
Low-light image enhancement based on deep learning:
a survey

Yong Wang,a,* Wenjie Xie ,a and Hongqi Liub

aJilin University, College of Communication Engineering, Changchun, China
bThe Sixth Academy of China Aerospace Science and Industry Corporation, The 602st Institute,

Hohhot, China

Abstract. Images taken under low light or dim backlight conditions usually have insufficient
brightness, low contrast, and poor visual quality of the image, which leads to increased difficulty
in computer vision and human recognition of images. Therefore, low illumination enhancement
is very important in computer vision applications. We mainly provide an overview of existing
deep learning enhancement algorithms in the low-light field. First, a brief overview of the tradi-
tional enhancement algorithms used in early low-light images is given. Then, according to the
neural network structure used in deep learning and its learning algorithm, the enhancement meth-
ods are introduced. In addition, the datasets and common performance indicators used in the
deep learning enhancement technology are introduced. Finally, the problems and future develop-
ment of the deep learning enhancement method for low-light images are described.©2022 Society
of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.61.4.040901]
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1 Introduction

In daily life, some fields require high-quality and clear images, such as biomedicine, aerospace,
transportation, military, etc. But sometimes, the shooting will be affected by the environment or
the equipment used, resulting in the inability to capture clear and high-quality images. For exam-
ple, when in a backlight, night, or dim indoor and other special environment, even the images
taken with standard equipment will appear blurry and have low brightness, loss of detail, high
noise, poor visual quality, etc. Therefore, for low-light and dim images, image enhancement is
very important. In the early days, low-light images were usually enhanced with traditional
enhancement algorithms. However, with the wide application of deep learning in various fields,
many deep learning enhancement techniques have been proposed for low-light images.

The main contributions of this article are as follows:

• The deep learning enhancement methods for low-light images are summarized, and the
deep learning enhancement methods are respectively introduced according to the neural
network structure and learning algorithm used in deep learning.

• A brief overview of the datasets and common evaluation indicators used in the deep learn-
ing enhancement method for low-light images.

The other parts of the article are Sec. 2 briefly outlines the traditional enhancement algo-
rithms commonly used in low-light images. Sections 3 and 4 introduce the deep learning
enhancement methods for low-light images. Sections 5 and 6 introduce the datasets and com-
monly used evaluation indicators in the deep learning enhancement methods. Section 6.1.4
briefly introduces other applications of deep learning in computer vision. The last section
describes the problems and development of deep learning enhancement methods for low-light
images.
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2 Traditional Enhancement Algorithms for Low-Light Images

For images with insufficient illumination and low contrast, many enhancement algorithms have
emerged, among which the more widely used traditional image enhancement algorithms are
histogram equalization (HE) algorithm, algorithm based on physical models (atmospheric scat-
tering model or Retinex model). In this section, the traditional enhancement algorithm is briefly
introduced.

2.1 Histogram Equalization Algorithm

When enhancing images with insufficient illumination and low contrast, the simpler method is
the HE algorithm,1 which has a simple principle and a faster processing speed. The HE algorithm
is a processing method of enhancing the image through the image gray histogram. When the
grayscale histogram of the image is concentrated in a grayscale interval, the concentrated gray-
scale interval is stretched to the entire grayscale interval of the histogram through transformation,
the grayscale range of the image is expanded and distributed uniformly, and the contrast is
improved. However, after processing the image through HE, there will be problems such as the
loss of detailed information due to gray level merging. In response to the problems in the HE
algorithm, a series of improved algorithms have appeared one after another, such as adaptive
HE,2 double histogram equalization,3 maximum brightness double histogram equalization,4 etc.

2.2 Algorithm Based on Physical Model

The most commonly used low-light enhancement algorithms based on physical models are the
atmospheric scattering model5,6 and the Retinex model.7–13 Dong et al.5 found through experi-
ments that the inversion image of low-light image is very similar to the foggy image, so they
proposed an algorithm to enhance the low-illuminance image using the atmospheric scattering
model. First, invert the low-light image, then apply the defogging algorithm proposed by He
et al.,14 and finally the processed image is inverted to obtain an enhanced image. Land
et al.15 proposed a Retinex theory based on the human visual system. The basic assumption
of the theoretical model is that the illumination component I and the reflectivity component
R work together to form the original image S seen by the human eye. The principle of the
enhancement algorithm based on Retinex theory is to obtain the illumination component I
by decomposing the original image S, then remove the influence of I, and finally get the
enhanced result.

2.3 Retinex Model

Land et al.16 proposed a color constancy theory based on the brightness and color perception of
the human visual system in 1963, namely the Retinex theory. Retinex is a combination of the
words retina and cortex. Through experiments, Land et al. found that the intensity of light irra-
diated on the object does not determine the color of the object but is determined by the nature of
the object’s reflection. Therefore, the unevenness of the illumination will not affect the color of
the object seen by the human eye, which is the color constancy. After proposing the Retinex
theory, a variety of Retinex algorithms have been improved and developed successively: single-
scale Retinex algorithm,17 multiscale Retinex algorithm,18 etc. SSR and MSR are introduced
below.

2.3.1 Single-scale Retinex

The light component (incident light) I and the reflected component R work together to form the
image observed by the human eye. The incident light shines on the object, and then the reflected
light is reflected by the object and enters the human eye to form the image seen by the human
eye. The equation is

EQ-TARGET;temp:intralink-;e001;116;89Sðx; yÞ ¼ Rðx; yÞ • Iðx; yÞ: (1)
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The light component is Iðx; yÞ, the reflection property of the object is Rðx; yÞ, and the image
seen by the human eye is Sðx; yÞ.

