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ABSTRACT. Tomato is an important vegetable that is rich in antioxidants, vitamins, and minerals
and has significant economic and health value. In this study, hyperspectral images in
the wavelength range of 370 to 1715 nm were first preprocessed to improve the data
quality and comparability. Subsequently, the tomatoes were chemically destroyed,
and the average activities of peroxidase enzyme, phenylalanine ammonia-lyase
enzyme, and α-amylase enzyme were 5.108 mU∕g, 7.347 U∕g, and 35.856 U∕g,
respectively. Then, two spectral selection algorithms, the genetic algorithm (GA) and
the successive projection algorithm, were used to extract effective wavelength
bands from high dimensional spectral data. And the extracted effective wavelength
variables were combined with partial least squares (PLS) regression to build the
optimal spectral selection model GA-PLS. Finally, three additional spectral predic-
tion models were created by combining the GA-selected spectra with three other
algorithms: support vector machine, particle swarm optimization-backpropagation
neural network, and random forest. After comparing the predictive performance
of four models, it was found that the GA-PLS model had the highest prediction accu-
racy and stability. Furthermore, compared with tomato stems, the near infrared (NIR)
bands of tomato leaves were more accurate in predicting the enzyme content of
tomato plants. It was found that the GA-PLS model had a better prediction perfor-
mance for the three enzymes in the NIR band of leaves with Rp (average coefficient

of determination for the three enzymes) and RMSEP (average root means square
error of the three enzymes) of 0.815 and 1.659, respectively. This provides an effec-
tive method for phytochemical composition analysis using hyperspectral imaging.
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1 Introduction
The tomato (Solanum Lycopersicon L.) is an important crop widely used for dietary supplemen-
tation. The quality and yield of the tomato plant is influenced by a number of factors, including
the content of specific enzymes in the plants. The content of some specific plant enzymes reflects
the physiological and metabolic status of the plant. It is closely related to plant growth and devel-
opment, stress tolerance, disease resistance, and antioxidant ability.1 Therefore, accurate, rapid,
and non-destructive determination of tomato plant enzyme content is very important for

*Address all correspondence to Jin-Shi Cui, cuijinshi0804@hotmail.com

Optical Engineering 074101-1 July 2024 • Vol. 63(7)

https://orcid.org/0000-0003-3814-570X
https://doi.org/10.1117/1.OE.63.7.074101
https://doi.org/10.1117/1.OE.63.7.074101
https://doi.org/10.1117/1.OE.63.7.074101
https://doi.org/10.1117/1.OE.63.7.074101
https://doi.org/10.1117/1.OE.63.7.074101
https://doi.org/10.1117/1.OE.63.7.074101
mailto:cuijinshi0804@hotmail.com
mailto:cuijinshi0804@hotmail.com


assessing the quality and yield of the tomato plant. The three enzymes that are most responsive to
tomato growth are α-amylase (α-AMS), peroxidase (POD), and phenylalanine ammonia-lyase
(PAL).2,3 α-AMS is a key enzyme involved in starch metabolism. It breaks down starch into
soluble sugars, which affects the sweetness and taste of tomato fruits.4 POD is an important
enzyme involved in the antioxidant defense system of plants. This enzyme catalyzes the break-
down of hydrogen peroxide into water and oxygen, thereby eliminating reactive oxygen radicals
and protecting cell membranes and organelles from oxidative damage.5 PAL is a key enzyme
involved in the phenylalanine metabolic pathway. This enzyme catalyzes the conversion of
phenylalanine to cinnamic acid, which promotes the synthesis of secondary metabolites, such
as anthocyanins.6

