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ABSTRACT

We describe a new procedure for three-dimensional (3D) region-of-interest (ROI) reconstruction from transversely-
truncated cone-beam projections acquired with a circular source trajectory. This method is an extension to 3D
of the virtual fan-beam (VFB) method. It is based on a VFB formula that performs the backprojection in the
acquisition geometry. Our simulation results show that the ROI reconstruction of the 3D Shepp-Logan phantom
is very similar to the one obtained by the Feldkamp, Davis, Kress (FDK) algorithm without truncation. However
the reconstruction of the Forbild head phantom shows artefacts which are absent from the FDK truncation-free
reconstruction.

Keywords: Computed tomography, cone-beam reconstruction, circular-scan, transverse-truncation, virtual fan-
beam method

1. INTRODUCTION

In three-dimensional (3D) cone-beam computed tomography (CBCT), a common source trajectory is a circular
scanning around the object. The plane containing the circular source trajectory is usually called the central
plane, midplane or source plane. From Tuy’s data sufficiency condition,1 we know that mathematically ex-
act reconstruction of the object density is possible only in the midplane. In case of non-truncated cone-beam
projections, the well-known and widely used Feldkamp-Davis-Kress (FDK) algorithm2 provides exact recon-
struction in the central plane and approximate reconstruction elsewhere. This algorithm, which can be seen as a
heuristic extension of the fan-beam filtered backprojection (FBP) formula for two-dimensional (2D) reconstruc-
tion, applies a ramp filter to each projection row. Consequently, the FDK formula is not suitable for treating
transversely-truncated cone-beam projections.

We distinguish two kinds of situations with transverse truncation. In the first one, the detector is placed off-
center so that, even if the detector does not cover the object laterally, each ray-line in the midplane is measured
at least once during a 360° scan. It is thus possible, in the midplane, to obtain the missing information of a
truncated projection from other projections. Elsewhere, the same procedure is applied to all the other rows of
the projections even though the missing rays and measured rays have a different angle with the central plane.
Using this idea, several methods have been proposed such as a pre-convolution weighting of the projections before
applying the FDK3 and a 3D version of a Katsevich-type FBP.4

The second kind of situation with truncated cone-beam projections is when the detector, which still does not
cover the whole object, is centered (when a ray-line passing through the center of rotation of the source hits the
center of the detector). In that case, we define the measured area as the region imaged by every source position,
and it corresponds to the volume inside a cylinder which does not contain the whole object. Considering a full
scan acquisition trajectory, it follows that, in the midplane, every line passing through this area is measured.
So we call field-of-view (FOV) the midplane slice of the measured area. In this situation, it is not possible to
obtain missing line-integrals in the midplane from other source positions so the previous methods cannot be
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applied. However, there are two analytical methods which can perform region-of-interest (ROI) reconstruction
from truncated projections in the midplane: the differentiated back-projection (DBP)5,6 method, also called
back-projection filtration (BPF)7 ; and the virtual fan-beam (VFB) method.8 The BPF has been extended to
three dimensions9 but, to our knowledge, not the VFB method. In this work, we propose to extend the VFB
method to 3D ROI reconstruction in the case of transversely-truncated cone-beam projections acquired with a
circular source trajectory.

In the usual 2D context, the principle of the VFB method is to identify a virtual source trajectory for which
we have non-truncated projections and to rebin the truncated projections into this geometry. Then, super-short-
scan formulas10 can be used to perform the reconstruction. To choose the virtual trajectory, we use the fact that
acquired data can be rebinned into non-truncated projections for any point inside the FOV and outside the convex
hull, as we have access to the integral of any half-line extending from this point. In a previous contribution,
we proposed a VFB formula11 for a circular fan-beam acquisition geometry, for which the backprojection was
performed in the acquisition geometry. In this work, we extend this approach to 3D.

2. THEORY

2.1 Notation

Let θ⃗λ = (cosλ, sinλ, 0), η⃗λ = (− sinλ, cosλ, 0) and e⃗z = (0, 0, 1) (in 2D , the last component of θ⃗λ and η⃗λ
is discarded). Let f denote the 3D object density to be reconstructed. The cone-beam projections of f for a
circular source trajectory of radius RA acquired on a flat detector placed at the origin O are defined by

ḡRA(λ, u, v) =

∫ +∞

0

f

(
RAθ⃗λ + l

−RAθ⃗λ − uη⃗λ + ve⃗z√
R2

A + u2 + v2

)
dl (1)

where λ ∈ Λ = [0, 2π) and S(Λ) = RAθ⃗Λ is the set of vertices (cone-beam source locations) of the trajectory (see
figure 1).

Figure 1. The circular acquisition geometry of center O and radius RA. The point S(λ) is a vertex of the trajectory. A
ray passing through the point P on the detector placed at the origin O is identified by the parameters (λ, u, v).

