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ABSTRACT

In this paper we examine whether increasing the rank of a tomographic system matrix by slightly changing the
measurement lines might improve the reconstructed image quality in region-of-interest (ROI) tomography. The
image quality is assessed by the size of the reconstructible region and by the reconstructed noise of the pixels
in that region. A theorem is presented to specify cases when changing elements in the system matrix leads to
solving new pixels. Numerical simulations were performed on several modest sized examples to measure the
bias and variance of the reconstructed images using system matrices with the same size but different rank. The
results show that while increasing the rank might help to solve new pixels, it can also lead to increases in the
pixel variances of the initial ROI.
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1. INTRODUCTION

Region-of-interest (ROI) tomography consists of reconstructing only a part of the whole image from truncated
data.1 Truncated data arises when the patient is not completely inside the field of view (FOV). ROI tomography
can be useful to reduce the radiation dose given to the patient or for partial reconstruction when the patient is
larger than the FOV. The reconstructible ROI depends on the acquired projection lines, described in the system
matrix mapping the image to the measurements.

We investigate how small modifications of the acquired projection lines might improve ROI reconstruction.
One improvement could be the size of the ROI, i.e. the number of reconstructible pixels. Another improvement
might be in the reconstruction noise, as described by the pixel variances in the ROI. Our previous work2 has
shown that a tiny change in the system matrix elements might lead to a large improvement of the variance in the
ROI when this change causes the rank of the system matrix to drop. Those results were in line with a previous
theorem about the the impact of new data on the reconstruction quality.3 In this paper, we derive a theorem
specifying how changes in the system matrix can increase the size of the ROI, and show that a trade-off must
be made between the size of the ROI and the reconstruction noise.

2. MATERIALS AND METHODS

2.1 Theory

Let us consider the m× n system matrix S defined such that rank(S) < n. The linear system

y = Sx (1)

with x ∈ Rn the image vector and y ∈ Rm the measurements vector, does not have a unique solution, although
some components of x (some pixels) might be uniquely determined. Those elements correspond to the ROI
pixels. In this model, Sij represents the length of the intersection of line i with pixel j, assuming unit pixels.
Note that there might be linear dependencies between the rows of S, i.e. the rank of S could be smaller than
m. Now we consider the m× n matrix C defining the linear system

z = Cx (2)
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(for the same x as in equation (1)), such that S and C are equal except for one element. Consequently,

rank(S)− 1 ≤ rank(C) ≤ rank(S) + 1 (3)

i.e. changing one element in S might increase the rank by one, decrease it by one, or not change the rank. We
establish the following theorem

Theorem. Let S be a m× n matrix. If there exists a m× n matrix C such that Cij = Sij for all (i, j) ̸= (a, b)
and rank(C) = rank(S)+1, then (i) C can uniquely determine at least the bth component of x, and (ii) S cannot
uniquely determine the bth component of x.

Note that C might also have a non-trivial nullspace, (i.e. rank(C) < n), but xb would nevertheless be solvable.
Note also, that only one element of S is allowed to change. The example in the appendix shows that the theorem
fails if the rank increases by one, but that S and C differ by more than one element.

Proof. (i) We first note that the change in rank means that S and C cannot be the same matrix, and therefore
Sab ̸= Cab. We will show that there exist scalars {βi}i=1,2...m such that

xb =

n∑
i=1

βizi (4)

and thus xb, can be uniquely determined from (2).

The only difference between y and z is the ath measurement, given by

ya =

n∑
j=1

Sajxj (5)

for y and

za =

n∑
j=1

Cajxj

=

n∑
j=1
j ̸=b

Sajxj + Cabxb

(6)

for z. Subtracting (6) from (5) gives
ya − za = (Sab − Cab)xb (7)

On the other hand, since S and C are the same size, if rank(C) = rank(S)+1, then there is a linear dependency
between the rows of S. More specifically, if a change only in row a increases the rank, then that row is a linear
combination of the other rows. (Recall that the rank of a matrix equals the dimension of the row-space.) Writing
S(i) for the ith row of S, we have, for some m− 1 scalars {αi}i=1,2...m;i ̸=a,

S(a) =

m∑
i=1
i ̸=a

αiS
(i) (8)

and since yi = x · S(i) we see that

ya = x · S(a) =

m∑
i=1
i̸=a

αix · S(i) =

m∑
i=1
i̸=a

αix · C(i)

=

m∑
i=1
i̸=a

αizi

(9)
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So, the difference between the two measurements is

ya − za =

m∑
i=1
i̸=a

αizi − za (10)

Combining (7) and (10) gives

xb =
1

Sab − Cab

( m∑
i=1
i ̸=a

αizi − za

)
=

m∑
i=1

βizi (11)

where the βi are defined by the right hand equality of (11) since Sab − Cab ̸= 0. Therefore, the component xb

can be determined from the zi measurements.

(ii) We will prove the contrapositive: if xb can be found using (1) then changing S to C will not increase the
rank.