The principle of the enhancement algorithm of Retinex theory is to decompose the image S
observed by the human eye to obtain the illumination component I, and then remove or reduce
the influence of I, and the obtained reflection component R is the enhanced result. Therefore,
to decompose and obtain the reflection component Rðx; yÞ, it is necessary to take the logarithm
of both sides of Eq. (1) and change the product relationship into an addition and subtraction
relationship, that is,

EQ-TARGET;temp:intralink-;e002;116;640 logðSðx; yÞÞ ¼ logðRðx; yÞÞ þ logðIðx; yÞÞ: (2)

In the Retinex theory, the illumination component changes slowly and belongs to the low
frequency component, and the reflection component belongs to the high frequency component.
It is calculated by approximate estimation when solving the illumination component Iðx; yÞ,
as shown in Eq. (3):

EQ-TARGET;temp:intralink-;e003;116;560 logðIðx; yÞÞ ¼ log½Fðx; yÞ � Sðx; yÞ�; (3)

EQ-TARGET;temp:intralink-;e004;116;517 logðRðx; yÞÞ ¼ logðSðx; yÞÞ − log½Fðx; yÞ � Sðx; yÞ�; (4)

where Fðx; yÞ is the convolution kernel and c is the Gauss surround scale:

EQ-TARGET;temp:intralink-;e005;116;495Fðx; yÞ ¼ K exp

�
−ðx2 þ y2Þ

c2

�
: (5)

2.3.2 Multiscale Retinex

In response to the problems in SSR, Jobson et al.18 proposed a multiscale Retinex algorithm on
the basis of SSR. The equation is as shown:

EQ-TARGET;temp:intralink-;e006;116;387Rðx; yÞ ¼
XN
n¼1

wnflogðSðx; yÞÞ − log½Fnðx; yÞ � Sðx; yÞ�g; (6)

where k is the number of the convolution kernel. When the number K ¼ 1, MSR is SSR.

3 Deep Learning Enhancement Method for Low-Light Images

In recent years, artificial intelligence technology has developed more and more rapidly, and its
application in various fields have become more extensive, such as smart home, voice recognition,
image recognition, autonomous driving, and VR. Most of the applications of artificial intelli-
gence in these fields use machine learning technology, and deep learning is also widely used as
a subcategory of machine learning. Among them, machine learning usually requires manual
extraction of features, whereas deep learning mainly uses multilayer nonlinear processing units
for feature extraction and conversion.

Hinton and Salakhutdinov19 proposed a deep neural network on the basis of traditional neural
networks. Krizhevsky et al.20 proposed AlexNet, which made deep learning arouse widespread
attention and was formally applied to industry. The concept of deep learning is derived from
artificial neural networks, whose basic unit is artificial neurons. A deep neural network is a
multilayer neural network as its name implies. The deep neural network is composed of an input
layer, two or more hidden layers and an output layer. Each layer is composed of several neurons,
and the input of each layer is the output of the previous layer.

As shown in Fig. 1. The hidden layer is the layer between the input layer and the output layer.
On this basis, various deep learning enhancement methods have been developed for low-light

images. These methods are based on four network types: autoencoder (AE), convolutional neural
network (CNN), recurrent neural network (RNN), and generative adversarial network (GAN).
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However, there are some problems in the application of neural networks. Therefore, before
formally introducing the deep learning enhancement method for low-light images, some basic
concepts and existing problems of deep learning are briefly introduced.

3.1 Preliminaries on Deep Learning

3.1.1 Adversarial perturbations and adversarial examples

Adversarial perturbation is a small and imperceptible perturbation in the data sample, which
is generally divided into two types: universal perturbation and image/model-dependent
perturbation.21 The universal perturbation22 is not for a specific image, but for any image, that
is, the perturbation has nothing to do with the image. The image/model dependent perturbation
refers to the perturbation associated with the image/model, that is, the perturbation will be differ-
ent for different images/models. Szegedy et al.23 defined the samples subjected to small and
imperceptible disturbances in these data sets as adversarial samples, and the input of these sam-
ples would lead to output errors of the model with high probability. Therefore, the vulnerability
of network models to adversarial samples is one of the major challenges of deep learning. In
response to this problem, a method is proposed to improve the anti-interference ability of the
model using adversarial samples in the network training process, namely adversarial training.
The addition of such adversarial samples can not only effectively avoid the potential security
problems of deep learning in practical applications but also help improve the robustness and
accuracy of the network model.

3.1.2 Stability/robustness

Robustness refers to the ability of the network to resist interference and maintain a certain per-
formance in the presence of interference, that is, when the input information or the network is
disturbed, the network model can still keep the output stable. Because of the excellent perfor-
mance of deep learning, deep networks are widely used in various fields, but these networks are
easily affected by some minor disturbances, which lead to unstable network output and damage
the reliability and robustness of network models. In response to this problem, Giryes et al.24

studied the performance of DNNs with random weights. Malladi and Sharapov25 proposed
an improved weight normalization method. Zheng et al.26 proposed a training method that adds
a stability term to the objective function, which makes the network more robust to small per-
turbations in the input and more stable output.

Fig. 1 Deep neural network structure.
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3.1.3 Noisy labels

The training data used in the network training process will inevitably be mislabeled. These mis-
labeled labels are called noisy labels and make the model performance suffer. Label noise is
generally caused by the low quality of the obtained data labeling or mislabeling during the label-
ing process. When using a dataset with noisy labels for training, the network model will overfit to
the noisy samples, resulting in poor generalization performance. Therefore, eliminating the
adverse effects of label noise on the network is currently another research problem in deep learn-
ing. In response to this problem, Algan and Ulusoy27 introduced the processing methods for
noise labels in deep learning and divided them into noise-based models and noise-free models.
Thekumparampil et al.28 proposed two conditional GAN architectures, depending on whether
the distribution of noise is known or not, making it more robust to noise labels in the train-
ing data.