In 2D, the fan-beam projections of f for a circular source trajectory of radius RA with angular parametrization
are defined by

gRA(λ, γ) =

∫ ∞

0

f(RAθ⃗λ − tθ⃗λ+γ)dt (2)

where γ ∈ (−π/2, π/2) is the usual ray-angle measured counterclockwise with respect to the central ray (which
is defined by the source and the center of rotation). The parameters u and γ (respectively for equispaced rays
and equiangular rays) are linked by u = RA tan γ so, in the midplane, we have

gRA(λ, γ) = ḡRA(λ,RA tan γ, 0) and ḡRA(λ, u, 0) = gRA(λ, arctan(u/RA)). (3)

2.2 Configuration studied

We consider the following configuration. The measured area is the volume inside a cylinder of center O, extended
axially without limit since we consider no axial truncation. We assume that the support of the object function
is contained within a known ellipsoid which extends outside the measured area (see figure 2 left).
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Figure 2. Left: the ellipsoid object is partially covered by the cylindrical measured area (drawn in red).
Right: situation in the midplane. The circular FOV of center O and radius RF covers only a part of the elliptic object.
The virtual trajectory is the black arc of circle of center O and radius RV = RF and the vertical black dashed line is the
boundary of its convex hull.

2.3 The VFB formula used in the midplane

In the midplane, the 2D slice of the object has an elliptic support and the FOV has a circular support. The
chosen virtual trajectory is the arc of circle at the border of the FOV and outside the object (see figure 2 right).
In that case, the area for which the VFB method is mathematically exact is the convex hull of the virtual

Figure 3. The parameters (λi, γi) of a ray for source trajectories of radius Ri with i ∈ {1, 2} are linked through s = Ri sin γi
and ϕ = λi + γi.

trajectory.

We now recall our VFB formula from.11 The rebinning relations between two trajectories with different
radius can be seen on figure 3. The data are first rebinned from the acquisition geometry of radius RA to the
virtual geometry of radius RV using

gRV (λ, γ) = gRA(λ+ γ − γRV

RA
, γRV

RA
) (4)

where

γRV

RA
= arcsin

(
RV

RA
sin γ

)
. (5)

Then, differentiation and Hilbert filtering are performed on the non-truncated projections in the virtual geometry
with

gRV

F (λ, γ) =
1

2π

∫ π

−π

hH(sin(γ − γ′))(∂1 − ∂2)g
RV (λ, γ′)dγ′. (6)

where hH(s) =
∫
R −i sign(σ)e2iπσsdσ denotes the Hilbert filter and ∂i corresponds to the partial derivative with

respect to the i-th variable. As the virtual trajectory is not a full scan, the redundancy in the filtered projections
is handled by applying a weight wRV (that we do not detail) to gRV

F : g̃RV

F (λ, γ) = wRV (λ, γ) gRV

F (λ, γ). Next, the
filtered projections in the acquisition geometry are obtained from the filtered projections in the virtual geometry
by

gRA

F (λ, γ) =
RA cos γ√

R2
V −R2

A sin2 γ
g̃RV

F (λ+ γ − γRA

RV
, γRA

RV
) (7)
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where

γRA

RV
= arcsin

(
RA

RV
sin γ

)
. (8)

Finally, the backprojection is performed in the acquisition geometry. For every x⃗ in the convex hull of the virtual
trajectory, we have:

f(x⃗) = −
∫ 2π

0

1

||RAθ⃗λ − x⃗||
gRA

F (λ, γx⃗,λ)dλ (9)

where

γx⃗,λ = arctan

(
−x⃗ · η⃗λ

RA − x⃗ · θ⃗λ

)
. (10)

We can see that this formula is designed for equiangular data gRA(λ, γ). As we consider equispaced data
ḡRA(λ, u, v) in this paper, an additional rebinning using equation (3) left is required before using the VFB formula
above.

2.4 Modifying the VFB method for cone-beam projections

We now detail how the VFB formula above is modified to be used on cone-beam projections. First, we perform
a weighting of the cone-beam projections:

ḡRA

W (λ, u, v) = ḡRA(λ, u, v)

√
R2

A + u2√
R2

A + u2 + v2
(11)

For an object that is constant in z, (11) ensures that for all v: ḡRA

W (λ, u, v) = ḡRA

W (λ, u, 0), so the exact re-
construction area will be extended axially if each row of the weighted projections is treated as the row in the
midplane.

Then, for all the weighted data rows ḡRA

W (λ, u, v) of parameter v fixed, we perform the following steps as if
the transaxial plane of height z = v was the source plane, using the same virtual source trajectory as in the
midplane:

1. Rebinning of the data rows to the virtual geometry:

ḡRV (λ, γ, v) = ḡRA

W (λ+ γ − γRV

RA
, RA tan γRV

RA
, v) (12)

2. Differentiation and Hilbert-filtering of the virtual data:

ḡRV

F (λ, γ, v) =
1

2π

∫ π

−π

hH(sin(γ − γ′))(∂1 − ∂2)ḡ
RV (λ, γ′, v)dγ′ (13)

3. Rebinning to acquisition geometry with weighting wRV :

ḡRA

F (λ, u, v) =
RA cos γ√

R2
V −R2

A sin2 γ
(w̄RV ḡRV

F )(λ+ γ − γRA

RV
, γRA

RV
, v) (14)

where we take w̄RV (λ, γ, v) = wRV (λ, γ) for all v, and γ = arctan(u/RA).

