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ABSTRACT 

This paper presents the study of propagation of elastic waves in nano structures using continuum approximation. The 
wave propagation characteristics in both 1-D and 2-D nanostructures, namely the carbon nanotubes and Graphene are 
studied in this paper.  In particular, the use of various gradient elasticity theories, namely the Eringen’s Stress gradient 
theory, the second and fourth order strain gradient theories, that brings in atomistic length scale parameters into the 
continuum governing equations, is used in this paper to study the wave propagation characteristics in the nano structures. 
Using these non-local theories, wave propagation in Single and Multi-wall carbon tubes and monolayer Graphene 
structures are studied. A number of examples are presented that brings out the essential wave propagation features such 
as escape frequency, cut-off frequencies, phase speeds and group speeds in these structures.    

Keywords: Nanostructures, carbon nanotubes, Graphene, wavenumber, group speeds, escape frequency, cut-off 
frequency.  

1. INTRODUCTION
Mathematical modeling of structures at the micro and macroscales are quite well known and the methods have been well 
established. The laws of physics, which is fundamental to any modeling, is pretty well understood at these scales. At the
nano meter levels, we need to deal with atoms, molecules and their interactions. The laws of physics, at these scales, are
not that well understood. The main difference lies in representing the models in different scales. That is, the philosophies 
of modeling at different scales are different.  At the nano scales, forces have no meaning, while at the micro and macro 
scales, they are the main drivers. At the nano scales, it is the interatomic potentials1 that plays an important part in
understanding the behavior of the nanostructures. A number of different inter atomic potentials have been propounded by
many scientists for different conditions and the reference1 gives a good overview of these potentials.  It is quite well
known that one can modify the bulk properties of the material by manipulating the atoms and molecules at the nano 
scales. That is, using the inter atomic potentials and the laws of physics at the nano scales, one has to predict the bulk 
properties such as phase information, structural property information etc as illustrated in Fig. 1 

Figure 1. Simulations as a bridge between microscopic and macroscopic. 

*krishnan@aero.iisc.ernet.in; phone 91 80 2293 3019; fax 91 80 23604551; www.aero.iisc.ernet.in/users/gopalkrishnan

Keynote Paper

Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2016,
edited by Vijay K. Varadan, Proc. of SPIE Vol. 9802, 98020N · © 2016

SPIE · CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2218203

Proc. of SPIE Vol. 9802  98020N-1



A

lo s

1s

lms
d

µs

1ns

1 ps

Density
Functional

Theory
(DFT)

Molecular
Dynamics

Simulations
(MDS)

Monte -
Carlo

Methods
(MCM)

Continuum
Models

J

I A 10 A no A woo A
Length

I ,
1 µm 10 µm

 
 

 
 

 
 

The most common approach to materials modeling is based on the divide and conquer strategy, wherein methods 
appropriate to particular length and time scales are used to address aspects of materials phenomena that operate only over 
those scales. This has led to several independent methodological streams, which can be broadly categorized as ab initio 
density functional theory, molecular dynamics, statistical methods based on Monte Carlo algorithms and continuum 
mechanics. Each of these methods is computationally intensive in its own right, and hence most of the initial efforts were 
directed in optimizing algorithms, potentials and parameters for each method individually, rather than generating in- 
formation for input into other methods.  

 
Figure 2. Different modeling schemes for various spatial scales. 

 

The Fig. 3.2 clearly shows the length and time scales over which these methods are valid. However, the expanding 
capabilities of computational methods due to the increasing power of computers and continuing development of efficient 
algorithms, together with advances in the synthesis, analysis and visualization of materials at increasingly finer spatial 
and temporal resolutions, has spawned a huge effort in the Multiscale descriptions of materials phenomena.  

Propagation of mechanical waves in macro-sized structures are normally studied using the concepts of elasticity. Most 
macrostructures such as rods, beams, plates and shells are studied using Theory of elasticity, which we normally refer to 
as Local theory. Nano structures are typically of nano meter size (1 x 10-9 m).  

Unlike continuum model, which describe a system in terms of a few variables such as mass, temperature, voltage and 
stress, which are highly suited for direct measurements of these variables, the physical world is composed of atoms 
moving under the influence of their mutual interaction forces. Atomistic investigation helps to identify macroscopic 
quantities and their correlations, and enhance our understanding of various physical theories. In the new modeling 
philosophy, due to computationally expensive atomistic simulation, many researchers have tried to embed the micro 
level properties such as bond-lengths into the continuum theories. A theory, which embeds micro-structural properties 
into theory of elasticity or local theory is called the Non-local theory. Among the many different non-local theories 
reported in the literature, gradient elasticity models are extensively used. There are two different gradient elasticity 
theories, namely the Eringen’s Stress Gradient Theory and Strain Gradient Theory. These theories will be briefly 
discussed in this paper. 

Next, we explain the need for wave propagation analysis in nanostructures.  Controlled experiments at the nano meter 
size is extremely difficult, especially to measure mechanical properties of nano structures and devices. Hernaandez et al.2 
used high-frequency laser-excited guided acoustic waves to estimate the in-plane mechanical properties of silicon nitride 
membranes. Mechanical properties and residual stresses in the membranes were evaluated from measured acoustic 
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dispersion curves. The mean values of the Young’s modulus and density of three Nano crystalline diamond films and a 
free standing diamond plate were determined by analyzing the dispersion of laser- generated surface waves by Philip et 
al.3. 

