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ABSTRACT 

This paper evaluates four AI-based 3D reconstruction algorithms—TripoSR, Meshy, Instant, and One-2-34—alongside 

the traditional AR-Code method (which uses scanning for model point cloud reconstruction). By comparing the integrity 

ratio from point cloud data, depth information from depth maps, and perceived similarity from model dimensions, we 

identify the AI algorithm that best reconstructs 3D models. This research aligns with the “Opinions on Promoting the 

Implementation of the National Cultural Digitization Strategy” and provides actionable cases, methods, and strategies. It 

has practical applications in cultural heritage preservation, product design, and the digital transformation of smart cities, 

offering resource efficiency and enhanced user experiences in digital environments. 

Keywords: Digital model reconstruction under AI algorithm, three-dimensional reconstruction evaluation, digital model 

evaluation 

1. INTRODUCTION

Three-dimensional (3D) reconstruction technology is widely used in computer vision, robot navigation, and digital 

cultural relics protection1. The rapid advancement of artificial intelligence (AI) has propelled AI-based 3D reconstruction 

algorithms to the forefront2. Traditional methods, relying on multi-view geometry and structured light3, often struggle 

with accuracy and efficiency in complex environments and large-scale data. 

AI, especially through deep learning and convolutional neural networks (CNNs), offers novel solutions by enhancing 

accuracy and robustness through vast datasets and feature extraction. AI algorithms can reconstruct high-precision 

models by interpreting depth information and geometric structures, compensating for partial data loss, and integrating 

multi-source data, such as RGB images, depth maps, and lidar point clouds. 

This study aims to explore and optimize AI applications in 3D reconstruction. We propose an AI-based model quality 

assessment method, incorporating three indicators: integrity ratio, depth information assessment, and perceived similarity, 

to comprehensively evaluate and guide the optimization of 3D model reconstruction quality. 

2. METHODOLOGY
2.1 Subjects 

In studying the optimal path theory for AI-based 3D reconstruction, four algorithms—TripoSR, Meshy, Instant, and 

One-2-34—were selected based on their popularity. These algorithms were used to model a seat and extract the model’s 

OBJ file. As shown in Figure 1, the seat was chosen for its simple yet distinct structure, clear material contrast, and 

combination of curved and straight shapes, providing a comprehensive basis for evaluating reconstruction quality. 

Additionally, the AR Code method, representing traditional 3D reconstruction techniques (using structured light or laser 

scanning4), was employed to scan the seat and extract its OBJ file. 
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Figure 1. Reconstruction object. 

2.2 Experimental methods 

Models were classified into five groups: TripoSR, Meshy, Instant, One-2-34, and AR Code. Point cloud and depth 

information were extracted, and perceptual similarity was evaluated using computer graphics algorithms. Python was 

used to extract and visualize point clouds5. AI-generated point cloud models were registered with those from AR Code to 

calculate the integrity ratio (P), a key quality metric indicating the percentage of real object surfaces or point clouds in 

the reconstruction. A larger P denotes higher quality. The AI reconstruction model’s point cloud set is M, and the AR 

Code model’s set is N. 

P=
N

NM
(M, N≥0)                                                                        (1) 

The quality of AI-based algorithms was compared with the AR Code method using depth information from reconstructed 

models. Python was used to extract and analyze depth maps, assessing integrity, surface smoothness, and noise for a 

comprehensive evaluation of model accuracy. 

For perceptual similarity, the ORB algorithm extracted image feature points, and BFMatcher compared local features. A 

pre-trained ResNet50 model extracted high-dimensional feature vectors, and cosine similarity measured perceptual 

similarity, effectively capturing high-level semantic features. 

Comparing the four AI algorithms with AR Code identified the optimal AI 3D reconstruction path. 

3. RESULTS 

3.1 Point cloud evaluation results 

From Table 1 and Figures 2 and 3, it can be seen that the four AI 3D reconstruction algorithms based on point cloud 

evaluation are compared with the AR Code method. The TripoSR algorithm generates the largest number of model 

points, but the integrity ratio is inferior to the Instant algorithm; the model integrity ratio generated by the Instant 

algorithm is better than the other three algorithms; the model integrity ratio generated by the One-2-34 algorithm is the 

lowest, which indicates that there is a large lack of model quality reconstructed by the algorithm among the four 

algorithms. Instant has the highest integrity ratio. 