Currently, the mainstream enzyme activity assays include spectrophotometry, chemical
assays, enzyme kinetics, immunological methods, colourimetric methods, and reflectance spec-
trometry, etc. They all have some advantages and disadvantages. Spectrophotometry determines
the enzyme activity by measuring the change in absorbance of light at a specific wavelength. The
advantage is that it is suitable for the determination of the reaction involving coenzyme NAD+ or
NADP+, with higher sensitivity, and the disadvantages are that it is only suitable for dilute sol-
utions with absorbance values between 0.05 and 1.0 and is sensitive to temperature changes.
Chemical assays usually refer to the determination of enzyme activity using the color change
produced by a chemical reaction. The advantages are that it is highly accurate and provides
quantitative information, and the disadvantage is that the steps may be more complicated as
it requires specific reagents and equipment. Enzyme kinetic methods determine enzyme activity
by measuring the rate of an enzymatic reaction. The advantage is that it provides detailed infor-
mation about the kinetics of the enzymatic reaction. The disadvantage is that the experimental
conditions are stringent, e.g., temperature and pH control. Immunological methods determine the
enzyme activity using the principle of specific binding of antibodies to the enzyme. The advan-
tages are that it is specific and can be used for the detection of enzyme activity in complex
samples, and the disadvantages are that it requires specific antibodies and has a high cost.
The colorimetric method quantifies enzyme activity by color change. The advantages are its
simple operation and ease of observing, and the disadvantages are that the color of the sample
may interfere with it and its accuracy is limited. Reflectance spectroscopy estimate enzyme activ-
ity by determining the reflectance characteristics of the sample to light. The advantages are that it
is non-invasive, fast, and convenient, and the disadvantage is that it may not be as accurate as the
chemical detection method. Currently, reflectance spectroscopy is mostly used in non-destructive
testing, but the innovation of this paper is that the spectral range of the analysis is from 370 to
1700 nm, which avoids errors caused by insufficient analytical spectral data. This paper also uses
a spectral selection algorithm to extract the characteristic bands for the spectral analysis, which
improves the accuracy and efficiency of the analysis. The object of the study is the target enzyme
rather than the product of the enzyme activity or a specific ingredient related to the quality of the
tomato. In this paper, we also use several prediction algorithms for comparative analysis to get
the best model for tomato enzyme activity prediction.

Enzyme activity, also known as enzyme viability, is the ability of an enzyme to catalyze a
specific chemical reaction. The indirect inference of changes in enzyme activity within tomatoes
through reflectance spectral analysis is based primarily on the relationship between spectral prop-
erties and changes in the chemical composition within tomatoes. The key point here is that
enzymes, as catalysts, affect the biochemical reactions within tomatoes, which in turn changes
the content and ratio of its chemical constituents. These chemical components include sugars,
organic acids, pigments, etc., which have specific spectral properties for light absorption and
reflection.

When enzyme activity in tomatoes changes, such as during ripening, it affects the concen-
tration of these chemicals. Because these chemicals have different absorption and reflectance of
light at specific wavelengths, changes in these chemicals can be inferred indirectly by measuring
the spectra reflected from the tomato surface. From these variations, changes in enzyme activity
can thus be inferred.

This paper focuses on three plant enzymes related to tomato quality and yield: α-AMS,
POD, and PAL. It establishes a nondestructive method for the determination of the three enzyme
activities. The reflectance spectra of leaves and stems of tomatoes is analyzed, and the
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relationship between the reflectance spectra of different enzyme activities and the enzyme con-
tent is used to establish a model to predict the enzyme activities of tomatoes.7 Finally, the partial
least squares (PLS) algorithm was mainly utilized to predict the enzymatic activity of tomatoes.

To control the accuracy of the spectral assay, the chemical assay was used as the gold stan-
dard. The activities of these three enzymes are determined by double antibody sandwich assay,
i.e., using a specific antibody-coated microtiter plate, which binds to the enzyme in the specimen
and horseradish peroxidase (HRP)-labeled antibody to the enzyme, forming an antibody-antigen-
enzyme-labelled antibody complex. Then the TMB (3,3’,5,5’-Tetramethylbenzidine) chromo-
gen, which produces a yellow product catalyzed by HRP enzyme, is added, and the shade
of its color is positively correlated with the enzyme level in the specimen. Absorbance (optical
density) was measured at 450 nm using a spectrophotometer, and the concentration of enzyme
activity in the samples was calculated from a standard curve according to the Beer–Lambert law.
The activities of all three enzymes are based on the production of detectable products from the
specific reactions that they catalyze. Plant POD catalyzes a reaction in which hydrogen peroxide
oxidizes phenolics to produce quinones. These compounds are further condensed or condensed
with other molecules to produce darker colored compounds. In this reagent kit, guaiacol
(o-methoxyphenol) was used as a phenolic substance, which is oxidized by hydrogen peroxide
to reddish brown 4-o-methoxyphenol catalyzed by POD. This substance has maximum light
absorption at 470 nm; plant α-AMS catalyzes the reaction of the starch decomposition to soluble
sugars, producing reducing sugars.. These reducing sugars can undergo a redox reaction with the
color rendering agent TMB, which produces a blue product catalyzed by the enzyme HRP, which
is converted to a yellow product under acidic conditions and which has maximum light absorp-
tion at 450 nm. PAL catalyzes the decarboxylation of phenylalanine to trans-cinnamic acid. In
turn, trans-cinnamic acid can undergo a redox reaction with the color developer TMB to produce
a blue product catalyzed by the HRP enzyme, which is converted to a yellow product under
acidic conditions with a maximum light absorption wavelength of 450 nm.8,9

