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Abstract. With the development of artificial intelligence technology, intelligent fringe processing is a goal of
relevant researchers in optical interferometry. We propose an intelligent method to achieve fully automated
extraction of the fringe skeletons in electronic speckle pattern interferometry (ESPI) based on U-Net convolu-
tional neural network. In the proposed method, the network is first trained by the samples that consist of the noisy
ESPI fringe patterns and the corresponding skeleton images. After training, the other multiframe ESPI fringe
patterns are fed to the trained network simultaneously; the corresponding skeleton images can be obtained
in batches. Using our method, it is not necessary to process fringe patterns frame by frame. Our method is
especially suitable for multiframe fringe patterns processing. We apply the intelligent method to one com-
puter-simulated and one real-dynamic ESPI measurement, respectively. For the simulated measurement,
it takes just 40 s to obtain the skeleton images of 20 noisy ESPI fringe patterns using our method. Even for
low-quality experimental obtained ESPI fringe patterns, our method can also give desired results. © 2019
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.58.2.023105]
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1 Introduction
Electronic speckle pattern interferometry (ESPI) as a well-
known optical metrology technique has been extensively
investigated and widely used in numerous fields.1–3 It is well
known that accurate extraction of phase terms is of funda-
mental importance for the successful application of ESPI.
Compared with the static measurement, the extraction of
phase terms in real-time and dynamic ESPI measurement
is a more challenging problem. The fringe skeleton method
may be the most straightforward approach to estimate the
phase terms in dynamic ESPI. In the fringe skeleton method,
the phase terms can be obtained by interpolating the assigned
skeletons.

In our opinion, the fringe skeleton method can be im-
proved from three points of view. In the first point, a majority
of effort is to improve the denoising algorithms. If a suffi-
ciently high degree of quality can be achieved, then skeleto-
nization of fringes of the resulting perfectly filtered fringe
pattern can be accomplished with a common binarization
thinning method.4,5 In the second point of view, few efforts
are put into improving the accuracy (AC) of interpolation
algorithms, mainly including backpropagation neural net-
works method6 and radial basis function (RBF) interpolation
method.7 It is worth mentioning that the RBF interpolation
method works well even under a seriously disconnected skel-
eton image. In the last point of view, some efforts are con-
centrated on developing the skeleton extraction algorithms.
The thresholding binary-fringe thinning8 and fringe extreme
tracking4 are two simple algorithms for extracting the skel-
etons. However, the two methods are likely to be affected by
speckle noise. Recently, the skeleton extraction algorithms

based on gradient vector fields (GVFs) have been actively
developed.9 The basic principle is that the GVFs of an origi-
nal ESPI fringe pattern are calculated by a set of particular
partial differential equations (PDEs). Then the skeletons of
a fringe pattern are extracted by analyzing the topological
structure of GVFs.10 As far as we know, there have been
three kinds of governing PDEs especially proposed for
calculating GVFs of ESPI fringe patterns. The coupled non-
linear governing PDEs were first proposed for ESPI fringe
patterns with usual uniform density.10 The oriented couple
PDEs for high-density fringe were proposed.11 The aniso-
tropic PDEs were also proposed for uniform density.12

Recently, Tang et al.13 constructed the new GVFs based on
variational image decomposition (VID) for skeletonization
of ESPI fringe patterns with variable density.

When ESPI systems are used in dynamic measurements,
large numbers of fringe patterns are usually recorded. Using
all of the previous fringe skeletonization methods, one has to
process the fringe patterns frame by frame, which is incon-
venient and time-consuming. Therefore, it would be highly
expected to find an intelligent method, which can extract
the fringe skeletons in a simple and efficient way.

Recently, artificial intelligence (AI) has seen an explosion
of interest and is being successfully applied across an extra-
ordinary range of problem domains. AI enables computer
processes to do work that only humans could do in the past.14

Deep learning is the foundation of AI. In the past few years,
many network architectures based on deep learning have
been developed. U-Net is one of the advanced convolutional
neural networks (CNN) in deep learning. Ronneberger
et al.15 first proposed the U-Net architecture network and
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applied it to the semantic segmentation on biomedical
images. Since then, U-Net CNN has emerged as one of
the most prominent methods for image processing problems
in various domains, including medical image computing16–23

and computer vision.24,25

In recent years, machine learning has been introduced
into the optical fringe analysis domain. Sawaf and Groves26

employed a neural network based on machine learning
to identify phase discontinuities in the presence of random
noise. Cai et al.27 used extra filters and multilayer neural
network to identify different noise types and levels of inter-
ference fringes. Anantrasirichai et al.28 applied an Alexnet
CNN to classify interferometric fringes in InSAR data.

