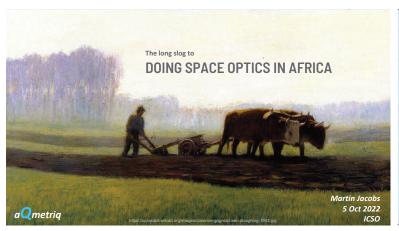
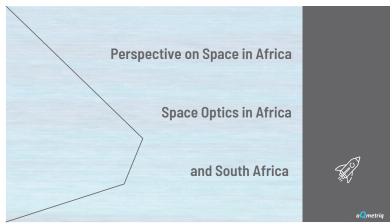
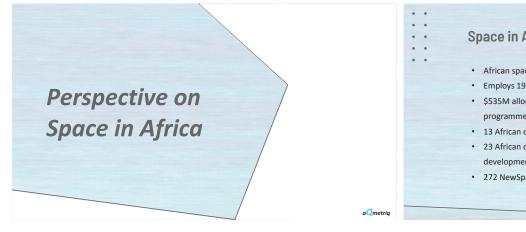
International Conference on Space Optics—ICSO 2022

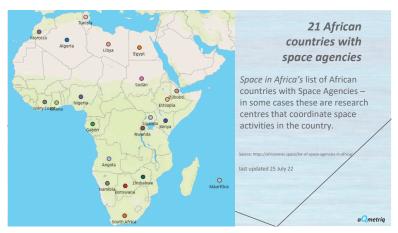
Dubrovnik, Croatia

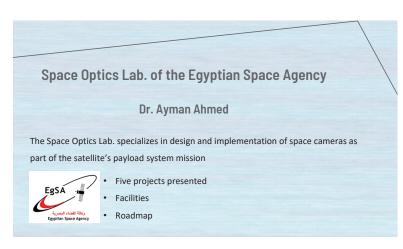

3-7 October 2022

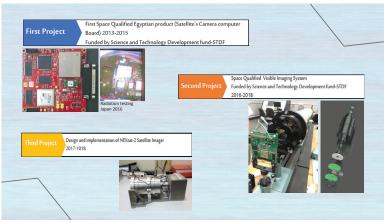

Edited by Kyriaki Minoglou, Nikos Karafolas, and Bruno Cugny,

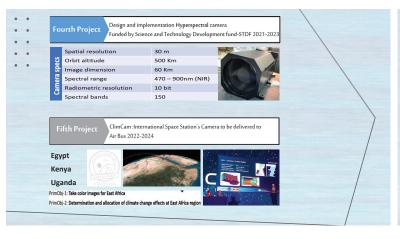


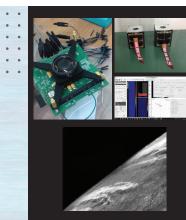
The long slog to doing space optics in Africa




AFRICA's indigenous development of SPACE OPTICS


Algerian Space Agency (ASAL)


- Design and implement an earth observation satellite
- Centre for Satellite Development (CDS) houses mechanical & thermal, electrical, electronic and optics research and development laboratories
- Facilities:
 - · optics integration / alignment, ISO5, on a seismic block
 - · anechoic chamber for EMC tests
 - · thermal vacuum chamber
 - · vibration test chamber
 - · acoustic test chamber


https://en.wikipedia.org/wiki/National_Space_Program_(Algeria)

aQmetriq

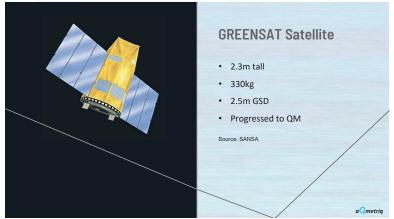
In-orbit Heritage

- NARSSCube-1:7-2019
- NARSSCube-2:11-2019

with cameras developed by the Space Optics Lab

Indigenous development of SPACE OPTICS in South Africa

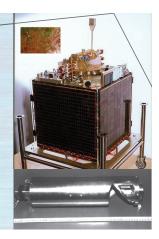

aQmetri


The GREENSAT Programme: 1985 - 1994 Should be viewed in the context of the cold war era and a heavily sanctioned and isolated South Africa Denel state-owned defence contractor A military programme and tandem civilian Greensat programme Over \$2.5 B spent (about \$6 B today) 50 - 70 South African companies were involved, employing 1,300 -1,500