Nanostructures such as Carbon nanotubes (CNTs) can propagate waves of the order of terahertz (THz). THz waves in 
nanoscale materials and nano-photonic or nano-phononic devices have opened a new topic on the wave characteristics of 
nanomaterials4,5,6. They also have applications in CNTs and other applications 7,8,9. As dimensions of the material 
become smaller, however, their resistance to deformation is increasingly determined by internal or external 
discontinuities (such as surfaces, grain boundary, strain gradient, and dislocation). Although many sophisticated 
approaches for predicting the mechanical properties of nanomaterials have been reported, few addressed the challenges 
posed by interior nanostructures such as the surfaces, interfaces, structural discontinuities and deformation gradient of 
the nanomaterials under extreme loading conditions. The use of atomistic simulation may be a potential solution in the 
long run. However, it is well known that the capability of this approach is much limited by its need of prohibitive 
computing time and an astronomical amount of data generated in the calculations. Wave propagation analysis 
using continuum models, especially using non-local elasticity models can used to address the above problems.  
Wave propagation studies mainly include the estimation of wavenumber and wave speeds such as phase and group 
speeds. The concept of group velocity may be useful in understanding the dynamics of carbon nanotubes, since it is 
related to the energy transportation of wave propagation. The primary objective of this paper is to study the wave 
propagation in nanostructures, so as to examine the effect of length scales on the wave dispersion from the viewpoint of 
group velocity or energy transportation. To describe the effect of microstructures of a nanostructures on its mechanical 
properties, it is assumed that the model of the nanostructure is made of a kind of non-local elastic material, where the 
stress state at a given reference location depends not only on the strain of this location but also on the higher order 
gradient of strain, so as to take the influence of the microstructures into account. It is reported that both local elastic 
models (where effects of nano scale is not considered) and non-local elastic models (where the effect of scale is 
considered) can offer the correct prediction when the wavenumber is on the lower side. However, the results of the 
elastic model remarkably deviate from those given by the non-local elastic model with an increase in the wavenumber 10. 
As a result, the microstructures play an important role in the dispersion of waves in nanoscale structures. Since terahertz 
physics of nanoscale materials and devices are the main concerns in wave characteristics of nanostructures such as 
CNTs, the small-scale effect must be of significance in achieving accurate dispersion relations as the wavelength in the 
frequency domain is in the order of nanometers.  

Since controlled experiments at the nanoscale are difficult, and with atomistic simulation being computationally 
expensive, continuum modeling can prove to be very valuable in the advancement of nanoscale structures. In view of 
growing interest in terahertz vibrations and waves of nanoscale materials and devices, it is relevant to systematically 
study terahertz wave propagation in individual nanostructures. Since terahertz physics of nanoscale materials and devices 
are major concerns for nanostructure’s wave characteristics, small-scale effect needs be considered in the mathematical 
models (especially the continuum models) as the wavelength is normally of the order of nano meter. 

This paper is organized as follows. First, the non-local gradient elasticity theories are introduced. Then the wave 
characteristics in 1-D nanostructures such as nano rods, beams and 2-D nano structures such as the monolayer Graphene 
are studied next. Some interesting numerical examples are presented to bring out the essential features of wave 
characteristics in these structures. The paper ends with some important conclusions. 

2. THEORY OF GRADIENT ELASTICITY 
The every matter in this world is composed of atoms moving under the influence of their mutual inter-atomic forces. 
These interactions at microscopic scale are the physical origin of many macroscopic phenomena. Atomistic investigation 
helps to identify macroscopic properties and their correlations, which enhances understanding of various physical 
theories. There are many micro- continuum theories (which is normally referred to as Gradient Elasticity theories ) 
proposed to understand the behavior of materials at the atomistic scales. The fundamental difference between the micro-
continuum theories from the classical continuum theories is that, in the former, the microstructure properties are 
embedded within the framework of continuum theory or in other words, it is a nonlocal continuum model to describe the 
long-range material interaction. This extends the application of the continuum model to microscopic space and problems 
involving short-time scales.  
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Next we will to address the need for gradient elasticity theories. In the atomistic regimes, the experimental evidence and 
observations with newly developed devices such as atomic force microscopes have suggested that classical theory of 
elasticity is not sufficient for an accurate and detailed description of the deformation phenomena at the nanometer scales. 
More notably size effects could not be captured by theory of elasticity. Moreover, in the classical theory of elasticity, due 
to the assumption of point-to-point correspondence of stresses and strains, the elastic singularities arising due to 
application of point loads or occurring at dislocation lines and crack tips cannot be removed, and the same is true for 
discontinuities occurring at interfaces.  

The length scales of a material at atomistic scales are often sufficiently small, and hence for the applicability of classical 
continuum models, we need to consider the small length scales such as lattice spacing between individual atoms, grain 
size, etc. Although solution through molecular dynamics (MD) simulation is a possibility for such problems, its large 
computational cost prohibits its use for a general analysis. The conventional continuum models cannot handle scale 
effects. Hence the best alternative is to use those methods, which provide the simplicity of continuum models and at the 
same time incorporate the effects of scale in such chosen continuum models. This is done through the use of gradient 
elasticity theory. Here, we assume that stresses to depend on the strains not only at an individual point under 
consideration, however at all points of the body. In this theory, the internal size or scale could be represented in the 
constitutive equations simply as material parameters. Such a nonlocal continuum mechanics model has been widely 
accepted and has been applied to many problems including wave propagation, dislocation, crack problems, etc.11  

2.1 Eringen’s Stress Gradient Theory 

Eringen’s Stress Gradient Theory (ESGT) of elasticity assumes an equivalent effect due to nearest neighbor interaction 
and beyond the single lattice in the sense of lattice average stress and strain. In this theory, it is assumed that the stress 
state at any reference point given by coordinates x = (x

1
,x

2
,x

3
) in the body is assumed to be dependent not only on the 

strain state at this point, but also on the strain states at all other neighboring points given by coordinate vector x’ of the 
body. This is in accordance with atomic theory of lattice dynamics and experimental observations on phonon dispersion. 
The most general form of the constitutive relation in the nonlocal elasticity type representation involves an integral over 
the entire region of interest. The integral contains a nonlocal kernel function, which describes the relative influences of 
the strains at various locations on the stress at a given location. The constitutive equations of linear, homogeneous, 
isotropic, non-local elastic solid with zero body forces are given by 12 

!! σ kl ,k + ρ( fl − !!ul )=0  

where 

!!

σ kl(x)= α x − x ' ,ξ( )σ kl
c (x ' )dΩ(x ' )

Ω
∫

σ kl
c (x ' )= λrr(x ' )δ kl +2µεkl(x ' )

εkl(x ' )=
1
2

∂uk(x ' )
∂xl

' +
∂ul(x ' )
∂xk

'

⎛

⎝
⎜

⎞

⎠
⎟

 

Eqn. (1) is the equation of equilibrium, where !!σ kl ,ρ , fl and ul are the stress tensor, mass density, body force density and 
the displacement vector at a reference point x in the body, respectively, at time t. Eqn. (2) is the classical constitutive 

relation where σ
k

c
l
(x′) is the classical stress tensor at any point x′ in the body, which is related to the linear strain tensor 

ekl(x
’) at the same point through the Lame ́ constants λ and µ. Eqn. (2) is the classical strain-displacement relationship. 