Based on deep learning, it is possible to construct an intel-
ligent network that can conveniently process large numbers
of fringe patterns without frame by frame. In this paper,
we propose an intelligent method to achieve fully automated
extraction of the fringe skeletons in dynamic ESPI based on
U-Net CNN. In the proposed method, the network is first
trained by the samples. The samples consist of the noisy
ESPI fringe patterns and the corresponding skeleton images.
After training, the other multiframe ESPI fringe patterns are
fed to the trained network simultaneously, the corresponding
skeleton image can be obtained in batches. Using our
method, it is not necessary to process fringe patterns frame
by frame. Our method is especially suitable for multiframe
fringe pattern processing.

The paper is organized as follows. In Sec. 2, we describe
the proposed method in detail. Some experimental results are
demonstrated in Sec. 3. Finally, Sec. 4 concludes this paper.

2 Our Proposed Method

2.1 Architecture of U-Net Network Used in Our
Method

Our network architecture, which is based on the U-Net CNN,
consists of a decomposition path (encoder) and a recon-
struction path (decoder) as shown in Fig. 1. The advantage
of this architecture is that the deeper features of an image
can be obtained by the decomposition path and the recon-
struction path gradually recovers the image. The decompo-
sition path has four convolutional blocks, which increase the

number of feature maps from 1 to 512. Every block has two
convolutional layers with the filter sizes of 3 × 3 pixels and
the convolution stride is fixed to 1 pixel. Every convolutional
layer is equipped with the rectified linear unit (ReLU), which
is used to resolve the vanishing gradient problem. After
every block in the decomposition path, a 2 × 2 pixels max
pooling with stride 2 is used to reduce the dimensionality,
so the size of the feature maps decreases from 512 × 512 to
64 × 64. In the reconstruction path, every block starts with a
3 × 3 up-convolution with stride 2. After the up-convolution
step, the size of the feature maps is increased, but the number
of the feature maps is halved. Then a merge operation is
performed by concatenating the feature maps into the corre-
spondingly feature maps that from the decomposition path.
In the final layer, a 1 × 1 convolution is used to reduce the
number of the feature maps to 2. Different from the original
U-Net architecture, we use zero padding so that the output
dimension does not decrease after each convolution. As a
result, the final output of the U-Net network produces a
pixel-wise probability map. In order to reduce over-fitting,
there is a dropout layer after each convolutional layer in the
network. The dropout is to randomly drop units (along with
their connections) from the neural network during training.
The dropout layer makes the network independent of some
local features and prevents the parameters over-fitting. Using
dropout, the generalization performance and robustness of
the network are improved.

2.2 Training Process of Our Method

The training process can be divided into two parts, the for-
ward propagation and the backpropagation. The flowchart of
the training process is shown in Fig. 2.

In the forward propagation, an input ESPI image is fed
to the U-Net network. In the network, we let symbols Wl

and Bl be the weight parameters and deviation parameters
of the l’th conventional layer. The parameters can reflect
the relationship between the input ESPI fringe pattern and
the output skeleton image. The training network actually
converts into a process of finding the optimal parameters.

The problem of the training process can be formulated as
a per-pixel classification problem. For an original input ESPI
fringe image I ¼ fÎi; i ¼ 1; : : : ; Zg, where Îi is the pixel

Fig. 1 Structure of the proposed deep convolutional network for fringe skeleton detection and
extraction.
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in the image and Z is the number of pixels in the image.
Our purpose is to predict the skeleton image S ¼ fŜi; i ¼
1; : : : ; Zg of the input fringe image by the trained network.
The pixel Ŝi ∈ f0;1g denotes the predicted label for each
pixel Îi, which means that if the pixel Îi is predicted as a
skeleton pixel, the pixel Ŝi ¼ 1; otherwise Ŝi ¼ 0.