By 1994 funding dried up and the programme was effectively terminated

Source: The South African Space Programme - Past and Present Alden 2007

people ~ 1992

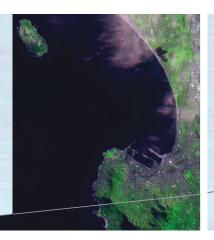

The SUNSAT Programme: 1991 - 2005

- Developed by Masters' students at the Electronic Systems Laboratory of Stellenbosch University
- Virtually everything was designed, developed, built, assembled and tested in-house by students, with exception of the solar panels and EO imager's optics (lens).
- Approximately 30 students at peak $^{\sim}$ 1995 and total of 88 postgrad degrees earned
- · Shoestring budget
- Environmental test facilities at Houwteq were a key enabler
- Free launch by NASA in 1999
- \Rightarrow Africa's first indigenously developed satellite in-orbit

a metriq

SUNSAT Satellite

- 64kg
- · Multispectral pushbroom stereo imager
- Imager could rotate for stereo or off-nadir imaging
- The refractive optics were developed by the South African Council for Scientific and Industrial Research (CSIR)
- 3 bands: red, green, NIR
- 15m GSD x 52km swath
- Horizon sensors, sun sensors and two star trackers developed in-house
- Operational for 2 years



Sumbandilasat: 2006

- Contracted by SA Dept of Science & Tech
- 80kg satellite
- 6.25m GSD x 45km swath x 6 bands
- Ø 80mm aperture
- Minimum budget and < 1 year delivery
- Launched 3 years later in 2009 on Soyuz

MSMI Hyperspectral Imager: 2004-2005

- · Collaborative SA/Belgian project
- Belgium supplied hyperspectral bench
- SA supplied remainder of the imager
- Ø 200mm aperture
- 2.6m video GSD
- 2.7m pan-sharpened GSD x 23km swath
- Hyperspectral:
 - 15m GSD x 14km swath
 - " > 200 bands in 400 2350nm @ 10nm
- Progressed to QM before SA funding dried up

SPACETEQ: since 2012

- Denel acquired and rebranded SUNSPACE in 2012
- Relocated from Stellenbosch to Denel's facility at Houwteq
- At its peak Spaceteq may have employed about 80 people
 SA Government's EOSat-1:
- ° 1.8m GSD x 22km swath x 10 bands
- Teledyne Dalsa contracted for imaging detectors in 2015
- $^{\circ}$ progressed to PDR and "currently in the design
- development phase" after 7 years
- ⇒ implies funding dried up

SPACETEQ Facilities

Thermal Vacuum Chambers

nbers EMC Test

Vibration Facility

https://www.spaceteq.co.za/facilities

- 8m x 7m x 8m anechoic chamber
- Vibration testing of items up to 1 ton
- Vibration testing of items up to 1 ton
 TVACs: 3.8m x Ø 3.4m and 0.7m x Ø 0.9m
- 480m² ISO8 main cleanroom
- Various space application test laboratories accessible
- directly from main AIT clean room
- Optical Test Facility 600 (OTF600):
 payloads up to Ø 600mm
- 9m tall decoupled structure
- seismic base 200 ton decoupled
- anti-static 5m x 7m working floor area
- \circ interferometric test bench, $\lambda/10$
- o collimator test bench, 6 DOF focal plane
- assembly and alignment bench
- a liquid mirror autocollimator

 Available for use by local and international clients

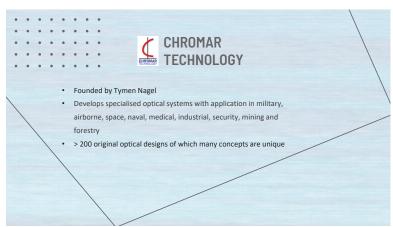
https://www.spaceteq.co.za/eo-sat1

SIMERA since 2010

- Simera founded by Johann du Toit and Terry Terblanche
- · "More resolution, smaller satellite"