The only difference between the above three equations in Eqns. (2) and the corresponding equations of classical 
elasticity is the introduction of first of the Eqn.(2), which relates the global (or nonlocal) stress tensor σkl to the classical 

stress tensor σ
k

c
l
(x’ ) using the modulus of nonlocal ness. The nonlocal modulus α(|x − x′|, ξ) is the kernel of the integral 

in the first of Eqn. (2) and contains parameters which correspond to the nonlocal parameter 13.  A dimensional analysis of 
first of the Eqn. (2) clearly shows that the nonlocal modulus has dimensions of (length)-3and hence it depends on a 
characteristic length ratio a/l, where a is an internal characteristic length (lattice parameter, size of grain, granular 

(1) 

(2) 
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distance) and l is an external characteristic length of the system (wavelength, crack length, size or dimensions of 
sample)14, Ω is the region occupied by the body. Therefore the nonlocal modulus can be written in the following form:  

!!
α =α x − x ' ,ξ( ) , !!ξ = e0al  

where e
0 is a constant appropriate to the material and has to be determined for each material independently14.  

After making certain assumptions14, the integro-partial differential equations of the stress gradient theory can be 
simplified to partial differential equations. For example, first of Eqn. (2) takes the following simple form:  

!! 1−ξ
2l2∇2( )σ kl(x)=σ kl

c (x)=Cklmnεmn(x)  

where 
!
Cijkl is the elastic modulus tensor of classical isotropic elasticity and !

ε ij is the strain tensor. where ∇ denotes the 

second order spatial gradient applied on the stress tensor !!σ kl ,k and !!ξ = e0l /a . The validity of Eqn. (4) is established by 
comparing the expressions for frequency of waves from the above ESGT model with those of the Born-Karman model of 
lattice dynamics14. Eringen reports a maximum difference of 6% and a perfect match for nonlocal constant value of e0 = 
0.3914. Eqn.(4)  on simplification will yield the following constitutive equations for 1-D and 2-D problems is given by 

!!

σ xx −(e0a)2
d2σ xx

dx2
= Eε xx

σ xx −(e0a)2
d2σ xx

dx2
+
d2σ xx

dy2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= E
1−ν 2 ε xx +νε yy( ) , !σ yy −(e0a)2

d2σ yy

dx2
+
d2σ yy

dy2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= E
1−ν 2 ε yy +νε xx( )

τ xy −(e0a)2
d2τ xy
dx2

+
d2τ xy
dy2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= E
2(1+ν )γ xy

 

where all the σ s and τ  have usual meaning.  

2.2 Strain Gradient Theory 

As mentioned earlier there are many strain gradient theories reported in the literature. The most notable of them is the 
Mindlin theory15 formulated in 1964. This theory’s constitutive model gives a total of 1764 coefficients in the 
constitutive matrix out of which 903 are independent. Even for isotropic material assumption, the number of independent 
constants to be determined is equal to 18. It is indeed a daunting task to determine them and hence, this theory, although 
is rich in completeness and theoretical basis, has very little practical use. Hence, in order to increase its utility and reduce 
the number of constants to be determined, many researchers including Mindlin have made series of assumptions on 
deformation field of the microstructure and many such theories have been reported in the literature. For wave 
propagation analysis, we need a simple theory that not only has less number of constants in the constitutive model, but 
also is stable. That is, one of the problems associated with the strain gradient theories is that in some theories, the 
governing differential equations are such that they give unstable or divergent solutions (see16] for more details on 
stability issues associated with strain gradient theories). Hence, in this paper, we will outline a very simple strain 
gradient theory that can provide good insight into propagation of waves in nanostructures. One such theory is the 
Laplacian based Strain Gradient Theory.  

Laplacian based strain gradient theories are extensively used in static analysis, especially in those structures involving 
cracks, primarily to overcome the effects of stress singularities near the crack tips. However its use in dynamic analysis 
is quite different, where it is primarily used to describe the dispersive wave propagation in a heterogeneous media. 
Laplacian based strain gradient theory can be derived using simple lattice model consisting of springs and masses shown 
in Fig 3. 

(5) 

(3) 

(4) 
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Figure 3. 1-D discrete lattice model 

The figure shows the deformation of the 1-D lattice at discrete points n+2, n+1, n,n-1,n-2, ......... Let us consider the 3 
particles in this lattice at points n,n-1, and n+1. If we isolate these points, draw the free body diagram and apply 
Newton’s second law, we get  

!! M!!un = K(un+1 −un)+K(un−1 −un)= K(un+1 −2un +un−1)  

Next, we will convert this discritized equation motion into a continuum equation. For this, we will expand the 
deformation of the n + 1 and n − 1 particles having a spacing d between them in Taylor’s series as  

!!
un−1 =un −d

dun
dx

+d2 12
d2un
dx2

− ........, !!un+1 =un +d
dun
dx

+d2 12
d2un
dx2

+ ........  

We assume that homogenized lattice has a Young’s modulus E and density ρ and they can be expressed in terms of the 
lattice spacing constant K and lattice mass M as E = Kd/A and M = ρAd, where A is the area of the equivalent continuum 
and d is the spacing of particles in the lattice. Using Eqn. (8) in Eqn. (7) and ignoring the higher order terms in the 
Taylor series and assuming un = u(x, t), we get  

!!
E d2u
dx2

+ 1
12d

2 d4u
dx4

⎛

⎝⎜
⎞

⎠⎟
= ρ d

2u
dt2

 

The equation above can be re-written as 

!!
E d
dx

ε + 1
12d

2 d2ε
dx2

⎛

⎝⎜
⎞

⎠⎟
= ρ d

2u
dt2

 

From the equation above, one can easily recognize that the left hand represents the constitutive model of the strain 
gradient theory and can be written as 

!!
σ = E ε + 1

12d
2 d2ε
dx2

⎛

⎝⎜
⎞

⎠⎟
 

The equation above represents the constitutive model for a 1-D case and this equation can be generalized to the 3-D case 
as 

!!
σ ij =Cijkl εkl + g

2 d
2εkl
dm2

⎛

⎝
⎜

⎞

⎠
⎟  

where g is the length scale parameter, which is normally expressed in terms of lattice parameter d and 
!
Cijkl   is the fourth 

order tensor. The constitutive model given in Eqn. (12) has been proposed by a number of researchers17,18. The main 
problem with the above constitutive models is that the final solutions provided by certain order of this constitutive model 
are neither unique nor stable. For example, the constructive model for the second order strain gradient mode of 1-D 
nanorod, which is given by  

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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!!
σ (x)= E ε(x)+ g2 d