In the forward propagation, the input image I will finally
convert into a feature vector with two channels after all of
the l convolutional layers. The feature vector of the pixel Îi
can be expressed as

EQ-TARGET;temp:intralink-;e001;63;418Hl
i ¼ ReLUðWl ⊗ Hl−1

i þ BlÞ; (1)

where ⊗ is the convolutional operator, Hl−1
i is the output

feature map of ðl − 1Þ’th convolutional layer. ReLU is the
rectified linear unit.

The output feature vectors Ifm of I can be expressed as
Ifm ¼ ðHl

i; i ¼ 1; : : : ; ZÞ. Then a softmax function is used to
determine whether the pixel Îi belongs to the skeleton pixel
or the nonskeleton pixel. The softmax function is defined as

EQ-TARGET;temp:intralink-;e002;63;309pcðÎiÞ ¼
eIfmP
2
c¼1 e

Ifm
; (2)

where pcðÎiÞ is a probability value that the pixel Îi belongs to
category c. In our case, the pixel only has two possibilities,
so c ¼ 1 or 2. Using softmax function, the output results are
a series of probability values.

Then a loss function is used to quantify the difference be-
tween the probability values obtained by the forward propa-
gation and the truth values. Here we use the cross entropy
loss function, which can be expressed as

EQ-TARGET;temp:intralink-;e003;63;177loss ¼ 1

m

Xm
i¼1

X2
c¼1

yi log pcðÎiÞ; (3)

where yi is a 1 × 2 vector, which denotes the truth category
of the pixel Îi. yi ¼ 0 or 1 and the judgment is depended on
the corresponding skeleton pixel Ŝi.

In the backpropagation, by minimization of the cross
entropy loss function, the optimal parameters can be finally
obtained

EQ-TARGET;temp:intralink-;e004;326;536ðWl; BlÞ ¼ arg minðlossÞ: (4)

To solve Eq. (4), the stochastic gradient descent method29

is used. When the parameters of the network are determined,
the training process is finished.

2.3 Prediction Process of Our Method

In the prediction process, the testing images are fed to the
network. Each pixel of the testing images will be determined
whether it belongs to the skeleton pixel or not by the trained
network. Finally, the skeleton images can be obtained.

3 Simulated and Experimental Results
In this section, one computer-simulated and one real-
dynamic ESPI measurement experiments are used to evalu-
ate the performance of our method.

The implementation of our method is based on python 2.7
under the same conditions of a personal computer equipped
with TensorFlow framework with NVIDIAQuadro K 2200 as
GPU, Xeon E5-1650 Dual CPU at 3.5 GHz and 16 GB RAM
memory. The momentum of stochastic gradient descent
method is 0.9. The initial learning rate is 0.001, and it will
reduce by a factor of 2 if the validation loss does not improve
for at least six epochs.

3.1 Simulated Dynamic ESPI Measurement

3.1.1 Training samples

We simulate a dynamic ESPI experiment and obtain 1000
noisy ESPI fringe patterns. The phase values of the 1000
ESPI fringe patterns are generated by the following
equations:
EQ-TARGET;temp:intralink-;e005;326;179

ψ ij ¼ α ×
�
exp

�
−
ð2i −mÞ2 þ �

2j − 11n
8

�
2

50000

��

þ exp

�
−
ð2i −mÞ2 þ �

2j − n
2

�
2

35000

�

þ10 ×
��

6i − 3m
2m

	
2

þ
�
3j − n

n

	
2
�
; (5)
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Fig. 2 Flowchart of the training process.
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where ψ ij is the phase, m, n are the image sizes, here
m ¼ 512, n ¼ 512, and α is a parameter and α ∈ ½0.01;100�.

α is a parameter for the simulated phase. By changing the
value of α, we can obtain a series of simulated ESPI fringe
patterns. We simulate 1000 images with a range of α from
0.01 to 100. The value of α increases by 0.0999 each time.

We pick 21 original ESPI fringe patterns and the corre-
sponding skeleton images as the training samples from the
whole dynamic process. The other images are used for the
test. The 21 simulated fringe patterns are picked from
the 1000 fringe patterns evenly. The values of α in the 21
ESPI fringe patterns, respectively, are 0.01, 5.0095, 10.009,
15.0085, 20.008, 25.0075. . . . The interval of α is 4.9995.