	GSD x swath @ 500km	Bands	Size	Heritage
xScape50	30m x 119km	8x MS, or 32x HS or Bayer	1U	First launch Q2 2023
xScape100	4.75m x 19km	8x MS, or 32x HS, or RGB/Video	1.5U	5 versions in orbit to date
xScape200	1.5m x 14km	8x MS, or RGB/Video	12U	Since 2021

- > 25 payloads delivered in the last 2 years
- 100% success rate


DRAGONFLY Facilities

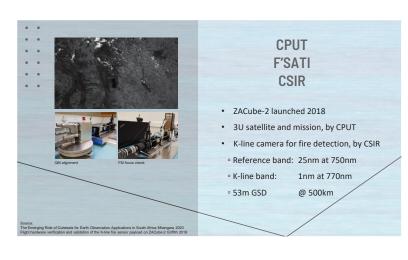
- · Technopark, Stellenbosch
- Preparing for ISO9001
- 1,000m² of ISO8 cleanroom areas for microsatellite constellation production
- 140m² dedicated ISO7 optical cleanroom area, with ISO6 flow cabinets
- Vertical integration stages for up to Ø 450mm optics
- · Interferometer and wavefront sensors
- Integration sphere
- Small vacuum chamber with optical window for imager testing
- Large vacuum chamber for testing up to 400kg satellites
- Brüel & Kjaer LDS V8900 electrodynamic shaker

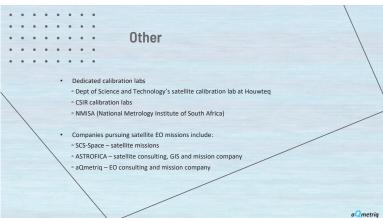
- Customizable, space-proven ADCS solutions
- Including optical sensors:
 - Coarse sun sensor
 - Fine sun sensor
 - Stellar gyro
- > 3,000 products in-orbit, including sun sensors on the moon and destined for the planets

NEWSPACE SYSTEMS Facilities

- Somerset West
- ISO9001:2015 and ESA/ECSS qualified technicians
- 350m² ISO7 cleanroom area
- · Clean darkroom with 'artificial Sun' two-axis programable gimbal for sensor calibration
- 3 thermal chambers and 65kN vibration
- Clean manufacturing capability with paste screen printer, pick n place, vapour-phase reflow, cleaning machine and contamination testing

- Stellenbosch University spin-off by Prof WH Steyn and his students, lead by Mike-Alec Kearney as CEO
- Small satellite turn-key attitude control systems, ADCS sensors, actuators, algorithms and simulations
- > 200 full ADCS systems for satellites and > 2,000 components
- delivered and currently in-orbit or awaiting launch
- All sensors designed, developed, integrated and tested in-house
- ^o CubeSense Sun and Nadir visible sensors for sun and earth direction
- CubeIR infrared Earth horizon sensor
- CubeStar star tracker for nanosatellites





CUBESPACE Facilities

- Stellenbosch University / Launchlab Campus
- Adhering to various ESA small satellite standards
- Dark room for optical sensor calibration with various motorized rotation stages
- Thermal vacuum chamber
- Climatic chamber
- Vibration table
- Class 6 cleanroom

Its been a long slog getting here ..

- In the last 20 years SA's private space optics sector evolved from consulting and KHHT services to include four commercially funded, fast-growing niche manufacturing companies
- Have developed a world-class range of 'basic' space technology we're not building Copernicus or the JWST here, but
- Can achieve sub-metre resolution
- SA companies are supplying key building blocks for today's EO [and comms] constellations
- We are set up to and have mastered the development of products from the ground up, while
- Our playing field is constrained by resources, facilities and expertise to less sophisticated optical technologies, for example excluding off-axis systems / TMAs
- ⇒ As African space optics engineers, our passion, dedication, resourcefulness and resilience are no less than a NASA engineer working on JWST

a metri

Acknowledgements

- Dr Ayman Ahmed and Prof Islam Abou El-Magd of the Egyptian Space Agency
- Hendrik Burger, SANSA
- Sias Mostert, SCS
- Ana-Mia Louw, Simera Sense
- Rikus Cronje, Dragonfly
- Herman Steyn, CubeSpace
- James Barrington Brown and Leehandi Kearney, Newspace Systems
- Tymen Nagel Snr & Jnr, Chromar Technology