2ε x
dx2

⎛

⎝
⎜

⎞

⎠
⎟  

is shown to be unstable (see10), while the fourth order strain gradient model of the same nanorod, whose constitutive 
model is given by  

!!
σ (x)= E ε(x)+ g2 d

2ε x
dx2

+ g4
d4ε x
dx4

⎛

⎝
⎜

⎞

⎠
⎟  

is found to be highly stable. However, Aifantis and his coworkers19,20 derived the second order strain gradient elasticity 
constitutive model as  

!!
σ ij =Cijkl εkl − g

2 d
2εkl
dm2

⎛

⎝
⎜

⎞

⎠
⎟  

Note that the main difference between Eqn. (13) and Eqn. (15) is that the negative sign before the higher order strain 
terms. The above models said to be highly stable. The sign of the gradient term and the issues of uniqueness and stability 
as opposed to their ability to describe dispersive wave propagation have opened up serious debates across the elasticity 
community; for example, see for instance the early study of Mindlin and Tiersten21 and Yang and Gao22 where this 
dilemma was aptly named as sign paradox  

3. WAVE PROPAGATION IN 1-D MODELS 
In this section, we will discuss the wave propagation characteristics of three different 1-D models, namely the Stress 
gradient Rods, Strain Gradient rods and Stress gradient beams.  

3.1 Eringen’s Stress Gradient Nano Rod: 

The first step in performing wave propagation analysis is to obtain the governing differential equation. Rods can sustain 
only the longitudinal motion along the axis of the nanorod system and hence the deformation field can be written as

!!u(x , y ,z ,t)=u(x ,t) . Using the constitutive model given by Eqn. (5) and theory of elasticity principle, one can write the 
governing differential equation for a stress gradient nanorod as 

!!
EA ∂

2u
∂x2

+(e0a)2ρA
∂4u

∂x2∂t2
= ρA∂

2u
∂t2

                                 

The first step in determining the wavenumber and group speeds is to first transform Eqn. (16) to frequency domain using 
Discrete Fourier Transform (DFT)  using the transformation given by 

!!
u(x ,t)= û

n=1

N

∑ (x ,ω )eiωt  

where N is the number of FFT points with ω as circular frequency. Here !!i = −1 . Substituting Eqn. (17) in Eqn. (16), 
the original PDE will be reduced to a set of ODEs, which are of constant coefficient type, whose solution will be of the 
form !!û(x ,ω )= Ae

ikx , where k is the wavenumber, which requires to be computed. Substituting the assumed constant 
coefficient solution in the reduced set of ODEs, we get the characteristic equation for computation of wavenumber, 
which is given by 

!!−k
2 +(e0a)2η2ω 2k2 +η2ω 2 =0  

where !!η = ρ /E . Solution of Eqn. (18) will yield  

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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!!
k1,2 = ± η2ω 2

1−(e0a)2η2ω 2  

The wave frequency is a function of wavenumber k, the nonlocal scaling parameter e
0
a and the material properties (E & 

ρ) of the nanorod. If e
0
a = 0, the wavenumber is directly proportional to wave frequency, which will give a non-

dispersive wave behavior. The cut-off frequency of this nanorod is obtained by setting k = 0 in the dispersion relation 
(Eqn. (18)). For the present case, the cut-off frequency is zero, that is, the axial wave starts propagating from zero 
frequency. The wavenumber as a function of nonlocal scale parameter e

0
a is shown in Fig.4. From this figure, one can 

observe that at certain frequencies, the wavenumber is tending to infinity and value of this frequency, which is called the 
escape frequency, decreases with increase in the scale parameter. Its value can be analytically determined by looking at 
the wavenumber  

!!
ω escape =

1
(e0a)η

= 1
(e0a)

E
ρ

 

 
(a) (b) 

               Figure 4. Dispersion relations for Eringen’s Nano Rods (a) Wavenumber relations (b) Group Speeds 

The escape frequency is inversely proportional to the nonlocal scaling param-eter and is independent of the diameter of 
the nanorod. The variation of the escape frequency with nonlocal scaling parameter is shown in Fig. 4(a). Next, we will 
compute the wave speeds, namely the phase speeds and the group speeds, whose expressions are given by  

!!
CP =

ω
k
= 1
η
[1−(e0a)2η2ω 2]1/2 ,!Cg =

dω
dk

= 1
η
[1−(e0a)2η2ω 2]3/2  

We see from Eqn. (21) that both phase and group speeds depend on the non-local parameter and the speeds depend on 
the frequency indicating the dispersiveness of the waves. When !!e0a→0 , we obtain the local rod solution, that is 

!!Cp =Cg =1/η = E /ρ . For the present analysis, a SWCNT is assumed as a nanorod. The values of the radius, 
thickness, Young’s modulus and density are assumed as 3.5 nm, 0.35 nm, 1.03 TPa, and 2300 kg/m3, respectively. Fig. 
4(a) shows the variation of the axial wavenumber of a nanorod. The thick lines represent the real part and the thin lines 
show the imaginary part of the wavenumbers. From the figure, for a nanorod, it can be seen that there is only one mode 
of wave propagation that is, the axial or the longitudinal. For local or classical model, the wavenumbers for the axial 
mode has a linear variation with the frequency, which is in the THz range. The linear variation of the wavenumbers 
denotes that the waves will propagate non-dispersively. On the other hand, the wavenumbers obtained from nonlocal 
elasticity have a non-linear variation with the frequency, which indicates that the waves are dispersive in nature. 
However, the wavenumbers of this wave mode have a substantial real part starting from the zero frequency. This implies 
that the mode starts propagating at any excitation frequency and does not have a cut-off frequency. At the escape 
frequency, which was defined earlier, the wavenumbers tends to infinity as shown in Fig. 4(a). Hence, the nonlocal 
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is called the escape frequency, decreases with increase in the scale parame-
ter. Its value can be analytically determined by looking at the wavenumber
expression (Eqn. (11.39)) and setting k ! 1. This value is given as

!escape =
1

(e0a)⌘
=

1

e0a

s

E

⇢
(11.40)

The escape frequency is inversely proportional to the nonlocal scaling param-
eter and is independent of the diameter of the nanorod. The variation of the
escape frequency with nonlocal scaling parameter is shown in Fig. 11.15.

Next, we will compute the wave speeds, namely the phase speeds and the
group speeds , whose expressions are given by

Cphase =
!

k
=

1

⌘

h

1� (e0a)
2⌘2!2

i1/2
(11.41)

Cgroup =
@!

