PROCEEDINGS OF SPIE

Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XV

Diana L. Huffaker Holger Eisele Editors

29–31 January 2018 San Francisco, California, United States

Sponsored and Published by SPIE

Volume 10543

Proceedings of SPIE 0277-786X, V. 10543

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.

Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XV, edited by Diana L. Huffaker, Holger Eisele, Proc. of SPIE Vol. 10543, 1054301 · © 2018 SPIE CCC code: 0277-786X/18/\$18 · doi: 10.1117/12.2322683

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XV, edited by Diana L. Huffaker, Holger Eisele, Proceedings of SPIE Vol. 10543 (SPIE, Bellingham, WA, 2018) Seven-digit Article CID Number.

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510615717

ISBN: 9781510615724 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445

SPIE.org

Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/18/\$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

∨ ∨ii	Authors Conference Committee
	NANOWIRE: LASERS AND EMITTERS
10543 03	Recent progress in nanowire quantum-dot lasers (Invited Paper) [10543-2]
10543 06	Numerical analysis of nanowire surface recombination using a three-dimensional transient model [10543-5]
	NANOSTRUCTURES: GROWTH AND ANALYSIS
10543 09	Impact of phosphorus ion implantation on the material and optical properties of InAs/GaAs quantum dots [10543-8]
10543 0A	Electrical characteristics of silicon nanowires solar cells with surface roughness [10543-9]
	NANOWIRES: OPTOELECTRONICS AND PLASMONICS
10543 01	Engineering III-V nanowires for optoelectronics: from epitaxy to terahertz photonics (Invited Paper) [10543-17]
	QUANTUM DOTS: EPITAXY TO APPLICATION
10543 OK	Droplet etching during semiconductor epitaxy for single and coupled quantum structures (Invited Paper) [10543-20]
10543 OL	Quantum dot growth on (111) and (110) surfaces using tensile-strained self-assembly (Invited Paper) [10543-21]
10543 OM	Ultrafast and nonlinear dynamics of InAs/GaAs semiconductor quantum dot lasers (Invited Paper) [10543-22]
10543 ON	Plasmonic induced transparency in graphene oxide quantum dots [10543-23]

POSTER SESSION

10543 OR	Co-relation of theoretical simulation with experimental results for InAs quantum-dot heterostructures with different capping material [10543-29]
10543 OS	Highly efficient InAs/InGaAs quantum dot-in-a-well heterostructure validated with theoretically simulated model [10543-30]
10543 OU	Effect of various capping layer on the hydrostatic and biaxial strain of InAs QDs in x (100) and z (001) direction $[10543-32]$
10543 OW	Application of silver nanostructures deposited on silicon in SERS for detection of pyridine [10543-34]
10543 OX	Polymer-coated silicon nanoparticle synthesis for optical applications [10543-35]
10543 10	Deposition of cadmium sulfide and cadmium selenide thin films using chemical bath deposition technique [10543-38]

Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abel Razek, Sara, OW Adeyemo, Stephanie O., 01 Arakawa, Yasuhiko, 03 Arsenijevic, D., 0M Baig, Sarwat A., Ol Bhaawat, P., 09 Bhatt, M., OR, OS Bimberg, D., 0M Bishel, David, 10 Boland, Jessica L., Ol

Chakrabarti, Subhananda, 09, 0R, 0S, 0U

Chavan, Vinayak, 09, 0U Cheung, William, 10 Damry, Djamshid A., 01 Das, Debabrata, 0U Davies, Christopher L., 01 Dong, Lifeng, 10 D'Souza, Francis, ON Dubey, S., OR, OS

Ghadi, H., OR, OS Girgis, E., 0X

Grillot, Frédéric, 0M

Hameed, Mohamed Farhat O., 0A

Hansen, W., 0K Herz, Laura M., 01 Heyn, Ch., 0K Huang, H., 0M Huffaker, Diana L., 06 Hussein, Mohamed, 0A Jagadish, C., 01

Johnston, Michael B., Ol Joyce, Hannah J., 01

Karna, Sanjay, ON Küster, A., OK

Liang, Baolai, 06

Saha, Jhuma, 0U Simmonds, Paul J., OL

Linares-Garcia, Anthony, 10

Mahat, Meg, 0N Mandal, A., 09 Mini, Joseph, 10 Mondragon, Ivan, 10 Montes, Salvador, 10 Neogi, Arup, 0N Obayya, S. S. A., 0A Panda, Debiprasad, 0U Ren, Dingkun, 06 Rong, Zixuan, 06 Rostovtsev, Yuri, ON

Singh, P. K., OR, OS Sousa, Erik, 10

Zocher, M., 0K

Subrahmanyam, N. B. V., 09 Swillam, Mohamed A., 0A, 0W, 0X

Tan, H. Hoe, Ol Tatebayashi, Jun. 03 Tharwat, C., 0X Upadhyay, S., 09 Uswachoke, Chawit, 01 Wong-Leung, Jennifer, 01 Zhang, Liangmin, 10

٧

Conference Committee

Symposium Chairs

Connie J. Chang-Hasnain, University of California, Berkeley (United States)

Graham T. Reed, Optoelectronics Research Centre, University of Southampton (United Kingdom)

Symposium Co-chairs

Jean-Emmanuel Broquin, IMEP-LAHC (France) **Shibin Jiang**, AdValue Photonics, Inc. (United States)

Program Track Chairs

Ali Adibi, Georgia Institute of Technology (United States) **David L. Andrews**, University of East Anglia (United Kingdom)

Conference Chairs

Diana L. Huffaker, University of California, Los Angeles (United States) **Holger Eisele**, Technische Universität Berlin (Germany)

Conference Program Committee

Baolai L. Liang, California NanoSystems Institute (United States)
Huiyun Liu, University College London (United Kingdom)
Zetian Mi, McGill University (Canada)
Jeffrey C. Owrutsky, U.S. Naval Research Laboratory (United States)
Qi Hua Xiong, Nanyang Technological University (Singapore)

Session Chairs

- Nanowire: Lasers and Emitters
 Holger Eisele, Technische Universität Berlin (Germany)
- 2 Nanostructures: Growth and Analysis Juan Salvador Dominguez Morales, Tyndall National Institute (Ireland)
- 3 Nanowires: Growth and Characterization **Jun Tatebayashi**, Osaka University (Japan)

- 4 Nanowires: Optoelectronics and Plasmonics **Baolai Liang**, California NanoSystems Institute (United States)
- Quantum Dots: Epitaxy to ApplicationHannah J. Joyce, University of Cambridge (United Kingdom)