

k −0.843716 −0.843716 −0.843716 −0.843716 −0.759214

A1 (mm) 2.57757 × 10−1 2.69713 × 10−1 2.73894 × 10−1 2.71357 × 10−1 4.70730 × 10−1

A2 (mm) −5.3405 × 10−2 −1.45314 × 10−1 −2.19449 × 10−1 −1.74068 × 10−1 −7.2462 × 10−2

A3 (mm) −4.33431 × 10−1 −2.72898 × 10−1 2.28076 × 10−1 −8.1338 × 10−2 8.9275 × 10−2

A4 (mm) 5.73476 × 10−1 8.36713 × 10−1 −8.81902 × 10−1 1.89150 × 10−1 −4.788 × 10−3

A5 (mm) −3.44232 × 10−1 −1.45812 × 100 1.834551 × 100 −2.36148 × 10−1 −2.7192 × 10−2

A6 (mm) 1.19517 × 10−1 −2.374638 × 100 −1.09050 × 10−1 7.1639 × 10−2

A7 (mm) −4.25257 × 10−1 1.622536 × 100 3.10880 × 10−1 −5.6685 × 10−2

A8 (mm) −4.83067 × 10−1 −1.70768 × 10−1 2.2460 × 10−2

RMS(mm) 4.36995 × 10−5 3.5701 × 10−6 9.8508 × 10−7 2.6815 × 10−6 1.2038 × 10−8
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Here, ΔA ¼ ðΔA1;ΔA2: : :ΔAnÞT , and ΔAi is the coefficient
variation of the i polynomial. It is known from Eq. (4) that
ΔA ¼ M−1Δv. In general, the absolute values of M−1 row
elements increases from the left to the right so the last com-
ponent of Δv makes the largest contribution to the coeffi-
cient. In other words, given the same error, it can, to the
greatest extent, change the polynomial coefficients if the
error is allocated to the last component of the vector.

For this reason, the unit error vector is written as
u ¼ ð0 0: : : 1ÞT , and the variation of polynomial coefficients
is B ¼ kM−1u when k times the unit error is introduced.
Thus, the coefficient of new polynomials is Aþ B. The
introduced error can be determined by taking minimal square
sum of polynomials coefficients as the standard for coeffi-
cient reduction

EQ-TARGET;temp:intralink-;e014;63;587k ¼ −
ðA;BÞ
ðB;BÞ ¼ −

ðA;M−1uÞ
ðM−1u;M−1uÞ : (14)

Finally, the coefficient matrix of new polynomials can be
generated

EQ-TARGET;temp:intralink-;e015;63;520A 0 ¼ Aþ kM−1u ¼ A −
ðA;M−1uÞ

ðM−1u;M−1uÞM
−1u: (15)

The fitting error of new polynomials can be calculated
based on additive error and fitting error of original polyno-
mials other than sample points’ coordinates. From the per-
spective of vector dimensions, the fitting error of original
polynomials is due to finite terms. For this reason, the dimen-
sion of corresponding vector is finite, resulting in unde-
scribed high-dimension features. It is known that different
dimensions of the corresponding vector of the additive
error and original fitting error are orthogonal, which allows
the errors to be integrated based on mean square synthesis
method.

3 Examples
In this section, the examples are illustrated. The aplanatic
Descartes oval profile was used to validate the feasibility,
discussing the departure part, and the optimal quadric fitting
surface part. Another two examples, an extreme and a mild
aspheric profile, will perform comprehensive validation of
the method. In the calculation procedure, the Eq. (15) was
applied after the optimal quadric fitting surface was deter-
mined by using the proposed method and the polynomial
coefficients were solved with the least square method.