To obtain the skeleton images of the training samples, we
have to apply the GVF method based on VID13 21 times to
the 21 ESPI fringe patterns.

The details for the GVF method based on VID can be
found in the published literatures in Ref. 13. Here we give
a brief review of this method.

A skeleton extraction method is proposed based on the
GVFs and VID.13 The GVFs of a whole image are the sum
of the decomposed GVFs of low-density regions and high-
density regions based on VID. Each part of the decomposed
GVFs is described by a suitable function space. The skele-
tons of ESPI fringe patterns with variable density can be
obtained based on the topological analysis of the GVFs of
a whole image.

The GVF is defined by

EQ-TARGET;temp:intralink-;e006;63;444Vðx; yÞ ¼ ½uðx; yÞ; vðx; yÞ�; (6)

where uðx; yÞ and vðx; yÞ are the two components of
the GVF.

The GVFs Vðx; yÞ of the ESPI fringe patterns with
variable density are decomposed into three components

EQ-TARGET;temp:intralink-;e007;326;525Vðx; yÞ ¼ Vl þ Vh þ Vn; (7)

where Vlðul; vlÞ, Vhðuh; vhÞ, and Vnðun; vnÞ are the decom-
posed GVFs in low-density regions, high-density regions,
and noise regions, respectively.

The GVFs in low-density regions Vlðul; vlÞ, high-density
regions Vhðuh; vhÞ, and noise regions Vnðun; vnÞ are de-
scribed in Beppo-Levi space, the high-density regions in
Hilbert space, and the noise regions in Curvelet space,
respectively.

In the VID method, the GVFs in low-density regions
Vlðul; vlÞ, high-density regions Vhðuh; vhÞ, and noise

Fig. 3 Parts of the training samples and the corresponding skeleton images used for training the network:
(a)–(c) initial images and (d)–(f) skeleton images of (a)–(c), respectively.

Fig. 4 Example of the input training sample patches and the
corresponding skeleton image patches for training the network:
(a) 32 × 32 pixel random portions of computer-generated noisy
ESPI fringe and (b) the corresponding skeletons of (a).
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regions Vnðun; vnÞ can be obtained by solving the following
minimization problem:
EQ-TARGET;temp:intralink-;e008;63;730

ðVl; Vh; VnÞ ¼ arg min
Ṽl;Ṽh;Ṽn

1

2
kV − Ṽl − Ṽh − Ṽnk2L2

þ λkVlk2BL þ μkVhk2ξ þ σkVnk2Curvelet; (8)

where λ, μ, and σ are three positive reals to balance each term
and 1

2
kV − Ṽl − Ṽh − Ṽnk2L2 is a fidelity term that takes into

account the presence of noise in the image.

The GVFs of whole image can be calculated by adding
desired results of Vl with Vh

EQ-TARGET;temp:intralink-;e009;326;730u ¼ ul þ uh; v ¼ vl þ vh: (9)

After calculating the GVFs, the skeletons can be extracted
based on the topological analysis of GVFs. For instance,
the GVFs are first normalized, then the skeleton image of
black fringes fbfsðx; yÞ can be obtained by

Fig. 5 Parts of the testing samples: (a)–(h) the initial ESPI
images.

Fig. 6 The skeleton extraction results by the proposed method:
(a)–(h) the skeleton images of Figs. 5(a)–5(h), respectively.
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EQ-TARGET;temp:intralink-;e010;63;752fbfsðx; yÞ ¼
�
1 skeleton pixel if Sx;y > T; JMx;y > 0

0 nonskeleton pixel otherwise;

(10)

where T is a preset threshold. Sx;y and JMx;y can be
expressed as

EQ-TARGET;temp:intralink-;e011;63;681Sx;y ¼


∂ uNxy

∂x

�
2 þ



∂ vNxy

∂y

�
2

max
h


∂ uNxy
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�
2 þ



∂ vNxy

∂y

�
2
i ; (11)
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Figure 3 shows some noisy ESPI fringe patterns and the
corresponding skeleton images, which are used as the train-
ing samples.