3.1.4 Interpretability/understanding

Interpretability is understanding the structure of a system in a human-understandable term
(knowledge of the relevant domain, human cognition, etc.). With the widespread application
of deep learning in various fields, researchers have begun to pay more and more attention to
how models accomplish tasks. However, because the network model is equivalent to a black
box, the internal working mechanism of the network is not clear. Therefore, in the medical,
military, financial, and other fields, allowing users to understand the decision-making process
of the model in more detail will make users trust the product. Therefore, studying the interpret-
ability of network models is of great significance for deep learning. For example, Zhang et al.29

expounded the importance of interpretability in terms of reliability and morality and proposed
a new interpretability classification method.

3.1.5 Provability

The training process of the neural network is a process of solving optimization. With the suc-
cessful application of deep learning in various fields, the structure of neural network becomes
more and more complex, and the ability to fit the model becomes more and more powerful. But
this can lead to overfitting of the model, and it is also more difficult to optimize the model.
Therefore, to avoid the phenomenon of neural network overfitting, methods such as adding data
and adding regularization terms can be used. Vidal et al.30 provided mathematical proofs for
properties, such as global optimality of network models from three aspects: deep learning archi-
tecture, regularization techniques, and optimization algorithms. Yun et al.31 studied global opti-
mality in deep learning.

3.2 Autoencoder

Hinton and Salakhutdinov19 proposed AE and some concepts, which made AE receive extensive
attention.

AE is an unsupervised learning algorithm. The autoencoder is a data compression algorithm,
in which the encoder and the decoder together constitute the autoencoder, that is, it realizes the
dimensionality reduction or feature learning of the data through the encoder and the decoder. The
input data are compressed by the encoder into low-dimensional variables, and then the low-
dimensional variables are reconstructed by the decoder to become the original dimensions of
the input, as shown in Fig. 2. The AE uses the input data as supervision through optimization
methods such as back propagation algorithm and guides the network to obtain the reconstructed
output. When designing an autoencoder, the input and output are not designed to be completely
equal, so some constraints are usually added to the autoencoder to make the input and the
reconstructed output as equal as possible. Therefore, after adding some constraints, some new
encoders are obtained: denoising autoencoder,32 sparse autoencoder,33 stacked autoencoder,
variational autoencoder,34 and contractive autoencoder, etc.
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Aiming at the problem of amplifying noise during the enhancement process, Lore et al.35

proposed an enhancement method based on stacked sparse denoising autoencoder (SSDA),36

called the LLNet, which is the first method to apply deep learning to low-light images. Two
networks LLNet and S-LLNet are proposed in this method. LLNet is an image with low bright-
ness and noise, and then the SSDA1 module is used for contrast enhancement and denoising,
and finally an enhanced and denoised image is obtained. S-LLNet contains two independent
modules: the SSDA1 module for contrast enhancement and the SSDA2 module for denoising.
The enhanced and denoised images are obtained by inputting low-brightness and noisy images
into SSDA1 module for contrast enhancement and SSDA2 module for denoising.

Park et al.37 proposed a dual autoencoder network based on Retinex theory. The network
consists of brightness estimation and reflection component estimation. First, the smoothed illu-
mination component estimation is performed by the stacked autoencoder, and then the initial
reflectance is obtained according to the Retinex theory. Then, the initial reflectance is denoised
by the convolutional autoencoder, and finally the HSV channel is changed into RGB channel to
obtain the final enhancement result.

3.3 Convolutional Neural Network

CNN is a feedforward neural network that includes convolution calculations and is one of the
most commonly used networks in deep learning methods. The structure of the general CNN is
shown in Fig. 3. The convolutional layer is to learn the features of the input data through the
convolution kernel matrix. The activation function is a nonlinear mapping of the output of the
convolutional layer. The pooling layer is mainly used for feature dimensionality reduction and
data compression.

Fukushima38 proposed a weight sharing convolutional neural layer and neocognitron based
on the receptive field theory. LeCun et al.39 proposed a CNN combining convolutional neural
layers and backpropagation. CNN evolved from the multilayer perceptron. Its particularity
mainly lies in the two aspects of weight sharing and local connection. Weight sharing reduces
the weight parameters of CNN. Local connection means that each neuron only connects to some

Fig. 3 CNN structure.

Fig. 2 AE structure.
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neurons in the previous layer and does not need to be connected to all neurons. This reduces the
number of network weights and reduces model complexity.

Tao et al.40 proposed an enhancement method based on CNN, called LLCNN. The LLCNN
network structure is composed of two convolutional layers and multiple specially designed
convolutional modules. This special module refers to residual learning41 and inception42 and
proposes a dual-branch and residual learning structure. After inputting the image, the final
enhancement result is obtained through these special modules and the last convolutional layer.

Shen et al.43 proposed an enhanced network MSR-net based on MSR theory, which imitated
the processing process of MSR theory. MSR-net is divided into three processing steps: multi-
scale logarithmic transformation, convolution difference, and color restoration. After inputting
the image, the final enhancement result is obtained through these three processing in turn.