Spectral analysis technology has received wide attention and application as a non-
destructive testing technology. Using visible (VIS)-near infrared (NIR) reflectance spectroscopy,
a method for detecting enzyme activity in tomatoes was proposed; it improved the accuracy and
stability of the model by preprocessing the spectral data and selecting variables, and provided a
new method for the rapid detection of enzyme activity in tomatoes.10 They can be categorized
into NIR spectra, mid-infrared spectra, VIS spectra, ultraviolet spectra, etc., according to the
wavelength range of electromagnetic radiation; they can also be categorized into hyperspectral,
multispectral, monospectral, etc., according to the magnitude of spatial resolving power;11 in
fact, by this technique, there are Raman, ellipsometric, Brillouin, Fourier, and so on. In agricul-
tural non-destructive testing, spectral analysis technology can be used to quickly, accurately, and
non-destructively determine the quality, composition, nutrition, safety, and other indicators of
agricultural products, providing a scientific basis for agricultural production and processing.12

Using visible (VIS)-NIR reflectance spectroscopy, a non-destructive testing model for tomato
hardness was established, and the noise and redundancy of the data were reduced by wavelet
transform and principal component analysis of spectral data, which provided a basis for tomato
quality assessment.13 In this paper, more enzymes are detected in a non-destructive manner to
control the yield and quality of tomato plants.

In terms of spectral selection, many spectral selection methods have been used for the analy-
sis of plant enzyme activities, such as the successive projection algorithm (SPA), the uninform-
ative variable removal algorithm, the genetic algorithm (GA), and the interval PLS (iPLS).
Among them, the most used and the most effective ones are the GA and SPA algorithms. In
this paper, by comparative analysis, GA is better than SPA in the spectral selection of tomato
reflectance spectra, and the selected bands are from 1460 to 1574 nm. In addition, some machine
learning based wavelength selection algorithms, such as support vector machine (SVM), random
forest (RF), and particle swarm optimization-backpropagation (PSO-BP) are also used to com-
pare and analyze the optimal prediction algorithms.14 GAs can be used for spectral wavelength
selection, i.e., screening the wavelengths with the highest correlation with the target variables
from high dimensional spectral data, thus reducing the complexity and noise of the data and
improving the accuracy and efficiency of modeling. The advantage of GAs is that it can handle
nonlinear, multi-peak, discrete optimization problems with strong global search capability and
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robustness. PLS can be used for regression analysis of spectral data, i.e., predicting the value of a
target variable based on spectral information, e.g., the activity of a specific enzyme in tomato
plants.15

In recent years, various technologies, such as NIR spectroscopy, VIS/NIR spectroscopy,
hyperspectral imaging technology, and Raman spectroscopy, have been employed in agriculture
to analyze the water content, proteins, fats, starches, fibers, and other components of agricultural
products. These technologies are also used for the classification of varieties, the detection of
fungal infections and pesticide residues, and other quality indicators. To enhance the accuracy
and stability of detecting quality indicators, such as color, sugar, and acidity, in agricultural prod-
ucts, the comprehensive detection of both internal quality and external characteristics is neces-
sary. This will enable qualitative and quantitative analysis of agricultural products, which has
numerous applications.16,17

Therefore, the aim of this paper is to explore the effect of changes in enzyme activity within
tomato plants on spectra to predict enzyme activity. This experiment requires a large amount of
accurate data support in the preliminary data collection for modeling; however, the portable spec-
trometer is not enough to perfectly collect the spectral data that we need. Therefore, the spectral
data acquisition requires digging out the tomato plant, but the tomato will have changes in its
enzyme activity after leaving the original growth environment. Thus, in this paper, the tomato
plant is placed in a vacuum bag for liquid nitrogen freezing to ensure that the enzyme activity of
the tomato body and the enzyme activity of the tomato grown in the land is the same. Digging out
the plant and liquid nitrogen freezing are only used in the pre-spectral data acquisition, so for the
proposed model, a non-destructive testing method is used.

2 Materials and Methods

2.1 Hyperspectral Imaging System
The hyperspectral imaging system used in the proposed method consists of four main compo-
nents: (1) a bottom horizontal support plate, linked to a stepper motor (Leashine, 20CM003,
100 r∕min), which can be moved horizontally; (2) a camera mount for fixing and changing the
vertical position of the camera (the vertical distance between the camera and the platform is
50 cm); (3) hyperspectral cameras (Specim FX10-CHINA, Specim FX17-CHINA); and (4) a
dual illumination system. The hyper-spectral imaging system is shown in Fig. 1.

The obtained hyperspectral images comprise hundreds of sequential bands of tomato leaves
and stems. White and black references were used to correct the hyperspectral images.18 R rep-
resents a ratio comparing the images with a white background; 100 represents having the same

Fig. 1 Schematic diagram of the hyperspectral imaging system.
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reflectivity as a white background, and 0 represents having the same reflectivity as a black back-
ground. The value is calculated as:

EQ-TARGET;temp:intralink-;sec2.1;117;712R ¼ iraw − idark
iwhite − idark

;

where iraw represents the reflected light intensity of the hyperspectral tomato image, idark rep-
resents the reflected light intensity on the standard black background, and iwhite represents the
reflected light intensity on the standard white background.