Finally, the backprojection is performed in the acquisition geometry to give f̂ , the 3D VFB reconstruction :

f̂(x⃗, z) = −
∫ 2π

0

1

||RAθ⃗λ − x⃗||
ḡRA

F (λ, ux⃗,λ, vx⃗,z,λ)dλ (15)

for x⃗ in the convex hull of the virtual source trajectory,

ux⃗,λ =
−RAx⃗ · η⃗λ
RA − x⃗ · θ⃗λ

and vx⃗,z,λ =
RAz

RA − x⃗ · θ⃗λ
. (16)
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3. EXPERIMENTS AND RESULTS

3.1 Simulations

The simulations were performed on a 3D version of the Shepp-Logan phantom and on the 3D head Forbild
phantom∗. The reconstructed image was computed on a cubic grid of size [401, 401, 401] voxels. The data were
acquired on a circular trajectory of center O = (0, 0, 0) and radius RA, using the software RTK.12 The projections
were transversely truncated such that the measured area was a cylinder of center O and radius RF . The virtual
source trajectory radius was RV = RF . The acquisition trajectory along [0, 2π) was sampled with Nλ vertices
and each projection was composed of Nu ×Nv ray-lines. The virtual trajectory was composed of Nλvirt virtual
segments and each virtual projection was composed of Nγvirt ray-lines. For the Shepp-Logan phantom, we took
RA = 4, RF = 0.8, Nλ = 1256, Nu = 409, Nv = 517, Nλvirt

= 879 and Nγvirt
= 1257. For the head Forbild

phantom, we took RA = 45, RF = 9, Nλ = 1256, Nu = 409, Nv = 603, Nλvirt
= 693 and Nγvirt

= 1257.

3.2 Results

Figure 4 shows, for three slices of the 3D Shepp-Logan phantom (left) and the head Forbild phantom (right), the
reference image, the reconstructed image using the FDK algorithm with non-truncated data, the reconstructed
image using our modified 3D VFB method for transversely-truncated data, and the profiles of the lines drawn in
white on the reference and the 3D VFB reconstructions. The mathematically exact reconstruction area (convex
hull of the virtual source trajectory), which we also call the recoverable area, is delimited by a black dashed line
on the 3D VFB reconstructions.

Looking at figure 4 left, we can see that the 3D VFB reconstruction is excellent in the recoverable area in the
midplane (left column). In the planes at x = 0 (middle column) and at y = 0.4 (right column), the reconstruction
is still very good when we are close to the midplane. Further away from the midplane, we observe a slow decrease
of the intensity when |z| increases, similar to that on the FDK reconstruction, although not exactly the same.
There are also slight horizontal streak artefacts, tangent to the white ellipse, which are less marked on the FDK
reconstruction.

The 3D VFB reconstruction of the Forbild head phantom (figure 4 right) is good in the recoverable area in
the midplane (left column), but far less accurate that what we obtained for the Shepp-Logan phantom in figure
4 left. The difference is that the Forbild phantom consists of many more and finer anatomical structures than
the Shepp-Logan phantom, making it a far more challenging phantom to reconstruct. Consequently, we observe
that the FDK and 3D VFB reconstructions suffer from many artefacts for planes at x = 0 (middle column) and
at y = −1 (right column). The artefacts are stronger for the 3D VFB reconstruction, as we observe for instance
with the white area at the right of the black ellipse at plane x = 0 (middle column), and also with the large
black horizontal streak covering the top of the two circular structures at plane y = −1 (right column).

4. CONCLUSION

In this work, we proposed a 3D version of the VFB method, based on a VFB formula performing the backpro-
jection in the circular acquisition geometry and detailed in a previous contribution.11 This method was used
for ROI reconstruction from transversely-truncated cone-beam projections acquired with a circular source tra-
jectory. The numerical results were accurate in the midplane but only approximate outside the midplane. For
the Forbild head phantom especially, strong artefacts appeared in the 3D VFB reconstruction that were absent
from the FDK truncation-free reconstruction. Both the FDK algorithm and the 3D VFB had to address the
incompleteness of a circular cone-beam trajectory, but the 3D VFB was also handling truncated data, so it was
not surprising that different artefacts appeared in the off-plane reconstructed images.
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Figure 4. Left block: 3D Shepp-Logan (SL) phantom. Right block: Forbild head phantom.
For each block: Left column: (x, y) plane at z = 0. Middle column: (y, z) plane at x = 0. Right column: (x, z) plane at
y = 0.4. Top row: 2D slices of the reference phantom. Middle row 1: reconstructions using the FDK algorithm without
truncation. Middle row 2: reconstructions using our 3D VFB algorithm with truncation. The black dashed lines define
the boundary of the possible reconstruction area. The plotting scale is respectively [1.0 (black), 1.04 (white)] for the SL
phantom and [1.0 (black), 1.1 (white)] for the head phantom. Bottom row: profiles corresponding to the white lines,
plotted respectively with scale [1.005, 1.045] for the SL phantom and with scale [1.025, 1.085] for the head phantom. The
reference profiles are plotted in green dashed line and the reconstruction profiles in red.
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