Li et al.44 proposed an enhancement method for illumination estimation based on Retinex
theory, called LightenNet. After inputting the image, the four convolutional layers of the network
are used to achieve feature enhancement, nonlinear mapping, and other operations to obtain the
illumination component, and then the illumination component is enhanced through gamma
correction, and finally the input image is divided by the illumination component according to
Retinex theory to obtain the final enhancement result.

Cai et al.45 proposed a CNN-based SICE method, which is divided into two stages and three
networks. The first stage is to decompose the input image into low frequency information and
high frequency information through weighted least squares filtering, and then the low and high
frequency information are enhanced through the two networks, respectively. The second stage is
to merge the two parts after enhancement, and then enhanced by a CNN network containing a
BN layer (overall enhancement network), and finally the enhancement result is output.

Wei et al.46 proposed a new enhancement method based on Retinex theory, which combines
Retinex theory and deep neural network, called Retinex-Net. The network is divided into two
subnetworks: decom-net and enhance-net. The decomposition network takes the low-light image
and the normal image as input and then obtains the illumination component I and the reflection
component R according to the Retinex theory and Decom-Net. The enhancement network
enhances the decomposed illumination component and uses the BM3D47 denoising algorithm
to denoise the reflected component R and then multiply the enhanced illumination component I
with the denoised R to get the final enhanced result.

Lv et al.48 proposed a new CNN-based enhancement method, namely MELLEN, which con-
sists of a feature extraction module (FEM), enhanced module (EM), and fusion module (FM).
After inputting the image, first extract the features through the FEM, and each output of FEM is
the input of the next layer and corresponding enhancement module, and then the corresponding
input is enhanced by the enhancement module, and finally the output of all EM is multibranch
fused through the FM to obtain the final enhanced result. Later, Lv et al.49 proposed an attention-
guided enhanced multibranch CNN based on the multibranch structure. The network consists
of four modules: attention-net, noise-net, enhancement-net, and reinforce-net. Among them,
attention-net is the structure of U-Net,50 and its output ue-attention map (underexposed) guides
image enhancement and Noise-Net denoising. The structure of enhancement-net is similar to
MELLEN. The low-light image first passes through FEM, and then the result obtained is sent
to EM together with ue-attention map and noise-map for enhancement, and then the different
enhancement results are connected, and finally output the enhanced image through FM.
Reinforce-Net further enhances the contrast of the Enhancement-Net output through dilated con-
volution and obtains the final enhancement result.

Chen et al.51 proposed an enhancement method (SID) based on end-to-end training of FCN,
which directly processes raw data. The image was taken by two cameras, the sensors of which
were Bayer and X-Trans. First, the Bayer array is processed into four channels (the input is 6 × 6

X-Trans array are processed into nine channels), then the black level is subtracted and ampli-
fication ratio is multiplied for lighting, then input the processed data into the FCN. Finally, the
sRGB spatial image of original size is obtained by upsampling, which is the final enhancement
result. In addition, Chen et al.52 extended the low-light static video enhancement method based
on the SID method.

Wang et al.53 proposed the GLADNet, which consists of global illumination estimation and
detail reconstruction. First, the input image is downsampled and scaled to a certain resolution so
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that the receptive field is large enough to perceive the global information, and then perform
illumination prediction on the entire image, and finally the image is restored to the original input
size through upsampling. Detail reconstruction is because detailed information will be lost
during image scaling, so the input image is connected with the image after global illumination
estimation, and the output is the final enhancement result.

Jiang et al.54 proposed a refined network LL-RefineNet. It mainly extracts features through
symmetrical convolutional layer structure and then the extracted high-resolution features are
refined through four subnetworks, that is, perform multiscale feature fusion, and finally obtain
high-resolution enhancement result.

Zhang et al.55 proposed the KinD-Net. The design idea of this network is the same as
Retinex-Net. It is still decomposed and enhanced, but on this basis, considering that the reflec-
tion map R is usually degraded under low light conditions, the function of illumination guided
reflectance restoration and flexible mapping of arbitrary lighting operations is proposed. The
network consists of a layer decomposition network, a reflectance recovery network, and a light
adjustment network. The decomposition network decomposes the input image according to
Retinex theory. The reflectance recovery network uses the reflectance R of the normal image
as the ground truth and introduces the decomposed lighting information into the network to
restore the reflectance. The illumination adjustment network: by adjusting the parameters, the
illumination can be flexibly adjusted to obtain the desired enhancement result. Afterward, Zhang
et al. proposed the KinD++ network56 to solve the problems of excessive smoothing in KinD.
In this network, a new module (MSIA) was proposed to alleviate the problems left in KinD.

Wang et al.57 proposed a network (DeepUPE) that enhances underexposed images by esti-
mating the mapping of the input image to the illumination map. The network structure is roughly
the same as the HDR-Net proposed by Gharbi et al.58 First, the input image is downsampled and
local features and global features are extracted through the encoder network, and the local fea-
tures and global features are combined to perform low-resolution illumination prediction, then
through the bilateral grid59 upsampling to get the full-resolution illumination map, and finally
through the Retinex theory to calculate the final enhanced image.

Wang et al.60 proposed an end-to-end enhancement network, which is composed of Retinex
decomposition network (RDNet) and fusion enhancement network (FENet). After inputting the
image, it is decomposed into illumination component and reflection component by RDNet, and
then the decomposed illumination component is preliminarily enhanced by the camera response
function.13 Finally, the input image, the decomposed reflection component, and the preliminary
enhanced illumination component are used as the input of FENet for fusion enhancement, and
the final enhancement result is obtained.