We define eb ∈ Rn to be all zeros, except the bth component, where it is one. Thus x · eb = xb. Now since xb

can be solved from (1), there must exist scalars {γi} such that

xb =

m∑
i=1

γiyi =

m∑
i=1

γi(x · S(i))

= x · (
m∑
i=1

γiS
(i))

(12)

and since (12) holds for all x ∈ Rn, we must have

eb =

m∑
i=1

γiS
(i) (13)

which equivalently says that row-reducing the matrix S will result in one of the rows becoming eb.

We now observe that C(a) is a linear combination of S(a) and eb, and note that eb is a linear combination of
the rows of S (see (13)). Every row of C can therefore be obtained from a linear combination of the rows of S,
so the rank of C cannot exceed the rank of S (the dimension of the row-space of C cannot exceed the dimension
of the row-space of S).

We have shown that, if xb is solvable from S (and S and C are the same matrix except for element Cab)
then C cannot have higher rank than S. Equivalently, if rank(C) = rank(S) + 1, then xb cannot be uniquely
determined from S.

Corollary. If C is such that Cij = Sij for (i, j) ̸= (ak, bk) for k ∈ {1...K} and rank(C) = rank(S) +K, then C
can uniquely determine at least the K bk components of x, and these K components were not uniquely solvable
using S. Furthermore the K matrix elements that changed all lie on different rows and different columns (ak ̸= al
and bk ̸= bl for k, l ∈ {1 . . .K}).

Proof. For the rank to increase by K, at least K rows of the matrix must have changed. But with only K
changes of the matrix, each changed element must have been on a different row. Similarly, since the rank is
also equal to the dimension of the column space, the same argument applies to the columns, and each changed
element is in a different column. The corollary is now obtained by successively applying the theorem. We
recall that changing one element of a matrix can cause the rank to change by one at most, i.e. if K = 1,
rank(C) ≤ rank(S) + 1. Therefore, as K changes in the matrix cause rank(C) = rank(S) + K, each changed
element (ak, bk) must have increased the rank by 1, and, according to the theorem, lets us determine the bk
component of x, and bk was not solvable before the change.

Remark. It is easily seen that if S can uniquely determine some components of x, then C can also determine
those same components, as well as the additional component(s). In short, under the hypotheses of the theorem,
matrix C can always determine more components than S can.

In the following sections, we illustrate the theorem and the corollary with several examples.
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Figure 1. Projection lines corresponding to the system matrix S. The red lines correspond to the 7th and 8th rows, and
the dotted lines to the new measurements after changing one element in each row.

2.2 Small-scale examples

We define the following 8× 9 system matrix

S =



1 1 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1
0 A 0 A 0 0 A 0 0
A 0 0 0 A 0 0 A 0
0 0 A 0 A 0 0 A 0
0 0 0 A 0 0 A 0 0
0 0 0 0 0 A 0 0 A


(14)

with A =
√
5/2, which allows exact reconstruction of the first three elements of x (almost the same matrix was

used in Ref. 2). The 8 corresponding projection lines are shown in Fig. 1. The matrix S is rank deficient with
rank(S) = 6. Now we define a matrix C such that{

Cij = A/2 if (i, j) = (8, 6)

Cij = Sij otherwise.
(15)

and rank(C) = 7. This change corresponds to a downwards half pixel translation of the eighth projection line
(see Fig. 1).

We took a n×1 image vector x with values between 0 and 10, and simulated noiseless measurements according
to equations (1) and (2). The values in the 3× 3 image were

x =

5.75 7.43 0.50
9.88 3.57 8.79
0.37 1.24 6.32

 . (16)

The estimated image x̂ was reconstructed by applying the pseudo-inverse of the system matrices. The absolute
bias

|x̂j − xj | (17)

for each reconstruction was computed in order to establish which pixels xj were correctly determined, a bias
of zero corresponding to a correct reconstruction. The results, shown in Table 1 confirmed that, as expected,
pixels {x1, x2, x3} can be reconstructed from both S and C. Also, the matrix C uniquely determines pixel x6 as
predicted by the theorem, given that the only different element between S and C was (8, 6). In addition, pixel
x9 was fortuitously reconstructed exactly, since the eighth projection line only crossed pixels x6 and x9.

In order to evaluate the variance of the estimated pixels, the measurements were repeated 105 times with
additional Gaussian noise of variance σ2 = 1. In Table 1, it is observed that the variance of pixels x1 to x3,
which are the only ones correctly reconstructed by both S and C, increased when C was used for reconstruction.
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Table 1. Bias and variance of the estimated solution using either S or C.
S C (Eq. 15) C (Eq. 18)

Bias Var. Bias Var. Bias Var.
Pixel 1 < 10−14 0.47 < 10−15 0.47 < 10−14 0.49
Pixel 2 < 10−14 0.80 < 10−14 0.89 < 10−14 1.08
Pixel 3 < 10−15 0.62 < 10−14 0.93 < 10−14 1.02
Pixel 4 4.75 N/R 4.75 N/R < 10−14 6.45
Pixel 5 1.16 N/R 1.16 N/R 1.16 N/R
Pixel 6 1.23 N/R < 10−16 10.9 < 10−13 11.35
Pixel 7 4.75 N/R 4.75 N/R < 10−13 3.99
Pixel 8 1.16 N/R 1.16 N/R 1.16 N/R
Pixel 9 1.23 N/R < 10−16 5.14 < 10−16 5.25

The increase was by as much as 50% for pixel x3. The variances of the new reconstructible pixels, x6 and x9,
were larger with C, but their previous variances were not relevant since they were not accurately reconstructible
anyway (the pseudo-inversion produced a large bias).