As we all know, the precision of the prediction produced
by the CNN can be improved by increasing the number of
training examples. In our case, it is not easy to obtain anno-
tated ESPI skeleton images. In order to tackle the deficiency
of the training samples, we construct the training samples
for patch-based pixel-wise segmentation and sampled over-
lapped patches.

In our training dataset, each noisy ESPI fringe pattern and
each skeleton image are both cropped into 4800 patches,
respectively. The size of each patch is 32 × 32 pixels. In
order to maintain AC, the patches extracted from the training
samples are overlapped and the total number of patches

sampled from the training dataset is 100,800. This effectively
reduces GPU memory usage and takes advantage of efficient
batch processing.

Figure 4 shows an example of the ESPI fringe patterns
patches and the corresponding skeleton patches. Then all
of the patches are as input fed to the U-Net CNN. After
200 iterations, the network training process is completed.

3.1.2 Testing results

The other 979 ESPI fringe patterns as the testing images are
fed to the trained network. In each test, 20 noisy ESPI fringe
patterns are simultaneously fed to the network. The corre-
sponding skeleton images can be obtained simultaneously.
Here we provide eight testing images shown in Fig. 5 and
the corresponding skeleton extraction results by our method
are shown in Fig. 6.

Subsequently, we apply this trained network to a group
of difform ESPI fringe patterns. The formulas of phase in
these images are different from those of phase in Figs. 3
and 4. The shapes of the testing images are different from
those of the training samples. The skeleton extraction results
are still reliable. The testing ESPI fringe patterns and the
corresponding skeleton images are shown in Fig. 7.

AC is an extensively used index for the measure of the
ratio of pixels that are precisely classified across all pixels.
The AC30 is given by the following equation:

EQ-TARGET;temp:intralink-;e013;326;461AC ¼ TPþ TN

TPþ TNþ FPþ FN
; (13)

where TP is the number of classifications where pixels are
classified into skeleton pixels correctly and TN is the number
of classifications where pixels are identified as nonskeleton
pixels correctly in the outputs of the network. FP is the num-
ber of classifications where pixels are misclassified into

Fig. 7 Three difform ESPI fringe images and the corresponding skeleton results: (a)–(c) initial ESPI
images with different density and (d)–(f) skeleton images of (a)–(c), respectively.
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skeleton pixels in the outputs of the network. FN is the
number of classifications where pixels are misclassified
into nonskeleton pixels in the outputs of the network.

As shown in Figs. 3 and 5, the original ESPI fringe
patterns are obviously very noisy and of limited visibility.
Using the previous methods, it is necessary to process the
1000 ESPI fringe patterns for one thousand times. However,
using our method, we only need to process few numbers of
the training samples. Once the network is trained well, the

skeleton images can be obtained in batches. In our trained
network, we can simultaneously process 20 noisy ESPI
fringe patterns and it takes just 40 s to obtain 20 skeleton
images. As can be seen in Fig. 6, the skeleton extraction
results by the trained network are desired.

In addition, as shown in Fig. 7, we are surprised to find
that even though the shapes of the testing images are slightly
different from the training samples, our method also gives
desired results. In the simulation test, the AC of the trained
network is 0.9727.

3.2 Experimental Dynamic ESPI Measurement

In this part, we apply our network to a real dynamic meas-
urement of a printed circuit board with a chip under normal
working conditions by ESPI.

Figures 8(a) and 8(b) show the two experimentally
obtained original ESPI fringe images with sizes of 390 ×
390 pixels, which depict the out-of-plane displacements of
the board at 1.80 and 2.04 s. As can be seen in Figs. 8(a) and
8(b), the quality of the two experimentally obtained ESPI
fringe patterns is very poor because of high noise and low
contrast. It takes a lot of effort with specialized technology
to obtain the skeleton images. Extracting skeleton from this
type of ESPI image is particularly challenging using the
previously existing methods.