Zhu et al.61 proposed the low-light enhancement method of EEMEFN. The network frame-
work is divided into multiexposure fusion (MEF) and edge enhancement (EE). The MEF stage
first generates multiple exposure images through a given exposure ratio and then fuses the differ-
ent scale information of the generated multiple exposure images through the U-net structure and
the FM, and finally the initial image is generated through the 1 × 1 convolutional layer. EE is
divided into two steps: detection and enhancement. The edge detection network proposed by Liu
et al.62 is used to extract the edge information, and then multiple exposed images, the initial
image, and the obtained edge information are input into the enhancement module to obtain the
final enhance result.

Fan et al.63 combined Retinex theory with semantic information and proposed a semantic
perception low-light enhancement network, which consists of three parts: information extraction,
reflectivity enhancement, and illumination adjustment. Semantic information is extracted
through semantic segmentation, and reflectivity is reconstructed through ReflectNet under the
guidance of semantic information. Then use the restored reflectance and enhancement ratio to
adjust the illumination through RelightNet and finally get the final enhancement result according
to Retinex theory.

Lv et al.64 proposed a lightweight CNN enhancement method. The network consists illumi-
nation-net, fusion-net, and restoration-net. Combining the original image, bright channel, and
invert bright channel as input, first output the underexposure image and overexposure image
through illumination-net, and then input the obtained underexposure image and overexposure
image together with the original image into fusion-net for fusion. Multiply the weight of the
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fusion-net output with the previous image and use it as the input of restoration-net to get the
output of removing noise and artifacts. Finally, the output is added with the input of restoration-
net to obtain the final enhancement result.

Guo et al.65 combined multiple iterative calculations and CNN and proposed a no-reference
low-light image enhancement method Zero-DCE. Inspired by the image editing software “curves
adjustment,” a class of mapping curve from low-light images to enhanced images is designed.
First, a set of best-fit curves (LE-curve) of the input image are estimated through DCE-Net, and
then the curve equation is iteratively transformed to obtain the final enhancement result.

Zhu et al.66 proposed a new network RRDNet. The network has three branch networks,
which separate the input image into illumination component, reflectivity component, and noise
component, and no paired data are required during the training process. First, the decomposed
illumination component is enhanced by gamma transformation, then noise is subtracted from the
input image, divided by the enhanced illumination component to obtain the reflection compo-
nent, and finally get the final enhancement result through Retinex theory.

Wang et al.67 proposed a new CNN structure, namely the deep lightening network (DLN).
The network is mainly composed of lighten back-project (LBP) and feature aggregation (FA)
modules. Among them, LBP iteratively performs the process of brightening and darkening to
learn the residual, and the FA module is to fuse the features of different scales of the image. First,
perform preliminary feature extraction on the input image X, and then the residual is obtained
through the LBP module and the FA module, and the final residual is multiplied by the parameter
γ and added to the original image to obtain the final enhancement result Y.

Lu et al.68 proposed a dual-branch exposure fusion enhanced network TBEFN. The network
is divided into two parts: the -1E branch enhances slightly distorted images, and the -2E branch
enhances the more severely distorted image with noise. Then through the FM for rough fusion
and further refinement, the final enhancement result is obtained.

From the above introduction, it is found that many of the deep learning enhancement meth-
ods for low-light images are based on the Retinex theory. Therefore, summarize and show the
results of several enhancement methods based on the Retinex theory on LIME dataset, as shown
in Table 1 and Fig. 4.

3.4 Recurrent Neural Network

RNN developed into one of the deep learning algorithms in the early 21st century. Elman69

proposed the first fully connected RNN. Later, due to the problems of gradient disappearance
and gradient explosion, researchers made a series of improvements to RNN, among which
Bi-RNN70 and LSTM71 are a more commonly used RNN. RNNs have memory characteristics
compared with traditional networks. For traditional neural networks, its input and output are
independent of each other. But for some tasks, the output is not only related to the current input
but also related to the input at the previous moment, so RNN has the characteristics of memory,
as shown in Fig. 5. That is, the output depends on the previous input sequence, and the RNN can
also be combined with other networks to form a hybrid neural network.

Table 1 Deep learning method based on Retinex theory.

Method Hardware devices

LightenNet44 Intel(R) Xeon(R) CPU E5-2660 v3 @2.60 GHz and an Nvidia Titan X GPU

Retinex-Net46 —

DeepUPE57 NVidia Titan X Pascal GPU

KinD55 Nvidia GTX 2080Ti GPU and Intel Core i7-8700 3.20 GHz CPU

RRDNet66 3.0 GHz Intel Core i7-5960X CPU and an Nvidia GeForce GTX 980Ti GPU

RDGAN60 Intel Xeon E5-2630 CPU and NVIDIA GTX 1080 Ti GPU

Wang, Xie, and Liu: Low-light image enhancement based on deep learning: a survey

Optical Engineering 040901-9 April 2022 • Vol. 61(4)



Ren et al.72 proposed a hybrid neural network combining autoencoder and RNN. The net-
work is divided into two streams. The content stream uses the autoencoder structure and skip
connections to estimate the global feature information of the image, and the edge stream obtains
the edge information of the image through the two weights of g and p output by CNN and the
spatial variant RNN. Then, fuse global content features and edge features to get the final
enhancement result.

3.5 Generative Adversarial Network

GAN is a commonly used network in deep learning, and it is a widely used unsupervised learn-
ing. GAN is composed of generative model G and discriminant model D. The generator receives
a random noise z, and then generates an image GðzÞ through this noise z. The discriminator is to
judge whether an image is “real,” input an image x, and output DðxÞmeans the probability that x
is a real image. IfDðxÞ ¼ 1, it means it must be a real image; ifDðxÞ ¼ 0, it means it must not be
a real image. In the training process, the task of generative model G is to generate real images as
much as possible to deceive the discriminative model D; the task of discriminative model D is to
distinguish the images generated by the generative model G from the real images as much as
possible. The most ideal situation is that the generative modelG can generate images that closely
resemble real images, whereas the discriminator model D is difficult to determine whether the
images generated by G are real, and DðGðzÞÞ ¼ 0.5. Its working principle is shown in Fig. 6.