@k
=

1

⌘

h

1� (e0a)
2⌘2!2

i3/2
(11.42)

These wave speeds also depend on the nonlocal scaling parameter. When
e0a = 0, both the wave speeds are equal (that is, Cphase = Cgroup = 1/⌘ =
p

E/⇢), which is already proved for local or classical bars/rods in Chapter 6.
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FIGURE 11.16 A Comparison of the phase speed dispersion in a nanorod
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e0a = 1.0 nm) elasticity theories.

eter. The variation of the escape frequency with nonlocal parameter is shown
in Fig. 11.15. It shows that, as e0a increases the escape frequency decreases,
such variation can also observed from Fig. 11.14. For very small values of e0a,
the escape frequencies are very large, and at higher values of e0a, the escape
frequencies are very small and approach to a constant value.

Fig. 11.16 and Fig 11.17, plots the wave speeds for the nanorod ob-
tained from both local and nonlocal models. Because of the linear variation
of wavenumber with wave frequency from local elasticity, the phase speed

(Cp = Real
⇣

!
k

⌘

) and group speed (Cg = Real
⇣

d!
dk

⌘

) for the axial mode has

a constant value for all the frequencies and hence, the wave does not change
its shape as it propagate. It can also be observed, that the axial wave speed is
similar for local and nonlocal cases at zero frequency. In nonlocal elasticity, at
escape frequency, the wavenumber tends to infinity and hence, the phase and
group speeds tends to zero, indicating localization and stationary behavior.

It can be concluded that the wave dispersion characteristics in a nanorod
is drastically di↵erent for local and nonlocal models. The local model predicts
that the wave will propagate at all frequencies, while the nonlocal model shows
that the wave will propagate up to certain frequencies only depending on the
nonlocal scaling parameter [260]. In other words, scale parameter introduces a
non periodic band gap over a frequency band where no wave propagates.The
results presented here gives a clear picture of physics of a wave propagating

(19) 

(20) 

(21) 
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elasticity model shows that the wave will propagate only up to certain frequencies and after that the wave will not 
propagate.  

From Eqn. (21), we see that escape frequency are purely the function of non-local scaling parameter. From Eqn. (20), we 
see that as the value of !!e0a increases, the numerical value of escape frequency decreases. Fig. 4(b) shows the variation of 
phase speeds with frequency. We can clearly see the shifting of the dispersion curves with the increase in the non-local 
parameter. In addition, one can see the extent of non-dispersiveness of waves in Eringen’s nano rods. 

3.2 Strain Gradient Nano Rod: 

Using the constitutive equations given by Eqn. (13) and (14), we can write the governing equations for the second and 
fourth order strain gradient rods as 

!!
EA(e0a)2

∂4u
∂x4

+EA ∂
2u

∂x2
− ρA∂

2u
∂t2

=0  

!!
EA(e0a)4

∂6u
∂x6

+EA(e0a)2
∂4u
∂x4

+EA ∂
2u

∂x2
− ρA∂

2u
∂t2

=0  

From the equations above, the spatial order of the governing equations has increased from two in local model to four in 
second order strain gradient model and six in the fourth order model.  Let us first consider the second order strain 
gradient model. Following the procedure outlined in the previous section, we can write the characteristic equation for 
wavenumber computation as 

!!(e0a)
2k4 −k2 +η2ω 2 =0  

Fourth order equation in spatial direction will yield four wave modes (2 incident waves and the rest reflected wave 
components). The corresponding phase speed and group speeds can be written as  

!!
CP
S = ω S

k
= 1
η

1−(e0a)2k 2 ,!!CgS =
dω s

dk
=
1−2(e0a)2k 2
η(1−(e0a)2k 2)

 

As before in the case of Eringen’s rod case, one can see that we can recover local rod solution by substituting !!e0 =0 .We 
will next compute one of the important feature of wave propagation of Second order SGT nanorods, which is its Critical 
Wavenumber, which is the wavenumber at zero frequency, which can be obtained from Eqn. (24) and its expression can 
be written as  

!!
kcr = ± 1

e0a
 

which is inversely proportional to the non-local parameter. As mentioned earlier, this rod will yield no-unique unstable 
solution (see 10 for details).  Next we will derive the dispersion relation for the fourth order strain gradient model, which 
is given by 

!!−(e0a)
4k6 +(e0a)2k4 −k2 +η2ω 2 =0  

Corresponding phase and group speed expressions can be written be as 

!!
CP =

ω
k
= 1
η

1−(e0a)2k2 +(e0a)4k4 ,!Cg =
dω
dk

=
1−2((e0a)2k2[1−(e0a)2k2]
η{1−(e0a)2k2[1−(e0a)2k2]}

 

Next, we will next plot the wavenumber and speeds with respect to the frequency. Such plots are generated using the 

diameter (d), Young’s modulus (E) and density (ρ) are assumed as 5 nm, 1.06 TPa, and 2270 kg/m3, respectively. The 
wavenumber relations are generated for !!e0a=0.2  and it is shown in Fig 5. 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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               Figure 5. Wavenumber relations for Strain gradient Nano Rods 

The waves in both second and fourth order strain gradient are non-dispersive unlike local rod. It can also be seen that the 
fourth-order strain gradient model give improved approximation over the second order strain gradient model, as 
compared to the classical continuum model. They are also compared with the results are of the Born-Karman model23 
(atomistic model) and the Eringen’s nano rod model presented previously.The instability of the Second order SGT model 

can be seen developing in Fig. 5 for wavenumbers larger than !!1/ e0a
 , where the angular frequency and the phase 

velocity become imaginary. This means that the waves with larger wavenumbers (or, equivalently, with smaller 
wavelengths) cannot propagate through this medium. Instead, the imaginary frequency and velocity imply that the 
response occurs everywhere in the medium instantaneously. This is physically unrealistic. Therefore, these smaller 
wavelengths should not be considered. Filtering shorter waves occurs automatically in a discrete medium, where 
wavelengths smaller than two times the particle size cannot be monitored. However, in a continuous medium, all 
wavelengths can in principle be present. Especially when shock waves are investigated, the loading triggers waves with 
all wavelengths. The imaginary angular frequency (or phase velocity) of these high-frequency waves prohibits a proper 

wave propagation simulation with this model. The cut-off value for the wavenumber occurs at !!k =1/ e0a  (see Fig. 5). 
In the response of the Fourth order strain gradient model, the effect of these high frequency waves are of minor 
importance. In summary, the wave behavior of the Second order strain gradient model and Fourth order models are quite 
different and in addition, instability in the second order model can be clearly seen.  