Table 1. Basic information of subjects. 

Algorithm Point cloud number Point cloud pictures Point cloud registration map Integrity ratio 

TripoSR  58096 

  

0.47 

Instant 43114 

  

0.49 
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Algorithm Point cloud number Point cloud pictures Point cloud registration map Integrity ratio 

One-2-34 35876 

  

0.26 

Meshy 35552 

  

0.4 

AR Code 15758 

 

/ / 

  

Figure 2. Comparison of model points. Figure 3. Model integrity ratio comparison. 

3.2 Depth information assessment results 

Quality assessment using depth maps measures the accuracy and reliability of the 3D model by comparing its depth map 

with that of the real scene6. This evaluation focuses on three dimensions: depth information integrity, surface smoothness, 

and noise. 

Depth information integrity checks if the model captures all essential geometric details without missing areas7. Surface 

smoothness ensures the model is free of unnecessary sharp edges or protrusions, reflecting the real object’s smoothness8. 

Noise analysis identifies and evaluates random errors or disturbances from data acquisition, algorithm uncertainties, or 

environmental factors9, determining the model’s accuracy and stability and guiding necessary corrections and 

optimizations. 

The depth map of AI reconstruction algorithm based on Python extraction is shown in Figure 4. 

According to the extracted depth map, the depth information integrity data and visualization are shown in Table 2 and 

Figure 5. 

 

Figure 4. Model depth maps generated by four algorithms. 
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Table 2. Depth information integrity data. 

Algorithm Mean Std Min 25% 50% 75% Max 

TripoSR -1.288 0.354136 -2.339664 -1.510548 -1.322495 -0.93677 -0.595458 

Instant 0.053006 0.499425 -0.739422 -0.467407 0.07406 0.580966 0.8113 

One-2-34 -1.48452 0.456114 -2.600965 -1.721241 -1.454214 -1.070674 -0.682965 

Meshy -2.383768 0.423762 -3.53 -2.657742 -2.387465 -1.93283 -1.612 

 

Figure 5. The model depth information integrity map generated by the four algorithms. 

From the analysis of depth information integrity in Table 2 and Figure 5, the following conclusions can be drawn: 

(1) The TripoSR algorithm’s reconstructed model has an average depth value of -1.288, ranging from -2.339664 to -

0.595458, with a standard deviation of 0.354136. This indicates a concentrated distribution and consistent depth 

information. 

(2) The Instant algorithm’s model has an average depth value of 0.053006, ranging from -0.739422 to 0.8113, with a 

standard deviation of 0.499425. The scattered distribution and large standard deviation suggest significant depth 

information variation and potential reconstruction bias. 

(3) The One-2-34 algorithm’s model has an average depth value of -1.48452, ranging from -2.600965 to -0.682965, with 

a standard deviation of 0.456114. The scattered depth values indicate lower accuracy in depth information compared to 

TripoSR. 

(4) The Meshy algorithm’s model has an average depth value of -2.383768, ranging from -3.53 to -1.612, with a standard 

deviation of 0.423762. Although the depth values are concentrated, the overall depth tends to be lower. 

In summary, TripoSR performs best in-depth information integrity, exhibiting concentrated depth value distribution and 

smaller standard deviation, indicating higher accuracy and stability. Meshy, while concentrated, shows lower overall 

depth values. Instant and One-2-34 have more dispersed depth value distributions, indicating potential depth information 

deviations. 

According to the extracted depth map, the surface smoothness data and visualization of the reconstructed model are 

shown in Table 3 and Figure 6. 

The following conclusions can be drawn from the analysis of the surface smoothness of the model generated by Table 3 

and Figure 6:  
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Table 3. Reconstruction of model surface smoothness data. 