Fig. 5 RNN structure.

Fig. 4 The result of deep learning enhancement methods based on Retinex theory on LIME
image. (a) Input, (b) RDGAN, (c) RRDNet, (d) KinD-Net, and (e) Retinex-Net.

Wang, Xie, and Liu: Low-light image enhancement based on deep learning: a survey

Optical Engineering 040901-10 April 2022 • Vol. 61(4)



Jiang et al.73 proposed an EnlightenGAN network based on GAN that does not require paired
supervision. The generator in the network is an attention-guided U-Net structure, and the dis-
criminator is a global–local dual discriminator structure. The global discriminator adopts a rel-
ative discriminator structure to improve the ability of the discriminator; the local discriminator
randomly crops five image blocks from the images before and after the enhancement to distin-
guish, and the self feature preserving loss function is used to make the content before and after
the image enhancement unchanged.

The summary of deep learning enhancement methods for low-light images is shown in
Table 2, and its timeline is shown in Fig. 7.

4 Learning Method of Deep Learning Enhancement Method

In the previous section, a brief overview of deep learning enhancement methods for low-light
images was given. In this section, these enhancement methods will be divided into supervised
learning, unsupervised learning, and zero-shot learning (ZSL) according to the learning method
of the deep learning, as shown in Table 3.

4.1 Supervised Learning

In the process of network training, the data in the training dataset have both features and labels
corresponding to the features. The model is trained through these two items in the dataset, so the
model can determine the corresponding label according to the features of the input data. In the
enhancement methods based on deep learning, paired data are often required during training:
low-light image and standard image. Most of the methods currently proposed are supervised
learning, and in these methods, researchers not only propose low-light image enhancement
networks but also provide some public paired datasets, such as LOL, SID, etc.

4.2 Unsupervised Learning

In low-light image enhancement, collecting a large number of paired images in the same scene is
more difficult. Therefore, Jiang et al.73 proposed the EnlightenGAN network in response to this
situation and successfully introduced unpaired training in the deep learning enhancement methods.

4.3 Zero-Shot Learning

ZSL is in the process of neural network training, no training samples are needed or test samples
are types that do not exist in the training samples, but the purpose can be achieved through the
trained model mapping. For example, the zero-DCE network proposed by Guo et al.65 and the
RRDNet proposed by Zhu et al.66 belong to ZSL. The zero-DCE network does not need any

Fig. 6 GAN principles.
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Fig. 7 Timeline of deep learning-based low-light image enhancement.

Table 2 Deep learning enhancement method for low-light images.

Method Network type Frame Evaluation index Time

LLCNN40 CNN — PSNR, SNM, LOE, SSIM 2017VCIP

MSR-Net43 CNN — SSIM, NIQE 2017ArXiv

LightenNet44 CNN Caffe, MATLAB PSNR, MAE 2018PRL

SCIE45 CNN Caffe, MATLAB PSNR, FSIM 2018TIP

LLNet35 AE Theano PSNR, SSIM 2017PR

Retinex-Net46 CNN TensorFlow — 2018BMVC

MBLLEN48 CNN TensorFlow PSNR, SSIM, AB, VIF, LOE, TMQI 2018BMVC

GLADNet53 CNN TensorFlow — 2018FG

LL-RefineNet54 CNN — PSNR, RMSE, SSIM 2018Symmetry

Park et al.37 AE TensorFlow PSNR, SSIM 2018IEEEAccess

KinD55 CNN TensorFlow PSNR, SSIM, NIQE, LOE 2019ACMMM

DeepUPE57 CNN TensorFlow PSNR, SSIM 2019 CVPR

RDGAN60 CNN TensorFlow FSIM, PSNR 2019ICME

EEMEFN61 CNN PyTorch PSNR, SSIM 2020 AAAI

Chen et al.51 FCN TensorFlow PSNR, SSIM 2018CVPR

Fan et al.63 CNN — NIQE, PSNR, SSIM 2020ACMMM

Lv et al.64 CNN TensorFlow PSNR, SSIM 2020ACMMM

Zero-DCE65 CNN PyTorch PSNR, MAE, SSIM 2020 CVPR

RRDNet66 CNN PyTorch NIQE, CPCQI 2020 ICME

Ren et al.72 RNN and AE Caffe PSNR, SSIM 2019 TIP

DLN67 CNN PyTorch PSNR, NIQE, SSIM 2020 TIP

Lv et al.49 CNN TensorFlow LPIPS, PSNR, TMQI, SSIM, VIF, LOE, AB 2021IJCV

TBEFN68 CNN TensorFlow PSNR, SSIM, NIQE 2020 TMM

EnlightenGAN73 GAN PyTorch NIQE 2021 TIP
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samples during the training process, it only needs to iterate the designed curve several times to
get the final enhancement result. The RRDNet proposed by Zhu et al. does not require paired
samples during the training process. It only needs to input the image to be enhanced and then
iteratively minimize the loss function to enhance the input image to obtain the final enhancement
result.