3.3 Stress Gradient Nano Beam: 

In this section we will derive the governing differential equation for a stress gradient nano rods. The beam deformation 
field is based on Euler-Bernoulii beam theory and is given by 

!!
u(x , y ,z ,t)=u0(x ,t)− z ∂w

∂x
, !!w(x , y ,z ,t)=w(x ,t)  

where w and u0  are the transverse and axial displacements of the point (x,0) on the middle plane (that is, z = 0) of the 
beam, where z is the thickness coordinate. The only nonzero strain of the Euler-Bernoulli beam theory, accounting for 
the strain is the axial strain given by  

!!
ε xx =

∂u
∂x

= ∂u0

∂x
− z ∂

2w
∂x2

  

Using the constitutive model given in Eqn. (5) and the theory of elasticity procedure, we get the following governing 
equation do stress gradient rod, which is given by 
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FIGURE 11.18 Wavenumber dispersion with wave frequency obtained
from classical continuum model, second and fourth order strain gra-
dient models.

second order strain gradient model, as compared to the classical continuum
model. They are also compared with the results are of the Born-Karman model
[16] (atomistic model), and the stress gradient model presented in Section.11.4

The instability of the Second order SGT model can be seen developing in

Fig. 11.18 for wavenumbers larger than 1p
e0a

, where the angular frequency

and the phase velocity become imaginary. This means that waves with larger
wavenumbers (or, equivalently, with smaller wavelengths) cannot propagate
through this medium. Instead, the imaginary frequency and velocity imply
that the response occurs everywhere in the medium instantaneously. This
is physically unrealistic. Therefore, these smaller wavelengths should not be
considered. Filtering shorter waves occurs automatically in a discrete medium,
where wavelengths smaller than two times the particle size cannot be moni-
tored. However, in a continuous medium, all wavelengths can in principle be
present. Especially when shock waves are investigated, waves with all wave-
lengths are triggered by the loading. The imaginary angular frequency (or
phase velocity) of these high-frequency waves prohibits a proper wave prop-
agation simulation with this model. The cut-o↵ value for the wavenumber

occurs at k = 1p
e0a

(see Fig. 11.18). In the response of the Fourth order

SGT model, the e↵ect of these high frequency waves are of minor importance.
In summary, the wave behavior in Second order FGT and Fourth order SGT
models are quite di↵erent and in addition, instability in the second order
model can be clearly seen.

(29) 

(30) 

(31) 
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!!
EI ∂

4w
∂x4

+ ρA∂
2w
∂t2

− ρA(e0a)2
∂4w

∂x2∂t2
 

we can clearly see that when !!e0a=0, we recover the governing equation of the local Euler Bernoulli beam. 

Next, we will transform Eqn. (31) to frequency domain using DFT and this procedure will transform the Governing PDE 
to a set of ODEs, which will again be constant coefficient type. Adopting the same procedure as was done for nano rods, 
we get the following characteristic equation for wavenumber computation, which is given by 

!!EIk
4 − ρAω 2(e0a)2k2 − ρAω 2 =0  

Fourth order equation will give four modes, two of which are forward moving wave modes, while the other two 
correspond to backward moving or reflected wave components. Solving Eqn. (32), we get 

!!
k1,2,3,4 = ±

ρAω 2(e0a)2 ± ρAω 2(4EI +ρAω 2(e0a)4
2EI  

From the above equation, we can see that unlike Eringen’s nano rod, the Eringen’s nano beam does not exhibit any 
escape frequency and in addition, cut-off frequency also does not exist for this kind of beam. The phase speed can be 
calculated from !!Cp =ω /k . The expression for group speed is given by 

!!
Cg =

2EIkα3 + ρA(e0a)2kα
ρAω(1+(e0a)2kα2 )

 

where !kα =1,2,3,4 corresponding to four wave modes . From this expression we can plot the dispersion relation. This 
plot will give full description of the wave propagation in beams. Both the speeds are also a function of nonlocal scaling 
parameter and wave circular frequency.  

The spectrum curves (wavenumber vs. frequency) and dispersion curves (group speed vs. frequency) are shown for both 
local and nonlocal continuum models in Fig. 6 (a) and Fig. 6 (b).  

 
Figure 6. Wavenumber and dispersion relations for Stress gradient Nano beams 

As mentioned earlier, the plot does not show the existence of escape or cut-off frequency and the behavior is pretty much 
the same as local beam solution. The main difference is that, the scale parameter changes the slope of the wavenumber 
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FIGURE 11.26 (a)Spectrum curves (Wavenumber dispersion), for a non-
local beam obtained from both local and nonlocal Euler-Bernoulli beam
theories (b) Dispersion curves (Group speed dispersion), for a nonlo-
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theories
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plot, which means substantial change in the group speeds as shown in Fig. 6(b). That is, introduction of scale parameter, 
reduces the group speeds in comparison with local Euler-Bernoulli beam.  

4. WAVE PROPAGATION IN 2-D MODELS 
Graphene are 2-D nanostructures and these structures, unlike CNTs, exhibit behavior in the two coordinate directions. 
That is, a load in the direction of one of the coordinates will give rise to deformations in both the coordinate directions. 
In wave propagation terminology, an incident wave in one of the coordinate directions will cause circularly crested 
waves that can be resolved in two coordinate directions. This means, there will be two different wavenumbers 
corresponding to two coordinate directions. 

Although the existence of Graphene in different forms was known, there was difficulty in extracting its pristine form. For 
the first time, it was possible to isolate single two dimensional atomic layers of atoms24. These are among the thinnest 
objects imaginable. The strongest bond in nature, the C-C bond covalently locks these atoms in place giving them 
remarkable mechanical properties. A single layer of Graphene is one of the stiffest known materials characterized by a 
remarkably high Young’s modulus of approximately 1 TPa 25. Graphene is a class of two-dimensional carbon 
nanostructure, which holds great promise for the vast applications in many technological fields. After the Graphene 
sheets were successfully extracted from graphite, the researchers have realized the volume of potential applications. It 
would be one of the prominent new materials for the next generation nano-electronic devices. Reports related to its 
applications as strain sensor, mass and pressure sensors, atomic dust detectors, enhancer of surface image resolution are 
reported in the literature. In addition, Graphene structures find application such as atomic-force microscopes, composite 
nano fibers, nano bearings and nano actuators, etc. Consequently interest is drawn towards research of Graphene in the 
field of physics, material science and engineering26. With the difficulty for the controlled experiments at the nanometer 
scale, the numerical simulation has been performed widely to understand the behavior of these structures. In this paper, 
we will use continuum modeling using non-local elasticity to model these 2-D nanostructures to understand the wave 
propagation behavior in these structures. The importance of size effects and need for non-local theories is not elaborated 
or emphasized again here and it is implicit that these effects are again important in the context of modeling 2-D 
nanostructures. Studies on wave propagation aspect of Graphene sheets available in literature are extremely scarce. 
Graphene sheets can have interesting waveguide properties at very high frequencies in the order of Tera-Hertz (THz), 
which is the subject of investigation of this section.  

