1 November 2007 Evaluating airborne hyperspectral imagery for mapping waterhyacinth infestations
Chenghai Yang, James H. Everitt
Author Affiliations +
Abstract
Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapping waterhyacinth infestations on Lake Corpus Christi in south Texas. Hyperspectral imagery with bands in the visible to near-infrared region of the spectrum was acquired from two study sites and minimum noise fraction (MNF) transformation was used to reduce the spectral dimensionality of the imagery. Four classification methods, including minimum distance, Mahalanobis distance, maximum likelihood, and spectral angle mapper (SAM), were applied to the MNF-transformed imagery for distinguishing waterhyacinth from associated plant species (waterlettuce, mixed herbaceous species, and mixed woody species) and other cover types (bare soil and water). Accuracy assessment showed that overall accuracy varied from 79% for SAM to 96% for maximum likelihood for site 1 and from 84% for minimum distance to 95% for maximum likelihood for site 2. Kappa analysis showed that maximum likelihood was significantly better than the other three methods and that there were no significant differences in overall classifications among the other three methods. Producer's and user's accuracies for waterhyacinth based on maximum likelihood were 94% and 100%, respectively, for site 1 and 100% and 95% for site 2. These results indicate that airborne hyperspectral imagery incorporated with image transformation and classification techniques can be a useful tool for mapping waterhyacinth infestations.
Chenghai Yang and James H. Everitt "Evaluating airborne hyperspectral imagery for mapping waterhyacinth infestations," Journal of Applied Remote Sensing 1(1), 013546 (1 November 2007). https://doi.org/10.1117/1.2821827
Published: 1 November 2007
Lens.org Logo
CITATIONS
Cited by 12 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Hyperspectral imaging

Image classification

Reflectivity

Mahalanobis distance

Roads

Near infrared

Earth observing sensors

Back to Top