2.2 Spectrophotometer
The absorbance at 450 nm is measured using a spectrophotometer (UV3600_UV-Vis-NIR dual-
beam spectrophotometer-OPTOSKY-CHINA).

Reflectance spectral data of tomato plants were collected using a hyperspectral system with a
wavelength range of 370 to 1715 nm and a spectral resolution of 1 nm. Tomato leaf and stem
samples were collected at different growth stages (1 to 8 weeks) and under the same treatments.
The contents of α-AMS, POD, and PAL were determined by traditional chemical methods.19

Hyperspectral-based prediction models for α-AMS, POD, and PAL content in the tomato plants
were then developed using various modeling techniques. The study compared and analyzed the
prediction accuracies to obtain relatively good detection models. Figure 2 shows the flowchart of
this study.

2.3 Gold-Standard Detection of Enzyme Concentration
In this paper, the chemically detected enzyme activity was used as the gold standard for com-
parative analysis.

The three enzyme activities were calculated by determining the enzyme concentration in the
sample through a linear regression equation and then multiplying by the dilution factor to obtain
the actual concentration of the sample. The specific equations are as follows:

1. POD active unit:

EQ-TARGET;temp:intralink-;sec2.3;117;393ðUÞ ¼ ΔOD470 min−1 g−1 FW;

2. α-AMS active unit:

EQ-TARGET;temp:intralink-;sec2.3;117;354ðUÞ ¼ ΔOD450 min−1 g−1 FW;

3. PAL active unit:

EQ-TARGET;temp:intralink-;sec2.3;117;315ðUÞ ¼ ΔOD450 min−1 g−1 FW:

All three equations indicate that the change in absorbance per minute per gram of fresh
weight (FW) sample at either 470 or 450 nm is its POD activity unit (U). Statistical analyses
of the chemical assays for the three enzyme activities are presented in Table 1.

2.4 Spectral Selection
Spectral selection is a technique used to extract effective wavelength variables from high-
dimensional spectral data. This method reduces redundancy and noise in the data, leading to
improved accuracy and stability of the model.20 This study employed two spectral selection algo-
rithms, namely GA and SPA, which were combined with PLS. A spectral prediction model was
developed for predicting enzyme activities in tomato plants.

GA and SPA are two very effective methods in the field of spectral selection. The advantage
of GA lies in its global search capability, which can simulate the natural selection and genetic
mechanism in the process of biological evolution and find the optimal wavelength combinations
through crossover, mutation, and selection operations of populations. This method not only is
capable of handling large-scale datasets but also can effectively avoid falling into local optimal
solutions, thus improving the generalization ability of the model.14
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On the other hand, SPA, as a forward variable selection method, selects wavelengths by
minimizing the covariance between variables. It is computationally efficient, easy to implement,
and particularly suitable for dealing with spectral data with a high degree of covariance. SPA
selects the variables step by step by successive projections, which reduces the complexity of the
model while maintaining its stability and prediction accuracy.21

Spectral selection allows the analyst to select specific spectral regions to observe, allowing
for more accurate identification and quantification of components in a sample. It allows for

Fig. 2 Research flowchart.
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increasing the sensitivity; by selecting specific spectral lines, the sensitivity to detect specific
elements or compounds can be increased. It reduces interference; good selectivity enables the
determination of elements and compounds with similar chemical properties, reducing spectral
interference from other elements. Finally, it improves the analysis speed; spectral selection can
quickly locate the spectral region of interest, speeding up the analysis process.

The following equation was used for modeling using a chemical detection algorithm as the
gold standard assay to predict enzyme activity in tomatoes:

EQ-TARGET;temp:intralink-;sec2.4;117;490y ¼ X • bþ e;

where y is the target variable, i.e., the predicted value of enzyme activity. X is the independent
variable, i.e., the data obtained by chemical assay. b is the regression coefficient calculated by the
PLS algorithm. e is the error term, which represents the difference between the predicted and
actual values.