In order to illustrate the corollary, we performed the same experiment with C defined as{
Cij = A/2 if (i, j) = {(7, 4), (8, 6)}
Cij = Sij otherwise.

(18)

resulting in rank(C) = 8 (see Fig. 1).

According to the corollary, the matrix C should be able to determine pixels x4 and x6, which was confirmed by
the zero bias for these two pixels in Table 1. Two additional pixels, x7 and x9, were also accurately reconstructed.
On the other hand, the variances for pixels {x1, x2, x3} have increased even more (by as much as 65% for pixel
x3).

2.3 Medium scale example

We performed the same experiment but for a larger 32×32 image of the Shepp Logan phantom (Fig. 2). We built
a 396× 1024 system matrix S of rank 369 which was able to accurately reconstruct a 16× 16 ROI in the upper
left corner of the image. Similar to the small-scale example, we built the matrix C by changing K elements (one
per row). We chose K = 3, such that rank(C) = 369 + 3 = 372. Specifically, the changes occurred in columns
257, 272, and 513. The three projection line that were changed in S are shown in Fig. 2.

The bias maps between the reconstructions (without simulated noise) using either S or C and the reference
phantom are shown in Fig. 3. The pixels in the upper left corner of the reconstructed image using S appear
in blue, corresponding to a very small bias, hence they are accurately reconstructed. As expected, the 3 pixels

Figure 2. Shepp-Logan phantom. The three blue lines correspond to the projection lines in S that were changed.
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Figure 3. Absolute bias between the reconstructed image using S (left) or C (right) and the reference Shepp Logan
phantom. Note the logarithmic scale.

Figure 4. Top left: variance in the 16 × 16 ROI reconstructed with S. Top right, bottom left, bottom right: profiles
through the 8th, 12th, and 16th row of the variance map using either S or C.

corresponding to the changed columns 257, 272, and 513, were also accurately reconstructed with matrix C.
Additionally, figure 3 shows that pixel 514 (to the right of pixel 513) was also accurately reconstruced using the
matrix C.

The differences between the variances of the pixels in the upper left 16× 16 ROI reconstructed using either
S or C are shown in Fig. 4. For all pixels in the ROI, the variance was larger when C was used to reconstruct
the image.

3. DISCUSSION

Our results have shown that, while increasing the rank of a matrix by changing its elements might increase the
number of reconstructible pixels, it can also lead to a larger variance in the initial ROI. Therefore, a trade-off
must be made between the size of the ROI and the reconstruction noise. For an m × n matrix, increasing the
rank means increasing the number of independent equations and potentially solving a new variable. On the other
hand, a rank deficient matrix contains redundant information, i.e. a possible smaller variance for the variables
that can be solved.

The proposed theorem specifies when changes in the matrix will solve new variables, but is limited to one
change per row. In practice, only projection lines close to the edge of the image can be modified since only one
value in the system matrix is allowed to change. In our examples, the K new reconstructible pixels predicted by
the theorem were all at the edges of the image, although other pixels can also be reconstructed. Nevertheless,
increasing the rank of a matrix (while keeping its size constant) will increase the chance of solving new variables,
while reducing the number of redundant measurements that might have been used to reconstruct ROI pixels.
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Figure 5. Projection lines corresponding to the 4× 4 system matrices. The full red line represents the last row of S and
the dotted line the last row of C.

4. CONCLUSION

A theorem specifying when a change in a tomographic system matrix can help solve new pixels has been proven.
The study of the bias and the variance of the reconstructed images has shown that the additional reconstructible
pixels might come at the cost of a reduced variance in the original ROI.

APPENDIX A.

Here we show that the hypothesis of the theorem, that only one element must differ between S and C, cannot
be relaxed for the conclusions of the theorem to hold. We give an example of matrices S and C of size 4 × 4
such that rank(S) = 2 and rank(C) = 3 but no component of x can be uniquely reconstructed using either S or
C. Two of the matrix elements of C differ from those of S. This example illustrates that, to apply the theorem,
only one element of the matrix is allowed to change, when the rank increases by 1.

The example corresponds to a very simple tomographic system with x representing a 2× 2 image. Using the
same value of A =

√
5/2, we define S as

S =


1 1 0 0
0 0 1 1
A A 0 0
0 0 A A

 (19)

and for the matrix C the last row is replaced by (A 0 0 A). The system is shown in Figure 5.

It is easy to see that rank(S) = 2 and rank(C) = 3 and that no component of x can be determined using
matrix S. For the matrix C, the one-dimensional nullspace is spanned by the vector (1,−1, 1,−1) and therefore
no component of x can be uniquely resolved when using the matrix C.
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