3.1 Aplanatic Descartes Oval Profile

The aplanatic Descartes oval profile which used by Forbes
was used here to validate the feasibility of the method.10

Using the conventional method, standard aspheric polyno-
mial fitting was performed. Results are shown in Table 1.
The curves of Descartes oval and their fitting errors are
shown in Fig. 1. As stated in Forbes’s article, standard
aspheric polynomials are nonorthogonal, and the use of
high-order terms in the fitting process can affect the coef-
ficients of low-order terms, resulting in higher coefficients
from more terms. In this way, the number of significant
figures can decrease during fitting with more high-order
polynomials, leading to nonsignificant increases in preci-
sion. In this paper, further analysis and deduction were
conducted, and we demonstrate that the results were not
optimal either in terms of precision or in terms of coeffi-
cient magnitude. The effectiveness of our proposed
method was proved using two conditions: (1) excessive
coefficients and (2) suboptimal fitting precision from opti-
mal quadric fitting surface.

The data in the table show that, when there are eight poly-
nomial terms, the coefficients are large, two orders of mag-
nitude greater than the maximal value of the point of
departure. These very large coefficients affect the system
optimization process and so need to be decreased.
According to the proposed method, taking the eight-term
aspheric polynomials, e.g., the polynomials were projected
into eight-dimensional vector space, and the eight vectors
v1; v2: : : v8 are here represented as matrix M

EQ-TARGET;temp:intralink-;sec3.1;63;209

M ¼

2
6666666666666664

4.071eþ 0 3.378eþ 0 2.898eþ 0 2.546eþ 0 2.278eþ 0 2.066eþ 0 1.895eþ 0 1.754eþ 0

0 6.239e − 1 9.275e − 1 1.078eþ 0 1.150eþ 0 1.179eþ 0 1.185eþ 0 1.176eþ 0

0 0 1.245e − 1 2.590e − 1 3.747e − 1 4.675e − 1 5.398e − 1 5.953e − 1

0 0 0 2.733e − 2 7.217e − 2 1.242e − 1 1.769e − 1 2.269e − 1

0 0 0 0 6.271e − 3 1.997e − 2 3.969e − 2 6.345e − 2

0 0 0 0 0 1.474e − 3 5.478e − 3 1.232e − 2

0 0 0 0 0 0 3.513e − 4 1.489e − 3

0 0 0 0 0 0 0 8.435e − 5

3
7777777777777775

.

Fig. 1 Descartes oval (pink line “a”: Descartes oval, green line “b”: the
error of improvement method for departure, blue line “c”: the error of
traditional method, red line “d”: the error of improvement method for
optimal spherical fitting surface).
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The associated variables between polynomial coefficients
variation and introduced error can be defined and controlled
for optimization, facilitating reduction of coefficient size.
The results showed that the coefficients decreased into the
same level as in fitting of five-term polynomials, while
the fitting precision was kept at a level similar to that of
the fitting of seven-term polynomials.

Similarly, based on the deduction shown in Sec. 3, the
Newton–Raphson iteration method was used to search for
optimal fitting spherical surface. Results are shown in
Table 1. The optimal fitting spherical surface is distinct
from that produced using conventional methods. After deter-
mining the optimal quadric fitting surface using the Raphson
method, the polynomial coefficients were solved, and the fit-
ting error was dramatically decreased.

3.2 Comprehensive Validation Using an Aspheric
Surface

The examples given above are experimental validation of the
new method in terms of the departure part and the optimal

quadric fitting surface part. The following example will per-
form comprehensive validation for the above two parts. The
surface as shown in Fig. 2 is the measured contour from a
fabricated lens used in a cell phone. It was fitted with the
proposed method, and the results are as shown in Table 2.
The results demonstrated that, due to the variation in the opti-
mal quadric fitting surface, the vector corresponding to the
point of departure shows high-dimensional components with
lower values, resulting in more described surface information
in the polynomials, so retaining high fitting precision.
Associated variables between polynomials coefficients varia-
tion and introduced error were obtained, and this could sig-
nificantly change coefficient range while keeping the error
similar. The results also show that the proposed method is
effective for a measured profile as well as the nominal start-
ing values of a surface.