GA is a global optimization algorithm that simulates the processes of natural selection,
crossover, and mutation to gradually improve the fitness of the population. A GA was used
to select the best subset of wavelengths as input variables for the PLS regression. Each wave-
length variable is regarded as a gene, each wavelength subset is regarded as a chromosome, and
the prediction error is taken as the fitness function.22

SPA is a spectral selection algorithm based on orthogonal projection. It constructs a subset of
wavelengths that is minimally redundant and maximally correlated with the target variable by
progressively selecting the most correlated wavelength variable.23

PLS is a multivariate statistical data analysis method that enables regression modeling
(multivariate linear regression), data structure simplification (principal component analysis), and
correlation analysis (typical correlation analysis) between two sets of variables to be performed
simultaneously under a single algorithm. The PLS method is used to obtain mutually orthogonal
eigenvectors for the independent variables and the dependent variable, respectively, by projecting
their high-dimensional data spaces into the corresponding low-dimensional spaces. The mutually
orthogonal eigenvectors of the independent variable and the dependent variable are obtained, and
then the one-way linear regression relationship between the eigenvectors of the independent var-
iable and the dependent variable is established. Not only can it overcome the problem of covari-
ance, but it also emphasizes the explanatory and predictive roles of the independent variables on
the dependent variable when selecting the feature vectors and removes the influence of unhelpful
noise on the regression, resulting in the model containing a minimum number of variables.

SVM is a supervised learning model mainly used for classification and regression analysis.
The basic idea is to maximize the spacing between different classes of data points by finding an
optimal hyperplane (or hypersurface). This optimal hyperplane, called the maximum spacing
hyperplane, maximizes the separation of data points of different categories and thus achieves
good classification results.24

The PSO-BP neural network is an algorithm that combines PSO and the BP neural network
and is mainly used for nonlinear function fitting and regression problems. The basic idea is to use
the PSO algorithm to optimize the weights and thresholds of the BP neural network to improve
the performance and convergence speed of the BP neural network. PSO is a heuristic algorithm

Table 1 Descriptive statistical analysis of enzyme concentration detected by chemistry.

POD mU/g PAL U/g AMS U/g

Average 5.108 7.347 35.845

Standard error 0.073 0.060 0.440

Standard deviation 0.514 0.721 5.215

Variance 0.265 0.520 27.20

Minimum value 3.81 6.12 25.8

Maximum value 6.21 9.01 44.37

Li and Cui: Non-destructive detection of specific enzyme activities in tomato plants. . .

Optical Engineering 074101-7 July 2024 • Vol. 63(7)



that simulates the foraging behavior of a flock of birds for searching, and it is able to achieve the
search of the global optimal solution.25

RF is an integrated learning method that is defined as a linear classifier with maximum
intervals on the feature space. RF constructs multiple decision trees during training and outputs
classes as patterns of classes (classification) or average predictions (regression). The learning
strategy of RF is interval maximization, which can be formalized as solving a convex quadratic
programming, which is also equivalent to minimizing a regularized hinge loss function.26

The average coefficient of determination for the three enzymes and the average root mean
square error of the three enzymes of the two spectral selection algorithms mentioned above are
used to measure the degree of model fit to the data and the prediction error, respectively. The
larger the average coefficient of determination is and the smaller the average root mean square
error is, the better the predictive performance of the model is. These two metrics are used to
compare the advantages and disadvantages of the GA and SPA algorithms and choose the better
algorithm. Then, the better algorithm in combination with PLS, SVM, PSO-BP, and RF is used to
observe the prediction results.

The establishment of predictive models is a key step in spectral analysis, which allows for
the use of spectral data to predict the nature or composition of a target substance. Using spectra
selected by GA as inputs, four predictive models were built: GA-PLS, GA-SVM, GA-PSO-BP,
and GA-RF; they are based on PLS regression, SVM, particle swarm optimization-
backpropagation neural network (PSO-BP), and RF algorithms, respectively.

3 Results

3.1 Extraction of Hyperspectral Image Data From Leaves and Stems of Tomato
Samples

This paper focuses on the spectral characteristics of tomato plants, specifically their leaves and
stems. To observe these characteristics, a hyperspectral imaging system was used to photograph
the plants, resulting in a clear image (Fig. 3). The image allows for the distinction of different
colors and shapes of the tomato leaves and stems. To analyze the spectral information, the image
was processed using ENVI software. This produced a spectral plot of the average of the spectra of
each point of all leaves in different wavelength ranges. Figures 4 and 5 show the results, with the
horizontal axis representing the wavelength and the vertical axis representing the intensity of
light received by the detector. Upon comparison of these graphs, it is evident that they share
similar trends in their spectral curves, which are linked to their physiological and chemical
properties.

Fig. 3 Photos of tomato plants in the NIR and VIS bands: (a) photos of tomato plants in the NIR
band and (b) photos of tomato plants in the VIS light band.
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However, it is evident in Figs. 4 and 5 that there is also some noise in the raw image and
spectral data, which may affect the analysis results. Therefore, some preprocessing of the data is
needed to remove or reduce the effect of noise before proceeding to subsequent studies. In the
lower spectral range of 370 to 430 nm and in the higher spectral ranges of 880 to 940 nm and
1640 to 1715 nm, the noise is high and shows high-frequency features. These noises may come
from the instrument, the environment, or the sample itself. To prevent these noises from inter-
fering with the study, it was decided to exclude these bands in the preprocessing stage and keep
only the low spectral range 430 to 880 nm and the high spectral range 940 to 1640 nm.