5 Datasets Used by Deep Learning Method

In recent years, many methods of using deep learning for enhancement have emerged for low-
light images, but these methods usually require a large number of paired images during training,
it is more difficult to collect images. Therefore, the existing enhancement methods for low-light
images are mostly trained and evaluated on synthetic low-light image datasets. For example, Cai
et al.45 synthesized a large-scale multiexposure image dataset SICE, which contains low-contrast
images of different exposures and their corresponding high-contrast reference images. The high-
contrast reference image is produced by the best method among 13 most advanced MEF and
HDR methods. Chen et al.51 provided a new dataset SID dataset, which contains 5049 short-
exposure images. Each short-exposure image has a corresponding long-exposure reference
image. The images are divided into indoor and outdoor images. When shooting outdoors,
the camera brightness is generally between 0.2 and 5 lux, and the indoor camera brightness
is generally between 0.03 and 0.3 lux.

Table 4 shows the commonly used datasets of deep learning enhancement methods for
low-light images.

Table 3 Deep learning method based on training method classification.

Method Hardware devices Training style

RetinexNet46 — Supervised learning

KinD55 Nvidia GTX 2080Ti GPU and
Intel Core i7-8700 3.20 GHz CPU

Supervised learning

EnlightenGAN73 — Unsupervised learning

Zero-DCE65 NVIDIA 2080Ti GPU ZSL

RRDNet66 3.0 GHz Intel Core i7-5960X CPU and
Nvidia GeForce GTX 980Ti GPU

ZSL

Table 4 Datasets commonly used in deep learning methods.

Author Dataset Paired/Unpaired

Cai et al.45 SICE Paired

Wei et al.46 LOL Paired

Chen et al.51 SID Paired

Wang et al.57 DeepUPE Paired

Ma et al.74 MEF Paired

Lee et al.75 DICM Unpaired

Guo et al.9 LIME Unpaired

Wang et al.8 NPE Unpaired

Loh et al.76 ExDARK Unpaired

Bychkovsky et al.77 MIT-Adobe FiveK Paired
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6 Commonly Used Image Quality Evaluation Indicators

After the image is enhanced, the degree of distortion deviation between the image to be evaluated
(enhanced image) and the standard image is usually evaluated using evaluation indicators. Image
quality evaluation is divided into subjective evaluation indicators and objective evaluation indica-
tors according to human subjective awareness or objective standards. The objective evaluation of
image quality is divided into full-reference evaluation index, reduced-reference evaluation index,
and no-reference evaluation index according to whether there is a standard image as a reference.

Full reference image quality evaluation index refers to the use of a standard or ideal image as
a reference image, comparing the image to be evaluated with the reference image, and obtaining
the evaluation result of the image to be evaluated. Commonly used full reference evaluation
indicators are: mean square error, visual information fidelity78 (VIF), structural similarity, mean
absolute error, information fidelity criterion79 (IFC), and peak signal-to-noise ratio. Reduced-
reference quality evaluation is also called partial reference. It takes partial information of the
ideal image as a reference and compares it with the image to be evaluated to obtain the evaluation
result. Common reduced-reference evaluation methods are based on the original image feature
method, etc. Nonreference quality evaluation refers to the evaluation of images directly through
several commonly used evaluation indicators without referring to any image information. The
commonly used nonreference evaluation indicators are mean, standard deviation, information
entropy (Entropy), natural image quality evaluation (NIQE), etc.

In this section, a brief overview of commonly used image quality evaluation indicators is
given. Tables 5 and 6 give the abbreviations and mathematical equations of the evaluation indica-
tors, respectively.

Table 5 Abbreviation for image quality evaluation index.

Image quality evaluation index Abbreviation Full/no reference

Mean square error MSE Full reference

Visual information fidelity VIF78 Full reference

Information entropy Entropy No reference

Information fidelity criterion IFC79 Full reference

Structural similarity SSIM80 Full reference

Lightness order error LOE8 No reference

Natural image quality evaluator NIQE81 No reference

Feature similarity index FSIM82 Full reference

Peak signal-to-noise ratio PSNR Full reference

Average brightness AB83 No reference

Learned perceptual image patch similarity metric LPIPS84 Full reference

colorfulness-based patch-based contrast quality index CPCQI85 No reference

Tone mapped image quality index TMQI86 Full reference

Table 6 Mathematical equation of image quality evaluation index.

Performance metrics Formula

MSE MSE ¼ 1
M×N

PM
i¼1

PN
j¼1½xði ; jÞ − x̂ði ; jÞ�2

PSNR PSNR ¼ 10 • log10
�
MAX2

MSE

�

SSIM SSIM ¼
�

2μx μyþc1
μ2xþμ2yþc1

��
2σxyþc2
σ2xþσ2yþc2

�

NIQE Dðυ1; υ2;Σ1;Σ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðυ1 − υ2ÞT

�
Σ1þΣ2

2

�
−1ðυ1 − υ2Þ

r

Wang, Xie, and Liu: Low-light image enhancement based on deep learning: a survey

Optical Engineering 040901-14 April 2022 • Vol. 61(4)



6.1 Mean Square Error

The mean square error is one of the more commonly used indicators in image quality evaluation,
which is to calculate the mean value of the square sum of the pixel value errors of the corre-
sponding points of the image to be evaluated and the original image. As shown in Eq. (7):

EQ-TARGET;temp:intralink-;e007;116;680MSE ¼ 1

M × N

XM
i¼1

XN
j¼1

½xði; jÞ − x̂ði; jÞ�2; (7)

xði; jÞ and are expressed as the pixel value of the reference image and the image to be evaluated,
respectively. The smaller the value of MSE, the better the quality of the image to be evaluated.