3.3 Validation Using a Mild Aspheric Surface

The examples in Secs. 3.1 and 3.2 are extreme aspheric sur-
faces. In this section, the proposed method is also applied to
the aspheric surface fitting of a mild profile, the contour from

Fig. 2 An aspheric surface profile used in cellphone lens (pink line “a”:
the aspheric surface, blue line “b”: the error of traditional method,
green line “c”: the error of the proposed method).

Table 2 Fitting result using aspheric polynomials for an aspheric
surface.

Number of
terms

Traditional method Improved method

Five Eight Eight

c (mm−1) −6.64404 −6.64404 −4.83301

k −2.42266 × 101 −2.42266 × 101 −1.50273 × 100

A1 (mm) −1.22806 × 101 −2.89211 × 101 1.66517 × 10−1

A2 (mm) 4.92324 × 101 2.37090 × 102 7.30280 × 100

A3 (mm) −7.79851 × 101 −9.09388 × 102 −2.00049 × 101

A4 (mm) 5.59258 × 101 1.97371 × 103 2.01305 × 101

A5 (mm) −1.50155 × 101 −2.54711 × 103 −3.30800 × 10−2

A6 (mm) 1.93555 × 103 −1.56877 × 101

A7 (mm) −7.99407 × 102 1.16211 × 101

A8 (mm) 1.38363 × 102 −2.74648 × 100

RMS (mm) 2.39863 × 10−2 7.51581 × 10−3 6.21144 × 10−4

Fig. 3 The aspheric surface of a mild profile (red line “a”: the aspheric
surface, blue line “b”: the error of traditional method, green line “c”: the
error of the proposed method).

Table 3 Fitting result using aspheric polynomials for an aspheric sur-
face of mild profile.

Number of
terms

Traditional method Improved method

Five Eight Eight

c (mm−1) −1.00093 −1.00093 −0.737635

k −2.18644 × 100 −2.18644 × 100 −6.60064 × 101

A1 (mm) 1.37466 × 100 3.11691 × 100 −1.09348 × 100

A2 (mm) −4.45997 × 100 −2.19149 × 101 3.05223 × 100

A3 (mm) 5.95359 × 100 7.45048 × 101 −4.91347 × 100

A4 (mm) −3.66472 × 100 −1.43932 × 102 3.33001 × 100

A5 (mm) 8.48571 × 10−1 1.65021 × 102 1.09858 × 100

A6 (mm) −1.11146 × 102 −3.27368 × 100

A7 (mm) 4.06120 × 101 1.94461 × 100

A8 (mm) −6.21157 × 100 −3.93294 × 10−1

RMS (mm) 3.22914 × 10−3 1.20238 × 10−3 1.874801 × 10−4
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a imaging lens. The fitting results were shown in Fig. 3 and
Table 3, which approved the efficiency of the method.

4 Conclusions
While performing surface fitting with the least square
method, polynomial coefficients often become far larger
than maximal rise of arch of the fitted data. This causes dif-
ficulties in optical system design and optimization. In this
paper, a projection from polynomials to vector was proposed
such that the polynomial problem was transformed into a
vector problem. According to the proposed projection prin-
ciple, the mutual projection between polynomials and vector
could determine the relationship between the vector and the
polynomial coefficients, and further determine the relation-
ship between introduced errors and polynomial coefficient
variation. The polynomial coefficients were reduced based
on the standard of minimal square sum. For the first time,
the Newton–Raphson method was used to search for optimal
fitting surface, which not only improved the fitting precision
but also had better convergence than the Gauss–Newton
method. Through fitting tests of various surface profiles,
the proposed method was proven to be effective in terms
of fitting error and the range of the coefficients. Thus, it
is of significance in practical application. The proposed algo-
rithm has been programmed with MATLAB and available
for a Dynamic Data Exchange connection to optical design
software.
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