3.2 Preprocessing of Data
Data preprocessing is an important step in spectral analysis as it eliminates noise, baseline drift,
scattering effects, and other interfering factors in the spectral data. This improves the quality and
comparability of spectral signals, enhancing the correlation between the spectra and the target
substances. This, in turn, provides more accurate and effective data for subsequent model build-
ing and analysis.27 Three data preprocessing methods were used: variable normalization, trun-
cation operations, and removal of outliers.

Variable standardization is a frequently used data preprocessing technique. It removes
differences in magnitude and scale between variables, resulting in each variable having a mean
of 0 and a standard deviation of 1.28 This approach prevents the model from being influenced by
variables that are too large or too small and enhances the stability and generalization of the
model. The reflectance at each wavelength was normalized based on the variables to enable
comparison at the same scale. The truncation operation selects a suitable wavelength range
by removing irrelevant or redundant information, reducing data dimension and computational

Fig. 5 Reflectance of tomato stems and leaves in the VIS spectrum: (a) reflectance spectra of
tomato stems in the VIS band and (b) reflectance spectra of tomato stems in the NIR band.

Fig. 4 Reflectance of tomato stems and leaves in the NIR spectrum: (a) reflectance spectra of
tomato stems in the NIR band and (b) reflectance spectra of tomato leaves in the NIR band.
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complexity. The above two data preprocessing methods were used to obtain clearer and more
concise spectral data, laying the foundation for subsequent spectral analyses.

These remove noise and interference and improve the quality and credibility of the data.29

After preprocessing, two spectral graphs are obtained, as shown in Fig. 6; these represent the
reflectance of tomato leaves at different wavelengths.

3.3 Spectral Band Selection
Parameters such as population size, crossover probability, and mutation probability were set, and
several iterations were run to finally obtain an optimal solution for a leaf and stem variable con-
taining 31 and 26 wavelengths in the VIS range and 35 and 28 wavelengths in the NIR
band range.

The SPAwas used to select the best subset of wavelengths to be used as input variables for
the PLS regression. The number of wavelengths to be selected was set, and the SPA algorithm
was run; the result was an optimal solution containing 27 and 20 wavelength variables in the VIS
range and 25 and 19 wavelength variables in the NIR range for both leaf and stem.

The relationship between the variable importance and the variable index was obtained as
follows.

The importance of each band of the leaf of tomato plants in the NIR band was obtained by
the GA model, as shown in Fig. 7, and the screened spectral bands were determined based on the
order of importance as well as the cumulative contribution, which was taken as the 179th
(1460 nm)-214th (1574 nm), totaling 35 bands. Similarly, the bands screened under the other
seven models can be obtained. The calibration and validation sets are first assigned based on the
available data.

Significance refers to the degree of contribution of each NIR band to the enzyme activity in
the GA model. To reduce the dimensionality of the data analysis and to improve the analytical
relevance of the characteristic spectra, the variables with more than 80% importance were taken
for the analysis in this paper, i.e., the bands from 179 to 214.

Fig. 6 Spectral information of unpretreated and pretreated tomato stems: (a) spectral information
of unpretreated tomato stems in the NIR light band and (b) spectral information of pretreated
tomato stems in the NIR band.
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3.4 Allocation of Calibration and Validation Sets
Allocation was done by the random division method, i.e., the dataset was randomly divided into
the test set and validation set in the ratio of 11:3, with the validation set being used to verify the
accuracy of the constructed model. All 100 tomato plants used in this experiment were examined
by spectral analysis and then sent for chemical examination. 21 were used as the validation set
and the remaining 79 were used as the test set.

This paper combines GA and SPA with the PLS, SVM, PSO-BP, and RF algorithms and
conducts a comparative analysis on different parts of tomatoes (leaves and stems) and different
spectral bands (VIS and NIR bands), respectively. Table 2 shows an example with GA-PLS and
SPA-PLS. Here, LEAF-NIR represents the average determination coefficient and average root
mean square error of the analysis of leaves under NIR, LEAF-VIS represents the average deter-
mination coefficient and average root mean square error of the analysis of leaves under VIS light,
STEM-NIR represents the average determination coefficient and average root mean square error
of the analysis of stems under NIR, and STEM-VIS represents the average determination coef-
ficient and average root mean square error of the analysis of stems under VIS light.