6.1.1 Peak Signal-to-Noise Ratio

MAX represents the maximum value of the pixel. If each pixel is an 8-bit table binary, then
MAX ¼ 255. The larger the PSNR, the smaller the distortion between the image to be evaluated
and the reference image, and the better the quality of the image to be evaluated.

EQ-TARGET;temp:intralink-;e008;116;538PSNR ¼ 10 • log10

�
MAX2

MSE

�
: (8)

6.1.2 Structural Similarity

SSIM80 is an index that measures the similarity between the image to be evaluated and the refer-
ence image. It is measured from the three aspects of brightness, contrast, and structure:

EQ-TARGET;temp:intralink-;e009;116;443SSIM ¼
�

2μxμy þ c1
μ2x þ μ2y þ c1

��
2σxy þ c2

σ2x þ σ2y þ c2

�
: (9)

The larger the value of SSIM, the smaller the distortion of the image and the better the image
quality. When the two images are exactly the same, SSIM ¼ 1.

6.1.3 Natural Image Quality Evaluator

Mittal et al.81 proposed a nonreference evaluation index NIQE. The NIQE score is obtained by
calculating the distance between the parameters of the multivariate Gaussian model (MVG) of
the image to be evaluated and the MVG parameters of the natural image:

EQ-TARGET;temp:intralink-;e010;116;303Dðυ1; υ2;Σ1;Σ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðυ1 − υ2ÞT

�
Σ1 þ Σ2

2

�
−1
ðυ1 − υ2Þ

s
: (10)

6.1.4 Other Applications of Deep Learning

Due to the excellent performance of deep learning, in addition to the application in the field of
low-light image enhancement, there are also many applications in other fields.87 In this section,
other applications of deep learning in the field of computer vision are briefly introduced.

1. Image segmentation: Image segmentation refers to dividing the image into several regions
according to the feature information of the image for simplified analysis, which is divided
into semantic segmentation, instance segmentation, and panoramic segmentation. It is an
important research direction in the field of computer vision. The initial image segmenta-
tion was based on traditional segmentation methods such as thresholds. Later, with the
development of deep learning technology, image segmentation technology developed rap-
idly, and many deep learning-based image segmentation techniques were studied,88,89

which are widely used in various fields, such as the field of medical imaging.90

2. Object detection: Object detection refers to finding the target object in the image and
determining the position and category of the target, which is widely used in computer
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vision. With the development of deep learning and the excellent performance of CNN in
image processing, some excellent target detection methods based on deep learning have
emerged, such as YOLO,91 Faster R-CNN,92 etc. It performs well in face detection, driving
vehicles, pedestrian detection,93 etc.

3. Background subtraction: To lock the moving target from the captured video, the back-
ground subtraction method comes into being. It separates the moving object in the video
from the background information without any moving object. It is often used in target
detection and is one of the common methods for moving target detection. Due to the devel-
opment of deep learning, neural networks are gradually applied in this field. Bouwmans
et al.94 introduced deep neural networks for background subtraction.

4. Human activity recognition: Due to the development of sensor technology and ubiquitous
computing, sensor-based HAR is becoming more and more popular, so human activity
recognition is currently a relatively hot research area, which is to identify the actions that
are taking place from the collected sensor data. For example, motion states such as walk-
ing and running can be recorded and identified by wearing sensors or mobile phones with
accelerometers and gyroscopes. Due to the advantages of deep learning to extract features,
HAR based on deep learning has been gradually developed.95

7 Conclusion

With the development of artificial intelligence theory and technology and the emergence of the
first deep learning enhancement method for low-light images, opening the door to the develop-
ment of deep learning in this field, and then a large number of deep learning enhancement meth-
ods have appeared one after another. Because the deep learning method is not as complicated as
traditional algorithms in adjusting parameters, which can learn appropriate parameters from the
sample data through continuous training. Therefore, deep learning enhancement methods are
currently widely used in various fields of life, such as medicine, transportation, and public safety.
In the medical field, it is necessary to enhance the dark and blurred images under the electron
microscope; and the enhancement technology can also be applied to the transportation field.
When the vehicle is in backlight or at night, it can be enhanced by this technology.
Therefore, deep learning enhancement methods for low-light images have been an important
direction in recent years and are of great significance to the medical field and the transportation
field. However, there are still some problems in the application of existing deep learning
enhancement methods.

7.1 Datasets

In the existing deep learning enhancement methods for low-light images, most of the training
datasets are synthetic data, and there is a lack of paired real-world data sets. In response to this
problem, in future research on enhancement methods of deep learning, learning methods such as
ZSL, self-supervision, and graph signal processing can be considered to reduce the demand for
paired data.

Among them, graph signal processing is a signal that discrete signal processing extends to
graphs, and graphs are structured data composed of a series of vertices and edges. Due to the
existence of some non-Euclidean data, research on graph upsampling96 and the study of graph
neural network in computer vision applications,97 GSP has attracted more and more attention in
the field of computer vision. For example, inspired by the GSP method, Giraldo et al.98,99 pro-
posed a semisupervised method combining MOS and GPS that can achieve good results with
only a small number of labeled samples. Ortega et al.100 introduced some graph sampling strat-
egies for the scarcity of labeled samples in semisupervised learning.

7.2 Generalization Ability of the Method

At present, in the existing enhancement methods, most of the datasets used in the network train-
ing process are their own dataset, so the processing effect on the images of the real scene or other
datasets is not as good as the effect on the own dataset, and because of the network structure
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design, the prior knowledge used by the model and other factors leads to poor generalization
ability. In response to this problem, future research should pay more attention to how to improve
the generalization ability of the proposed method.
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