4.1 Governing Equations for Flexural Wave Propagation in Mono- layer Graphene Sheets  

Graphene sheet is idealized as 2-D plate that is subjected to both in-plane and out-of-plane loading. As a result, the 
Graphene sheet can undergo both axial, bending and shear deformation. Fig. 7(a) shows a rectangular Graphene sheet 
and Fig. 7(b) shows its equivalent continuum model.  

 
Figure 7. Single-layered Graphene sheet: (a) Discrete model (a monolayer Graphene of 40 ×40, consists of 680 carbon 

atoms arranged in hexagonal array) (b) Equivalent continuum model.  
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plates, follows classical plate theory (CLPT) and they can be written as

u1(x, y, z, t) = u(x, y, t)� z
@w(x, y, t)

@x

u2(x, y, z, t) = v(x, y, t)� z
@w(x, y, t)

@y
, u3(x, y, z, t) = w(x, y, t)

Here u, v and w denote displacement along x, y and z directions, respectively
(see Fig. 11.34).
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FIGURE 11.34 Single-layered graphene sheet: (a) Discrete model (a
monolayer graphene of 40 ⇥40 , consists of 680 carbon atoms arranged
in hexagonal array) (b) Equivalent continuum model.

The strains can be calculated using strain displace net relations as

"xx =
@u1
@x

=
@u

@x
� z

@2w

@x2
(11.140)

"yy =
@u2
@y

=
@v

@y
� z

@2w

@y2
(11.141)

�xy =
@u1
@y

+
@u2
@x

=
@u

@y
+

@v

@x
� 2z

@2w

@x@y
(11.142)

"zz = 0, �xz = 0, �yz = 0 (11.143)

It can be noted that the nonlocal behavior enters through Eringen’s non-local
constitutive law the discussed in the earlier section of this chapter. Hence, this
can be applied to derive the equilibrium equations of the nonlocal plates or
mono layer graphene sheet.

Using the Principle of Virtual Work , following equilibrium equation ex-
pressed in terms of stress resultants and transverse displacement w(x, y, t) can
be obtained as [301]

@2Mxx

@x2
+2

@2Mxy
@x@y

+
@2Myy

@y2
= J0

@2w

@t2
�J2

 

@4w

@x2@t2
+

@4w

@y2@t2

!

(11.144)
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Here, the Graphene is treated as an isotropic plate. If w(x,y,t) is the transverse displacement, the governing differential 
equation for such a structure considering Eringen’s non-local model constitutive relations (Eqn.(6)) is given by (see 10 for 
more details) 

!!

C11I2
∂4w
∂x4

+2(C12 +2C66)I2
∂4w

∂x2∂ y2
+C22I2

∂4w
∂ y4

− J0(e0a)2(
∂4w

∂x2∂t2
+ ∂4w
∂ y2∂t2

)

+ J2(e0a)2(
∂6w

∂x4 ∂t2
+2 ∂6w

∂x2∂ y2∂t2
+ ∂4w
∂ y2∂t2

)+ J2
∂2w
∂t2

− J0
2( ∂4w
∂x2∂t2

+ ∂4w
∂ y2∂t2

)=0  

where 

!!

C11 =C22 =
E

1−ν 2 ,!C12 =C21 =
νE
1−ν 2 ,!C66 =G =

E
2(1+ν )

I2 = z2dz , !J0 = ρzdz
−h/2

h/2

∫ , !J2 =
−h/2

h/2

∫ ρz2dz
−h/2

h/2

∫
 

with !!E ,ρ ,ν and z being the Young’s Modulus, density, Poisson’s ratio and thickness coordinate, respectively. 

4.2 Wave Dispersion Analysis: 

The deformation field is transformed to frequency domain and it is assumed that the model is unbounded in Y −direction 
(although bounded in X−direction). Thus the assumed form is a combination of Discrete Fourier transforms in 
Y−direction and Fourier transform in time, which is written as  

 

!!
w(x , y ,t)= ŵ(x)e− iη yeiωnt

m=1

M

∑
n=1

N

∑  

The ωn and the ηm are the circular frequency at nth sampling point and the wavenumber in Y−direction at the mth sampling 

point, respectively. The N is the index corresponding to the Nyquist frequency in FFT, and !! j = −1 . Substituting 
Eqn.(36) in Eqn.(35), we get  the following ODE 

!!
H4
d4ŵ
dx4

+H2
d2ŵ
dx2

+H0ŵ =0  

where 

!!

H4 =C11I2 − J2(e0a)2ωn
2 ,

H2 = −2(C11 +2C66)I2ηm
2 + J0(e0a)2ωn

2 −2J2(e0a)2ηm
2ωn

2 + J2ωn
2 ,

H2 =C22I2ηm
2 − J0(e0a)2ωn

2 − J2(e0a)2ηm
2ωn

2 − J0ωn
2 − J2ωn

2ηm
2

 

Since this is an ODE is having constant coefficients, its solution can be written as !! ŵ(x)= !we
ikx , where k is the 

wavenumber in the X−direction, yet to be determined and ! !w is an unknown wave coefficient. Substituting this assumed 
form of !!ŵ(x) in the ODE gives for !! !w ≠0 ), we get the characteristic equation for computation of 
wavenumber as 

!!H4k
4 +H2k

2 +H0 =0  

Solving the above equation, we get 

(35) 

(36) 

(37) 

(38) 

(39) 
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!!
k = ±

−H2 ± H2
2 −4H0H4

2H4
 

Next, we compute the group speed !!Cg = dω /dk , which is given by 

!!
Cg =

4H4k
3 +2H2k

G4k
4 +G2k

2 +G0
 

where 

!!