Algorithm Mean Std Min 25% 50% 75% Max 

TripoSR 0.000019 0.133434 -0.750202 -0.000451 0.00593 0.042052 0.703654 

Instant -0.000015 0.123193 -0.880765 0 0.00789 0.016561 0.880038 

One-2-34 1.426703 9.66497 -2.819716 -2.464393 -3.707469 3.198296 8.883726 

Meshy -0.000017 0.054985 -0.93487 -0.000468 0.000436 0.005531 0.747142 

 

Figure 6. The surface smoothness analysis diagram of the model generated by the four algorithms. 

The surface gradient analysis reveals the following: 

(1) TripoSR: Average gradient value of 0.000019, range from -0.750202 to 0.703654, and standard deviation of 

0.133434. The surface is smooth with minimal gradient changes. 

(2) Instant: Average gradient value of -0.000015, range from -0.880765 to 0.880038, and standard deviation of 0.123193. 

The surface is relatively smooth, similar to TripoSR. 

(3) One-2-34: Average gradient value of 1.426703, range from -2.819716 to 8.883726, and standard deviation of 9.66497. 

The surface is rough with significant gradient changes. 

(4) Meshy: Average gradient value of -0.000017, range from -0.93487 to 0.747142, and standard deviation of 0.054985. 

The surface is the smoothest with the smallest gradient changes. 

In terms of surface smoothness, Meshy performs the best with minimal gradient changes. TripoSR and Instant also 

exhibit good surface smoothness with small gradient changes. In contrast, One-2-34 has the worst surface smoothness 

with the largest gradient changes and a rough surface. 

The noise data and visualization of the reconstructed model based on the extracted depth map are shown in Table 4 and 

Figure 7. 

Table 4. Reconstruct model noise data. 

Algorithm Mean Std Min 25% 50% 75% Max 

TripoSR -1.288908 0.354136 -2.339664 -1.510548 -1.322495 -0.93677 -0.595458 

Instant -2.319911 0.407868 -3.522756 -2.466499 -2.366907 -1.881537 -1.604812 

One-2-34 -1.48452 0.456114 -2.600965 -1.721241 -1.454214 -1.070674 -0.682965 

Meshy -2.383768 0.423762 -3.53 -2.657742 -2.387465 -1.93283 -1.612 
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Figure 7. Model noise analysis diagrams generated by four algorithms. 

From the noise analysis in Table 4 and Figure 7, the following conclusions can be drawn: 

(1) TripoSR: Average noise value of -1.288908, range from -2.339664 to -0.595458, and standard deviation of 0.354136. 

The noise distribution is concentrated with a smaller standard deviation. 

(2) Instant: Average noise value of -2.319911, range from -3.522756 to -1.604812, and standard deviation of 0.407868. 

The noise distribution is more dispersed with a larger standard deviation. 

(3) One-2-34: Average noise value of -1.48452, range from -2.600965 to -0.682965, and standard deviation of 0.456114. 

The noise distribution is more dispersed with a larger standard deviation. 

(4) Meshy: Average noise value of -2.383768, range from -3.53 to -1.612, and standard deviation of 0.423762. The noise 

distribution is concentrated with a smaller standard deviation. 

In summary, TripoSR performs best in noise analysis, with concentrated distribution and smaller standard deviation, 

indicating minimal random error. Meshy also has concentrated noise distribution. In contrast, Instant and One-2-34 have 

more dispersed noise distributions and larger standard deviations, indicating greater random errors. 

Table 5 shows the comprehensive comparison of the four AI reconstruction models in depth information integrity, 

surface smoothness, and noise analysis. 

Table 5. The advantages and disadvantages of the depth information of the reconstruction models generated by the four AI algorithms 

are compared. 

Algorithm Dominance Inferiority Overall merit 

TripoSR The depth information is more 

complete, surface smoothness 

is better10. 

The depth value bias is low. The overall performance is excellent 

and the reconstruction quality is high. 

Instant The surface smoothness is 

good. 

The depth information and noise 

distribution are scattered, and there 

are large deviations and errors. 

The overall performance is general, 

and the reconstruction quality is 

medium. 

One-2-34 No advantage. The smoothness is the worst, and the 

noise distribution is more dispersed. 

The overall performance is poor and 

the reconstruction quality is low. 