To compare the effectiveness of the two spectral selection algorithms, GA and SPA, two
spectral prediction models were developed by combining them with PLS regression, respectively,

Table 2 Comparison of the accuracy of the GA and SPA spectral selection methods.

Prediction model

Test set Validation set

Rp RMSE Rp RMSEP

GA-PLS-LEAF-NIR 0.834 1.564 0.815 1.659

SPA-PLS-LEAF-NIR 0.793 1.674 0.755 1.946

GA-PLS-STEM-NIR 0.787 1.986 0.774 2.032

SPA-PLS-STEM-NIR 0.705 2.543 0.687 2.633

GA-PLS-LEAF-VIS 0.812 1.585 0.783 1.754

SPA-PLS-LEAF-VIS 0.775 1.741 0.733 2.003

GA-PLS-STEM-VIS 0.746 2.001 0.711 2.113

SPA-PLS-STEM-VIS 0.699 2.723 0.655 2.722

Fig. 7 Significance of each band of leaves in the NIR range under the GA model.
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to predict the prediction accuracies of the three enzymes in the VIS and NIR ranges for tomato
leaves and stems. The average root mean square error (RMSEP) and the average coefficient of
determination (Rp) for the three enzymes were used as evaluation metrics. The results showed

that the validation set’s RMSEP and Rp of the GA-PLS model for tomato leaves were 1.659 and

0.815 in the NIR and 1.754 and 0.783 in the VIS range, respectively. The validation set’s RMSEP

and Rp for tomato stems in the NIR band were 1.986 and 0.787, respectively, and in the VIS
range were 2.113 and 0.711, respectively. By contrast, the validation set of SPA-PLS model for
tomato leaves and stems had a higher RMSEP and lower Rp compared with the GA-PLS model,
which indicates that the GA-PLS model has a higher prediction accuracy and stability than the
SPA-PLS model.

In summary, two spectrum selection algorithms, GA and SPA, were used and combined with
PLS regression to build a spectrum prediction model. The results show that the GA-PLS model is
better than the SPA-PLS model, so GA is chosen as the spectrum selection algorithm.

3.5 Prediction Results
Four prediction models, GA-PLS, GA-SVM, GA-PSO-BP, and GA-RF, were developed to pre-
dict the enzyme activities of stems and leaves of the tomato plant in the NIR and VIS wave-
lengths, respectively.

The average root means square error of the three enzymes and average coefficient of deter-
mination for the three enzymes were used as evaluation metrics. The results obtained are pre-
sented in Table 3.

To visualize the prediction of tomato enzyme concentration, GA-PLS-LEAF-NIR was used
as an example. The statistical analysis of the predicted and chemically detected values is pre-
sented in Table 4.

Table 3 Comparison of the accuracy of the four prediction models.

Prediction model Research object

Test set Validation set

Rp RMSE Rp RMSEP

GA-PLS LEAF-NIR 0.834 1.564 0.815 1.659

STEM-NIR 0.787 1.986 0.774 2.032

LEAF-VIS 0.812 1.585 0.783 1.754

STEM-VIS 0.746 2.001 0.711 2.113

GA-SVM LEAF-NIR 0.805 1.588 0.799 1.773

STEM-NIR 0.782 1.865 0.756 1.866

LEAF-VIS 0.788 1.792 0.776 1.911

STEM-VIS 0.757 1.954 0.732 1.995

GA-PSO-BP LEAF-NIR 0.865 1.005 0.832 1.559

STEM-NIR 0.772 2.006 0.759 1.992

LEAF-VIS 0.794 1.883 0.764 1.865

STEM-VIS 0.702 1.954 0.694 2.131

GA-RF LEAF-NIR 0.798 1.887 0.786 1.859

STEM-NIR 0.783 1.873 0.752 1.975

LEAF-VIS 0.734 2.113 0.710 2.221

STEM-VIS 0.715 1.874 0.701 2.201
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3.6 Validation of a Predictive Model for Tomato Enzyme Content
The samples not involved in the modeling were randomly selected as the validation set, and the
three enzyme contents of 21 samples were predicted by the GA-PLS-LEAF-NIR model. The
scatter plots of the predicted and measured values are shown in Fig. 8, where real value represents
the chemically detected enzyme activity and predicted value represents the enzyme activity pre-
dicted by the GA-PLS-LEAF-NIR model.

Table 4 Descriptive statistical analysis of the prediction of the three enzymes by the GA-PLS-
LEAF-NIR model.