For the experimentally obtained ESPI fringe patterns, it is
very difficult to extract the perfect skeletons. We laboriously
obtain six fringe skeleton images of the original noisy ESPI
fringe images using the GVF methods based on VID.13 The
six training samples (six experimentally obtained ESPI
fringe patterns and the corresponding skeleton images) are
not enough to train the U-Net CNN. Compared with the
experimentally obtained ESPI fringe patterns, it is relatively
easy to obtain the skeletons of the computer-simulated ESPI
fringe patterns. Therefore, we add 10 simulated ESPI fringe
patterns to the training samples. The criteria are that: first, the
sizes of the simulated ESPI fringe patterns should be same as
those of the experimentally obtained ESPI fringe patterns;
second, the contrasts and the shapes of the simulated ESPI
fringe patterns should be similar to those of the testing
images as much as possible. The corresponding skeleton
images of the 10 simulated ESPI fringe patterns are obtained
using the GVF methods based on VID. The training samples
in the test are composed of six experimentally obtained
ESPI fringe patterns and 10 simulated ESPI fringe patterns.

Fig. 8 Parts of the training samples for the experimental dynamic ESPI
measurement: (a) and (b) two simulated ESPI fringe images with low
quality; (c) and (d) two real ESPI fringe images with low quality; and
(e)–(h) the corresponding skeleton images of (a)–(d), respectively.

Fig. 9 Example of the input training sample patches and the
corresponding skeleton image patches for training the network:
(a) 32 × 32 pixel random portions of noisy ESPI fringe and (b) the
corresponding skeletons of (a).
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This strategy can be extended to other real-dynamic ESPI
measurements.

Each image used in the training process is also cropped
into 4800 patches with size of 32 × 32 pixels. The total num-
ber of patches sampled from the training dataset is 76,800.
Figure 8 shows the parts of the training samples. Then all of
the patches are as input fed to the U-Net CNN, and after 150
iterations, the training process is finished. The sizes of the
patch will affect the experimental results. In order to ensure

the number of positive samples, the sizes of the patch should
be larger than the width of the fringes. Figure 9 shows an
example of the ESPI fringe patterns patches and the corre-
sponding skeleton patches. We apply our trained network to
the other real ESPI fringe patterns. Parts of the testing results
of the real ESPI fringe patterns are shown in Fig. 10. The AC
of the trained network in the test is 0.9514.

For better illustration of our method, we give a compari-
son of our method with the GVFs method based on VID.13

Fig. 10 Skeleton extraction results on the experimental obtained ESPI fringe patterns: (a)–(c) three real
ESPI fringe images with low quality; (d)–(f) the corresponding skeleton images of (a)–(c) by GVFs-VID,
respectively; (g)–(i) the corresponding skeleton images of (a)–(c) by our method, respectively; (j)–(l) the
superimposition of (g)–(i) onto enhanced (a)–(c).
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Figures 10(a)–10(c) show the experimentally obtained origi-
nal ESPI fringe patterns; Figs. 10(d)–10(f) show the skeleton
images, which are obtained by the GVFs method based on
VID; and Figs. 10(g)–10(i) show the skeleton images, which
are obtained by our method. In addition, we enhance the con-
trast of Fig. 10(a) and superimpose Fig. 10(g) on Fig. 10(a),
shown in Fig. 10(j). The similar results of Figs. 10(h) and
10(i) are shown in Figs. 10(k) and 10(l), respectively.

From Figs. 8 and 10, we can observe that the qualities of
initial ESPI images are considerably low, because of variable
density, high noise, and low contrast. Extracting the skeletons
in this case is very challenging. As shown in Figs. 10(d)–10(f),
the skeletons obtained by the GVFs method based on VID are
satisfactory. But the good results of the GVFs method based
on VID are relative to the parameters. The parameters need
to be adjusted carefully for each image. By employing our
trained network, we can obtain the skeleton images directly.

4 Conclusion
We propose an intelligent skeleton extraction method based
on deep learning. Our method has three main advantages:
(1) our trained network can obtain the skeleton images of
the multiframe noisy ESPI fringe patterns simultaneously,
which is very efficient. With the development of computer
hardware, we would expect that we can obtain more numbers
of skeleton images at one time; (2) our trained network can
give desired skeleton results for the noisy ESPI fringe pat-
terns, and the shapes can be slightly different from those of
the training samples. (3) In the dynamic ESPI measurement,
if the numbers of the training samples are few, one can use
some simulated ESPI images as the training samples.

Future areas of further development include optimizing
the numbers of the training samples and improving the net-
work structure. This work is currently underway. With the
development of AI, we would expect that an intelligent ESPI
system can be used to predict the skeleton images for all
kinds of fringe patterns, which is quite a step forward in
optical measurement.
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