G4 = −2J2(e0a)2ωn , !G2 =2J0(e0a)2ωn −4 J2(e0a)2ηm
2ωn +2J2ωn

G0 = −2J0(e0a)2ηm
2ωn −2J2(e0a)2ηm

2ωn −2J0ωn −2J2ωnηm
2  

From the above expressions, we see that both the group speeds and wavenumber are functions of Y-directional 
wavenumber and the non-local scale parameter. 

Looking at Eqn. (37), the term H0 indicates the possibility of a waveguide having cut-off frequencies. This is obtained by 
setting k = 0 in the dispersion relation (Eqn. (40)) that is, for the present case one can set H0= 0, which gives the cut-off 
frequency expression as  

!!
ω c =

C22I2ηm
4

( J0 + J2ηm
2 )(1+(e0a)2ηm

2  

The cut-off frequency is directly proportional to the Y−directional wavenumber (ηm) and is also dependent on the 
nonlocal scaling parameter. For ηm = 0, the wavenumbers of the flexural wave mode have a substantial real part starting 
from the zero frequency, which implies that the mode starts propagating at any excitation frequency and does not have a 
cut-off frequency. For !!ηm ≠0 , the flexural wave mode, however, has a certain frequency band within which the 
corresponding wavenumbers are purely imaginary. Thus, the wave mode does not propagate at frequencies lying within 
this band. These wavenumbers have a substantial imaginary part along with the real part, thus these waves attenuate as 
they propagate.  

Next, the term H4 in Eqn. (37) indicates the possibility of a waveguide having escape frequencies. Its value can be 
analytically determined by looking at the wavenumber expression and setting k → ∞. This accounts to setting the H4 = 0, 
which gives  

!!
ω e =

1
e0a

C11I2
J2

 

Next, we will investigate the relations derived above and plot the wave behavior in the monolayer Graphene sheet. For 
the present wave propagation analysis, the material properties of the Graphene are assumed as follows: Young’s modulus 
E = 1.06 TPa and density ρ = 2300 kg/m3. The choice of effective wall thickness t of nanostructures such as CNT, 
Graphene, etc., is a long-standing issue in nano mechanics. One of the best approaches to estimate the thickness of CNT 
(that is, rolled Graphene sheet) is to model single-wall CNTs as linear elastic thin shells 27. The shell thickness t is 
determined by fitting the atomistic simulation results of tensile rigidity and bending rigidity of single-wall CNTs. Such 
an approach gives the CNT thickness t much smaller than the graphite inter-layer spacing 0.34 nm, ranging from 0.06 to 
0.09 nm. The scattered CNT thickness 0.06 − 0.09 nm depends on the inter- atomic potential as well as simulation 
details. The thickness of the Graphene chosen here is equal to t = 0.089 nm, obtained by Kudin et. al.27 via ab inito 
com

︎
putations. They defined the effective thickness of Graphene or CNTs as

!!t = 12!x!Bending!regidity/Tension!regidity . 

(40) 

(41) 

(41) 
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The flexural wavenumber dispersion with wave frequency in the Graphene s shown in Figs. 8 (a) and 8 (b), respectively, 
obtained from both local and ESGT theories. For the present analysis, the nonlocal scaling parameter is assumed as e0a = 
0.5 nm.  

 
Figure 8. Wavenumber dispersion in monolayer Graphene sheets (a) local elasticity (e0a = 0 nm) (b) Nonlocal elasticity (e0a 

= 0.5 nm). Wavenumber variation at lower frequencies is shown separately for clear visibility  

The spectrum curves shown in Fig. 8(a) is for ηm = 0 (1D wave propagation), 3, 5, 10 nm-1. The local elasticity 
calculation shows that the flexural wavenumber follow a nonlinear variation at low values of wave frequency; and at 
higher frequencies, it varies linearly as shown in Fig. 8(a). This nonlinear variation indicates that the waves are 
dispersive in nature, that is, the waves will change their shape as they propagate. The linear variation indicates that the 
waves are in non-dispersive nature. For ηm = 0, the wavenumbers of the flexural wave mode does not have a cut-off 
frequency. As ηm increases, all the waves are still dispersive in nature as shown in Fig. 8(a). As the Y−directional 
wavenumber increases from 0 to 10 nm-1, the wave modes are having a frequency band gap region, within which the 
corresponding wavenumbers are purely imaginary. Thus, the flexural mode does not propagate at frequencies lying 
within this band. Hence, these wavenumbers have a substantial imaginary part along with the real part, thus these waves 
attenuate as they propagate. It can also be seen that from Fig. 8(a), that the frequency band also increases with increase in 
ηm. 

The wavenumber dispersion with frequency obtained from nonlocal elasticity (e0a = 0.5 nm) is shown in Fig. 8(b). The 
observations made in local elasticity are still valid in nonlocal elasticity also. The only difference is that, because of 
nonlocal elasticity, the wavenumbers of the flexural wave become highly non-linear and tends to infinity at escape 
frequency. It can be seen that the wavenumbers before escape frequency are real and after that imaginary. The cut-off 
frequency of the flexural wave for ηm = 3, 5 and 10 nm-1, respectively, occurs at 0.8087 THz, 2.2280 THz, and 8.6820 
THz in local/classical elasticity, and at 0.4578 THz, 0.8392 THz, and 1.7090 THz in nonlocal elasticity (e0a = 0.5 nm). 
The nonlocal scale highly affects the frequency band gap of the flexural waves in Graphene sheet. The escape frequency 
of this flexural wave is 6.9580 THz for e0a = 0.5 nm. It has also been observed that the escape frequencies are 
independent of ηm from Fig. 8(b).  

5. CONCLUSIONS 
This paper discusses the propagation of elastic waves in 1-D and 2-D nanostructures using gradient elastic models. Two 
different gradient elasticity models, namely the Erigen’s Stress Gradient model and Mindlin’s Strain Gradient models 
were discussed in this paper. Using this gradient elasticity models, waves in Nano rods, elementary beams and 
monolayer Graphene was analyzed. It was shown that, the scale parameter significantly changes the wave parameter as 
compared to local theory. The results show that the scale parameter introduces an escape frequency, beyond which no 
propagation takes place. The predicted results using non-local theories are shown to match very well with those predicted 
using atomistic simulation at fraction of a cost.  
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FIGURE 11.35 Wavenumber dispersion in monolayer graphene sheets (a)
local elasticity (e0a = 0 nm) (b)nonlocal elasticity (e0a = 0.5 nm).
Wavenumber variation at lower frequencies is shown separately for clear
visibility
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