Real value
Predicted
value

Real
value

Predicted
value

Real
value

Predicted
value

Average 4.972666667 4.854095233 7.394828 7.306207 34.66433 38.18133

Standard
error

0.070492411 0.068011376 0.129417 0.108856 1.10219 1.055575

Standard
deviation

POD 0.386102839 0.372513647 PAL 0.69693 0.586207 α-AMS 6.036944 5.781625

Variance 0.149075402 0.138766417 0.485712 0.343639 36.44469 33.42718

Minimum
value

4.33 4.11769 6.25 6.38 26.84 30.32

Maximum
value

5.84 5.72769 8.81 8.55 44.36 47.96

Fig. 8 Prediction effect of the validation set of the three enzymes: (a) comparison chart of POD
enzyme content validation set data, (b) comparison chart of PAL enzyme content validation set
data, and (c) comparison chart of α-AMS enzyme content validation set data.
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The Rp of GA-PLS in the NIR leaf model was 0.815 and RMSEP was 1.659, which had
good fit and prediction and helped to improve the model accuracy.

To compare the effectiveness of the four prediction models, they were applied to the problem
of enzyme content prediction in tomato plants. The results showed that the GA-PLS model has
the best prediction effect overall. Moreover, the effect of leaf prediction is better than that of stem
for the prediction of enzyme content in tomato plants, and the effect of prediction in the NIR band
is better than that in the VIS range. This also indicates that the GA-PLS model has a higher
prediction accuracy and stability than the other three models.

4 Discussion
In this study, the sensitivity of spectral data to reflectance of enzymatic activity was analyzed on
the spectral reflectance properties of tomato leaves and stems. In this study, the extraction of
characteristic wavelengths was optimized through outlier elimination, sample set division, selec-
tion of pretreatment methods, and optimization, as well as the use of four algorithms to construct
a prediction model of tomato enzyme activity, which provides a comprehensive non-destructive
method for the detection of tomato enzyme activity.

Upon examining the spectral response to varying enzyme activities, it was observed that the
spectral curve trends across different tomato plants exhibited similarities. The study identified
that the spectra of leaves and stems with differing enzyme activities displayed an overall increas-
ing trend in the 450 to 510 nm region, a smooth trend in the 700 to 800 nm range, and a descend-
ing trend in the 1350 to 1420 nm region. The average spectral reflectance of 140 tomato samples
was extracted using the hyperspectral imaging system. Through outlier elimination, sample set
partitioning, truncation operations, variable normalization, and two preprocessing methods
applied to the original spectrum, a GA-PLS model was constructed for comparison. The results
and graphical changes indicate that the preprocessing improves the modeling results compared
with the raw spectra modeling. This enhancement can be attributed to the smoother spectral curve
of the hyperspectral image preprocessing, increased model robustness, and a reasonable reduc-
tion in the effect of noise.30

In this study, GAwas used for feature wavelength selection. Some researchers have also used
competitive adaptive reweighted sampling to extract feature wavelengths to build a multiple lin-
ear regression prediction model for tomato leaves.31 Others used SPA to extract the characteristic
wavelengths to model the enzyme activity of leaves.32 Both achieved optimal performance. This
suggests that not all indicators are suitable for feature wavelength extraction using the GA. This
study establishes four regression models based on GA: PLS, RF, PSO-BP, and SVM; it was
found that all four models can detect enzyme activity. The performance of the model calibration
set is superior to the validation set, but the difference is not significant, indicating the stable
performance of these four methods without overfitting issues. Among them, the GA-PLS model
performs optimally. It can effectively deal with multicollinearity problems in multiple regression.
The correlation between predictors is reduced by extracting the principal components of the
predictors, thereby enhancing the stability and prediction accuracy of the model.

Future research could be conducted in the field by expanding the sample size and integrating
data over several years for comprehensive analysis, which could be practically applied for real-
time, rapid, and non-destructive monitoring in the field. Because deep learning has strong learn-
ing and feature extraction capabilities, more algorithms can be explored to improve the accuracy
of the model in future work. Using a more accurate and stable model, online monitoring equip-
ment for the enzyme activity of other crops can be developed.

5 Conclusions
Among the prediction models, the best spectral selection method obtained is GA, the best model
for predicting plants is GA-PLS, and the best study subject is tomato leaves in the NIR band. The
prediction set of the three enzymes of this model Rp is 0.815 and RMSEP is 1.659, showing that
the prediction is better. GA-PLS had the best prediction; GA-SVM, GA-PSO-BP, and GA-RF
were not as good. The PLS regression method reduces the data dimension and noise, whereas the
GA spectral selection algorithm filters out the most relevant wavelength subsets to improve the
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search ability and robustness. The GA-PLS model has the highest accuracy and stability in pre-
dicting enzyme content in tomatoes. This is why the GA-PLS algorithm is superior to other
algorithms. The results of the study were compared using two spectral options and four predictive
models. It provides a theoretical basis for how to measure the enzyme content in tomato plants in
a rapid and non-destructive manner. This paper also provides an effective method for phytochem-
ical analysis using hyperspectral imaging.
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