Meshy The surface smoothness is the 

best, and the noise distribution 

is more concentrated. 

The depth value bias is low. The overall performance is excellent, 

especially in terms of surface 

smoothness. 
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3.3 Perceptual similarity evaluation results 

Perceptual similarity measures the visual similarity between two images, focusing on human visual perception rather 

than traditional pixel-level comparisons like mean square error (MSE) or peak signal-to-noise ratio (PSNR)11. This 

approach aims to simulate human visual perception for a more accurate assessment of image quality and similarity. 

In addition to evaluating point cloud and depth information, perceptual similarity is also assessed. Using deep learning 

algorithms, the feature points of the 3D reconstruction model and the real object are matched and calculated to determine 

the similarity between the reconstructed model and the real object. 

It can be seen from Table 6 that among the three-dimensional reconstruction models of the four algorithms, the three-

dimensional reconstruction model based on the TripoSR algorithm has the highest similarity with the real object, 

followed by the three-dimensional reconstruction model generated by the Instant algorithm. The model based on One-2-

34 algorithm has the lowest similarity, and it can be seen from the picture that the model generated by One-2-34 

algorithm has the characteristics of rough surface and incomplete features. 

Table 6. Perceptual evaluation results of reconstruction models generated by four AI algorithms. 

Algorithm Feature point matching graph Perceived similarity 

TripoSR 

 

0.975 

Instant 

 

0.965 

One-2-34 

 

0.628 

Meshy 

 

0.882 

4. DISCUSSION 

In 3D reconstruction, various quality assessment methods have distinct pros and cons. Traditional optimization methods, 

such as those based on geometric and photometric consistency, are robust and converge well without needing training 

data. However, they incur high computational costs and require complex strategies to handle noise, outliers, and density 

changes. 

Feature learning-based methods, leveraging deep neural networks and algorithms like RANSAC, excel in accurate 

matching but demand extensive training data. Their performance drops significantly when faced with unknown scenarios 

with differing data distributions. 

End-to-end learning methods simplify the reconstruction process by transforming registration into a regression problem, 

merging traditional mathematical theory with deep learning. However, they are sensitive to noise and density differences. 

For large-scale 3D reconstruction, combining multi-view images shows promise. Techniques like Structure from Motion 

(SfM) and Multi-View Stereo (MVS) generate high-precision models for large scenes but need further optimization in 

computational complexity and data processing efficiency. 

This study proposes an optimized AI algorithm to enhance reconstruction accuracy and efficiency while better handling 

large-scale, complex scene data. This new method is theoretically innovative and practically advantageous, opening new 

avenues for 3D reconstruction technology development. 
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5. CONCLUSIONS 

A comprehensive evaluation indicates that AI algorithms, through multi-view synthesis, data augmentation, and 

interpolation techniques, significantly enhance the effectiveness of 3D model reconstruction, resulting in denser and 

more complete point cloud data. Among these algorithms, TripoSR excels in point cloud integrity, depth information, 

and perceptual similarity, making it the optimal choice for 3D reconstruction. Meshy performs well in terms of depth 

information and ranks second in point cloud integrity. Instant demonstrates the best performance in point cloud integrity 

but falls short in other aspects. The One-2-34 algorithm performs the worst across all dimensions. 

Despite the overall superior performance of AI-based 3D reconstruction algorithms, there is still room for improvement 

in edge processing, such as edge smoothness. Additionally, 3D models reconstructed using AI algorithms need 

improvements in the number and quality of faces to enhance the model's subdivision level. 

Future research could focus on exploring the optimal integration path between AI algorithms and traditional 3D 

reconstruction scanning methods. Combining the advantages of AI algorithms with the stability and precision of 

traditional methods may further enhance the overall effectiveness of 3D reconstruction. Moreover, AI algorithms hold 

great potential in the field of real-time 3D reconstruction. Real-time processing and generation of high-quality 3D 

models could have profound impacts on fields such as virtual reality, augmented reality, and real-time monitoring. 

Investigating how to optimize AI algorithms to meet the demands of real-time processing and how to maintain high-

precision reconstruction in dynamic environments will be crucial areas for future research. 
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